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SUMMARY
Transcription factor EB (TFEB) activates lysosomal biogenesis genes in response to environmental cues.
Given implications of impaired TFEB signaling and lysosomal dysfunction in metabolic, neurological, and in-
fectious diseases, we aim to systematically identify TFEB-directed circuits by examining transcriptional
responses to TFEB subcellular localization and stimulation. We reveal that steady-state nuclear TFEB is
sufficient to activate transcription of lysosomal, autophagy, and innate immunity genes, whereas other
targets require higher thresholds of stimulation. Furthermore, we identify shared and distinct transcriptional
signatures between mTOR inhibition and bacterial autophagy. Using a genome-wide CRISPR library, we find
TFEB targets that protect cells from or sensitize cells to lysosomal cell death.BHLHE40 andBHLHE41, genes
responsive to high, sustained levels of nuclear TFEB, act in opposition to TFEB upon lysosomal cell death
induction. Further investigation identifies genes counter-regulated by TFEB and BHLHE40/41, adding this
negative feedback to the current understanding of TFEB regulatory mechanisms.
INTRODUCTION

Lysosomes facilitate recycling of unwanted cytosolic compo-

nents, including damaged organelles, oxidized lipid aggregates,

or pathogens targeted by autophagy (Kuo et al., 2018; Najibi

et al., 2016; Visvikis et al., 2014). Digested lysosomal products

released by autophagolysosomes satisfy nutritional and energy

needs of the cell (Rabinowitz and White, 2010; Singh and

Cuervo, 2011). Transcription factor EB (TFEB), a member of

the MiT/TFE family of transcription factors expressed widely

across cell types, is a master regulator of lysosomal biogenesis,

autophagy, and lipid metabolism (Martina et al., 2014; Rusmini

et al., 2019; Sardiello et al., 2009; Settembre et al., 2011, 2013;

Tan et al., 2019). We previously demonstrated a role for TFEB

in maintaining intestinal epithelial-cell-specific functions.

Compared with wild type (WT), mice lacking TFEB in the intesti-

nal epithelium were more susceptible to epithelial injury and had

reduced expression of antimicrobial peptides required for host

defense (Murano et al., 2017). In vivo studies also elucidated
Ce
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functions for TFEB in spatiotemporal control of myelination dur-

ing central nervous system development and following injury

(Goodman et al., 2018; Meireles et al., 2018). Collectively,

TFEB activates transcription in response to many physiological

signals to maintain cellular homeostasis.

TFEB activity is controlled by its subcellular localization, which

is regulated by post-translational modifications, including phos-

phorylation (Martina et al., 2012; Martina and Puertollano, 2018;

Napolitano et al., 2018; Puertollano et al., 2018; Roczniak-Fergu-

son et al., 2012; Settembre et al., 2011, 2012). In nutrient-rich con-

ditions, mTOR phosphorylates TFEB at S142 and S211, promot-

ing the interaction between TFEB and 14-3-3 proteins that

shield its nuclear localization signal (NLS) (Martina et al., 2012; Na-

politano et al., 2018; Puertollano et al., 2018; Roczniak-Ferguson

et al., 2012; Settembre et al., 2012; Xu et al., 2019). Upon cellular

stress signals, such as nutrient deprivation, inhibition of the amino

acid sensing mTOR complex 1 (mTORC1) results in accumulation

of TFEB dephosphorylated at S142 and S211, which dissociates

from 14-3-3 proteins, translocates into the nucleus, and activates
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Figure 1. Engineered Cell Lines Demonstrate Transcriptional Response to TFEB Localization

(A) Subcellular localization of TFEB in HeLa and TFEB-knockout HeLa cells reconstituted with empty vector (TFEB-KO), WT TFEB (TFEB-WT), cytosol-restricted

TFEB (TFEB-cyto), or nuclear-restricted TFEB (TFEB-nuc) following treatment with DMSO or Torin. Representative confocal microscopy images show TFEB

detected with anti-TFEB antibody (green in merged channels; white in single channels) and DNA with Hoechst (blue). Scale bars represent 5 mm.

(B) Representative anti-TFEB immunoblot demonstrates TFEB protein is not detected in TFEB-KO cells. TFEB-WT and TFEB-cyto are expressed at similar levels,

whereas detectable TFEB-nuc expression is lower. Actin acts as a loading control.

(C) TFEB-cyto maintains functional interactions in the cytosol. Immunoprecipitation of recombinant Strep/FLAG-tagged TFEB from HeLa cells expressing TFEB-

KO, TFEB-WT, or TFEB-cyto following DMSO or Torin treatment. Both TFEB-WT and TFEB-cyto are phosphorylated (P-TFEB) and interact with 14-3-3 proteins

before Torin treatment. Upon Torin treatment, TFEB-WT and TFEB-cyto are not detected with the phosphoantibody and do not interact with 14-3-3 proteins.

Actin acts as a loading control.

(D) Cells were processed for RNA sequencing. The TFEB transcript level (cyan) is significantly increased in TFEB-WT, TFEB-nuc, and TFEB-cyto cells relative to

TFEB-KO cells. Shown in red is a subset of known TFEB target genes (Table S1: Sardiello et al., 2009), many of which have an increased log fold change (logFC) in

TFEB-WT and TFEB-nuc relative to TFEB-KO cells. Most genes in TFEB-cyto cells are not significantly upregulated relative to TFEB-KO cells. See also Figure S1.
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its transcriptional program (Martina et al., 2012; Roczniak-Fergu-

son et al., 2012; Xuet al., 2019). The TFEBdephosphorylated state

is also achieved through inhibition of mTOR activity by small mol-

ecules such as Torin (Martina and Puertollano, 2018; Napolitano

et al., 2018). Studies have further described regulation of TFEBac-

tivity in response to glucose deprivation and bacterial pathogens

through AMP-activated protein kinase (AMPK) (Eichner et al.,

2019; El-Houjeiri et al., 2019; Visvikis et al., 2014).

Additional regulation of TFEB activity occurs through nuclear

export. Reports have identified an evolutionarily conserved nu-

clear export signal and demonstrated that TFEB continuously
2 Cell Reports 33, 108371, November 10, 2020
shuttles between the cytosol and the nucleus at steady state

(Li et al., 2018; Napolitano et al., 2018; Silvestrini et al., 2018).

Treatment with Torin blocked this shuttling event, indicating

that movement of TFEB both in and out of the nucleus may be

modulated by nutrient availability in an mTOR-dependent

manner (Li et al., 2018; Napolitano et al., 2018). How different

stimuli regulate TFEB-dependent gene signatures and what

mechanisms govern the magnitude and duration of the tran-

scriptional response remain unknown.

The cellular processes governed by TFEB are complex and

require coordinated protein expression; thus, a systematic
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understanding of how TFEB and its targets are regulated at

steady state and in response to stimuli is necessary. In this study,

we employed RNA sequencing and a genome-wide CRISPR

screen to study TFEB-dependent target genes in response to

genetic manipulations and exogenous stimuli. We discovered

that a subset of TFEB target genes is activated at steady state,

whereas others are stimulation dependent. Further investigation

into how TFEB targets affect cellular survival in response to lyso-

somal stress revealed that BHLHE40 and BHLHE41 counter-

acted the TFEB response. Here, we demonstrate that these

two genes are upregulated in response to stimulus-dependent

TFEB activation as part of a negative feedback loop that

counter-regulates select TFEB targets involved in lysosomal

function.

RESULTS

Engineered Cell Lines Demonstrate Transcriptional
Response to TFEB Localization
To study transcriptional responses to TFEBmaintained in the nu-

cleus or cytosol, we generated a clonal TFEB-knockout (KO)

HeLa cell line using the CRISPR-Cas9 system. TFEB deletion

was confirmed by confocal microscopy and immunoblot (Fig-

ures 1A and 1B). TFEB was re-expressed in the KO cell line by

reconstitution with one of the following constructs: WT TFEB

(TFEB-WT); cytosol-restricted TFEB (TFEB-cyto), generated by

replacing basic residues in the NLS with alanines (Roczniak-Fer-

guson et al., 2012); nuclear-restricted TFEB (TFEB-nuc), gener-

ated by removing the first 30 amino acids of the N- terminus,

which reduces lysosomal targeting and increases nuclear local-

ization in the absence of a stimuli (Roczniak-Ferguson et al.,

2012); or a vector control (TFEB-KO). Confocal microscopy es-

tablished that TFEB-WT and TFEB-cyto constructs were ex-

pressed at comparable levels to endogenous TFEB in WT

HeLa cells and confirmed expected subcellular localization of

TFEB-cyto and TFEB-nuc constructs at steady state (Figure 1A).

Upon treatment with Torin, TFEB translocated into the nucleus in

TFEB-WT cells, as in WT HeLa cells, whereas TFEB-cyto and

TFEB-nuc cells remained in the cytosol and nucleus, respec-

tively (Figure 1A).

Next, we examined TFEB-cyto phosphorylation and interac-

tions with 14-3-3 proteins to verify that mutagenesis of the

NLS did not affect other functional domains. Immunoprecipita-

tions of TFEB-WT and TFEB-cyto constructs at steady state

confirmed TFEB phosphorylation and interactions with 14-3-3

proteins, whereas neither TFEB nor 14-3-3 protein interactions

were detected in the TFEB-KO immunoprecipitated fraction (Fig-

ure 1C). Furthermore, the TFEB-cyto construct was no longer

detected in the phosphorylated state or interacting with 14-3-3

proteins upon Torin treatment. These data demonstrate that

the TFEB-cyto construct maintains functional protein-protein

interactions.

To investigate cellular processes that require TFEB nuclear

translocation and transcriptional activation, we evaluated LC3

processing as ameasure of autophagy initiation. By immunoblot,

the ratio of membrane-bound LC3-II to cytosolic LC3-I, which

corresponds to autophagosome formation, was similar in

TFEB-KO and reconstituted cell lines at steady state, whereas
TFEB-WT and TFEB-nuc cells responded to Torin or a combina-

tion of Torin and autolysosomal inhibitors E64d/Pepstatin A

more robustly than TFEB-KO or TFEB-cyto cells, indicating the

reconstituted cell lines behave as expected in a cellular process

(Figures S1A and S1B; Settembre et al., 2011).

Previous reports using microarray and chromatin immunopre-

cipitation sequencing (ChIP-seq) analyses demonstrated that

overexpressing epitope-tagged TFEB, in addition to endoge-

nous TFEB, in WT HeLa cells activated target gene transcription

(Palmieri et al., 2011; Sardiello et al., 2009; Settembre et al.,

2011). Although these identified TFEB-responsive genes, it re-

mains unclear which are controlled by TFEB in the absence of

cellular stimulation or stress. We used RNA sequencing to eval-

uate transcriptional effects of TFEB expression and localization

in reconstituted KO cells. Increases in the log fold change (logFC)

of the TFEB transcript detected in TFEB-WT, TFEB-nuc, and

TFEB-cyto cells relative to TFEB-KO cells served as an internal

RNA sequencing control for each cell line (Figure 1D). No

steady-state transcriptional changes were detected in other

MiT/TFE family members, suggesting there was no compensa-

tion in the reconstituted cells. Differential gene expression data

demonstrated a robust TFEB-dependent induction of genes,

including known targets (Table S1; Sardiello et al., 2009) in

TFEB-WT and TFEB-nuc cells and a negligible transcriptional

response in TFEB-cyto cells (Figure 1D). Relative to TFEB-WT

cells, no significant transcriptional responses were observed in

TFEB-nuc cells at steady state, whereas TFEB-cyto cells failed

to activate gene transcription (Figure S1C).

TFEB at Steady State Induces a Transcriptional
Response that Is Amplified by Sustained Nuclear
Localization
To directly compare transcriptional responses between recon-

stituted cell lines, we calculated the relative expression for all

differentially expressed genes at steady state (Figure 2; STAR

Methods). The overall transcriptional response of TFEB-nuc cells

closely resembled that of TFEB-WT cells, whereas the response

of TFEB-cyto cells clustered more closely with TFEB-KO cells

(Figure 2A). The absence of a global transcriptional upregulation

in TFEB-cyto cells is consistent with the requirement of nuclear

localization for TFEB activity. Our data also revealed a subset

of genes upregulated in TFEB-cyto relative to TFEB-KO cells,

suggesting activation through an indirect mechanism (Figure 2).

Importantly, the transcriptional response observed in TFEB-WT

relative to TFEB-KO cells indicates the steady-state level of

nuclear-localized TFEB is sufficient to induce transcriptional up-

regulation of TFEB-dependent genes (Figures 1D and 2).

Among the differentially expressed genes, we detected upre-

gulation of known targets in TFEB-WT and TFEB-nuc cells (Fig-

ure 2B; Tables S1 and S2), including genes functioning in lyso-

somal and autophagy pathways, such as lysosomal enzymes

CTSA, CTSB, CTSD, CTSS, and NEU1; WIPI1, a regulator of

autophagosome formation; and OPTN, an autophagy adaptor

protein (Sardiello et al., 2009). Genes required for cellular

metabolism and homeostasis were also selectively upregulated

in TFEB-WT and TFEB-nuc cells, such as G0S2, a key regulator

of lipid metabolism; IFI30, an interferon g-inducible thiol reduc-

tase involved in antigen presentation; and FOLR1, a folate
Cell Reports 33, 108371, November 10, 2020 3
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Figure 2. TFEB at Steady State Induces a

Transcriptional Response that Is Amplified

by Sustained Nuclear Localization

(A) Relative gene expression (CPM-transformed

measurements) for genes differentially expressed

between TFEB-KO and TFEB-WT cells with fold

change (FC) > 1.5 or FC < �1.5 at steady state.

Data from three biological replicates for each cell

line are shown. For each gene, rows were scaled

such that their minimum expression value was

0 and their maximum expression value was 1, and

only genes with a relative expression value > 0.7 or

a relative expression value < 0.3 in at least 8 of the

12 RNA sequencing samples are shown. Full list in

Table S2.

(B) Select genes upregulated in TFEB-WT and

TFEB-nuc cells at steady state. See also Figure S2

and Tables S1, S2, and S3.
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receptor localized to endosomes (Hastings and Cresswell, 2011;

Singh et al., 2008; Ward et al., 2016; Wibowo et al., 2013; Zhang

et al., 2017). In addition, we identified upregulation of innate im-

mune response genes, including C1S and C3 complement com-

ponents; CD68, a lysosomal/endosomal-associated transmem-

brane and lectin binding protein; and GRN, which has reported

roles in signaling and inflammatory response (Nguyen et al.,

2018; Sorbara et al., 2018; Tanaka et al., 2013; Zhou et al.,

2015). GPNMB, a membrane glycoprotein with recently

described anti-inflammatory and neuroprotective functions,

was among the top differentially expressed genes in TFEB-WT

and TFEB-nuc cells at steady state (Budge et al., 2018; Neal

et al., 2018; van der Lienden et al., 2018). Using quantitative

PCR (qPCR), we validated expression patterns observed by

RNA sequencing for selected genes (CTSD,SQSTM1,MCOLN1,

IL33, FAP, GPNMB, IFI30, FOLR1, and G0S2). The highest tran-

script levels for most genes were observed in TFEB-nuc cells,

and higher levels of transcription were detected in TFEB-WT

cells than in TFEB-cyto or TFEB-KOcells for all genes (Figure S2).

Collectively, these data support the role of TFEB in transcrip-

tional regulation of metabolic processes and highlight its impor-

tance in sustaining innate immune responses at steady state.

Gene Ontology (GO) analyses of TFEB upregulated genes

(logFC > ln2 and q < 0.05) supported our observations that genes

classified as functioning in immune system processes and regu-

lation of inflammatory responses were enriched in TFEB-nuc

cells (Bonferroni adjusted p < 0.05; Table S3). Similar genes

were enriched in TFEB-WT cells but were not statistically signif-

icant (Table S3). No GO enrichment was observed in TFEB-cyto

cells (Table S3). These data support our findings that nuclear

levels in TFEB-WT cells at steady state are sufficient to activate

transcription and sustained nuclear localization in TFEB-nuc

cells increases this response.

TFEB Expression and Localization Phenotypically Alter
Lysosomal and Mitochondrial Compartments
High-content subcellular imaging has been used to characterize

responses to genetic or chemical perturbations. Here, we used

Cell Painting as an unbiased, image-based profiling approach

to detect phenotypic changes of organelles in response to

TFEB localization (Bray et al., 2016). In addition to the fluorescent

markers used previously in Cell Painting studies to detect DNA,

RNA, endoplasmic reticulum (ER), mitochondria, actin, andGolgi

and plasma membrane, we included LysoTracker to image ef-

fects on lysosomal compartments as a positive control. From

captured images, microscopic features, including intensity,

radial distribution, granularity, texture, size, and shape of the

subcellular structures, were measured and analyzed with Cell-

Profiler to perform illumination correction, quality control, and

measurement extraction (Bray et al., 2016).

Similar to transcriptional clustering, the top two principal

components of the Cell Painting data illustrated TFEB-cyto and

TFEB-nuc cells morphologically resembled TFEB-KO and

TFEB-WT cells, respectively, at steady state (Figure 3A). Clus-

tering by genotype remained consistent following treatment

with Torin, indicating that reconstitution of TFEB in KO cells

had a greater effect on subcellular morphology than treatment

with the exogenous stimulus (Figure 3A). Interestingly, TFEB-
cyto cells displayed the largest difference between DMSO and

Torin treatments, which may be a result of increased dephos-

phorylated TFEB in the cytosol in response to Torin relative to

DMSO treatment (Figures 1C and 3A). Furthermore, using

Morpheus software analysis to depict the microscopic features

that distinguished TFEB-KO and TFEB-cyto cells from TFEB-

WT and TFEB-nuc cells, we observed that 27 of the top 40 differ-

ential features by t test analysis were detected in lysosomal or

mitochondrial imaging channels (Figure S3). Studies previously

detected changes to lysosomal and mitochondrial morphology

and positioning (Mansueto et al., 2017; Sardiello et al., 2009;Wil-

lett et al., 2017), as well as lysosomal content (Abu-Remaileh

et al., 2017), following TFEB stimulation.

To support the Cell Painting data, we assessed lysosomal size

and acidification by imaging TFEB-KO and reconstituted cell

lines at steady state with LysoView and DQ-BSA markers.

Analyses identified no significant difference in lysosomal size

(Figure 3B) but did detect decreased lysosomal acidification in

TFEB-KO and TFEB-cyto cells compared with TFEB-WT,

TFEB-nuc, and WT HeLa cells (Figure 3C). In addition, using Mi-

toTracker Red, we confirmed differences in mitochondrial area

per cell between TFEB cell lines at steady state. Compared

with TFEB-WT cells, mitochondrial area was reduced in TFEB-

KO and TFEB-cyto cells (Figure 3D). Furthermore, representative

confocal images of cells stained with MitoTracker Red illustrate

that mitochondria in TFEB-KO and TFEB-cyto cells are concen-

trated in the perinuclear region rather than distributed

throughout the cell (Deus et al., 2020). Our data indicate that

steady-state levels of nuclear TFEB activate transcripts capable

of inducing detectable phenotypic changes to lysosomal and

mitochondrial compartments compared with cells lacking nu-

clear TFEB.

TFEB Target Genes Are Differentially Sensitive to
Nuclear TFEB
Our approach using TFEB-KO cells reconstituted with TFEB-WT

or TFEB-nuc enabled an evaluation of the global TFEB-depen-

dent transcriptional response at steady state and after mTOR in-

hibition. We hypothesized that treatment of TFEB-WT cells with

Torin would induce transcription of genes not detected at steady

state, because increased nuclear translocation in response to

exogenous stimuli would increase accessibility or binding of

TFEB to the promoter region of its target genes. In contrast,

we predicted there would be no significant transcriptional

response in TFEB-nuc cells following Torin treatment, because

we showed TFEB is restricted to the nucleus (Figure 1A).

We compared RNA sequencing data from TFEB-WT or TFEB-

nuc cells relative to TFEB-KO cells at steady state and following

Torin treatment. At steady state, TFEB-WT and TFEB-nuc cells

activated transcription, including expected target genes (Fig-

ure 1D; Tables S1 and S4), whereas Torin treatment predomi-

nantly increased the magnitude of expression in TFEB-WT cells

but had no significant transcriptional effect on TFEB-nuc cells

(Figures 4A and 4B; Table S4). A direct comparison of differential

gene expression between TFEB-WT and TFEB-nuc cells

confirmed TFEB-WT cells upregulated these genes in response

to Torin, whereas TFEB-nuc cells did not (Figure S4). Transcrip-

tional responses in TFEB-WT and TFEB-nuc cells were
Cell Reports 33, 108371, November 10, 2020 5
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Figure 3. TFEB Expression and Localization Phenotypically Alter Lysosomal and Mitochondrial Compartments

(A) Principal-component analysis (PCA) of Cell Painting subcellular features from TFEB cell lines illustrates that phenotypically TFEB-cyto and TFEB-nuc cells

cluster with TFEB-KO and TFEB-WT cells, respectively, following DMSO or Torin treatment.

(B) Quantification of average lysosomal area per cell and relative fluorescence intensity by LysoView staining showed no significant differences among TFEB-KO,

reconstituted cell lines, and WT HeLa cells relative to TFEB-WT.

(C) Quantification of average relative intensity of DQ-BSA. Significance values shown are relative to TFEB-WT. In representative confocal images, DNA is de-

tected with Hoechst (blue) and acidified lysosomal compartments by DQ-BSA (green).

(D) Quantification of average mitochondrial area per cell as detected by MitoTracker Red. Significance values are for comparisons as shown. In representative

confocal images, DNA is detected with Hoechst (blue in merged channels) and mitochondria with MitoTracker Red (red in merged channels; white in single

channels).

For all quantifications, data from at least two independent experiments and at least 500 cells per experiment were analyzed using ordinary one-way ANOVA and

Tukey’s multiple comparison test with single pooled variance. Data are represented asmean ±SEM. *p < 0.05, **p < 0.01, ****p < 0.0001. ns, not significant. Scale

bars represent 5 mm. See also Figure S3.
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comparable at steady state (Figures S1C and S4B–S4D). A sub-

set of genes was only upregulated in Torin-treated TFEB-WT

cells and was not transcribed at detectable levels in untreated

TFEB-WT cells or in TFEB-nuc cells (Figures 4C and 4D; Table

S4). Genes responsive to high, sustained levels of nuclear

TFEB induced by Torin treatment included CTSF, NPC2,

BLOC1S3, and BLOC1S2, which function in lysosomal degrada-

tion, transport, and biogenesis; NDUFS4, NDUFA13, NDUFA8,

NDUFA1, NDUFB10, and NDUFAF2, subunits of mitochondrial

NADH dehydrogenase; PPARG and PPARGC1A, a nuclear re-
6 Cell Reports 33, 108371, November 10, 2020
ceptor and co-factor regulating lipid metabolism; and BHLHE40

and BHLHE41, two transcriptional repressors (Figures 4B and

4D; Table S4).

A subset of TFEB-dependent genes did not respond to Torin

stimulation (Figures 4E and 4F; Table S4), including lysosomal

proteases (CTSA, CTSB, CTSD, and CTSS), lysosomal mem-

brane proteins (C1orf85), stress response/tissue repair proteins

(FAP and GRN), and complement components (C1S, C1R, and

C3). Upregulation of these genes in TFEB-WT and TFEB-nuc

cells irrespective of Torin stimulation suggests that low levels
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Figure 4. TFEB Target Genes Are Differentially Sensitive to Nuclear TFEB

TFEB-KO, TFEB-WT, and TFEB-nuc cells were treated with Torin or DMSO and then processed for RNA sequencing analysis. Panels show differential gene

expression from steady state (DMSO, blue) and Torin-treated (green) TFEB-WT versus TFEB-KO cells and TFEB-nuc versus TFEB-KO cells. Each bar corre-

sponds to a gene, and the y axis represents logFC of differential gene expression (truncated logFC ± ln4). Genes represented in the bar plots are all genes (A, C,

and E) or select genes (B, D, and F) with significant differential expression (logFC > ln4 or logFC < �ln4 and q < 0.01) in TFEB-WT relative to TFEB-KO cells

following Torin treatment. For each differential expression comparison, (A) and (B) represent genes significantly upregulated with Torin treatment, (C) and (D)

represents genes significantly upregulated with Torin treatment yet not transcribed at detectable levels without Torin stimulation, and (E) and (F) represent TFEB-

dependent genes for which transcription did not significantly change in response to Torin stimulation. Genes in bold indicate those highlighted in Results. See also

Figure S4 and Table S4.

Cell Reports 33, 108371, November 10, 2020 7

Article
ll

OPEN ACCESS



Article
ll

OPEN ACCESS
of nuclear TFEB are sufficient to maximally induce their

transcription.

TFEB Transcriptional Signature Is Modulated by
Different Exogenous Stimuli
Our data show that intracellular Salmonella defense requires

autophagy and lysosomal pathways, induction of which

activates a TFEB transcriptional response (Kuo et al., 2018;

Ravenhill et al., 2019; Verlhac et al., 2015; Wang et al., 2018;

Figure S5A). To address whether different stimuli activate unique

TFEB transcriptional circuits, we examined responses in TFEB-

KO and TFEB-WT cells infected with Salmonella enterica serovar

Typhimurium. Similar to Torin-treated cells (Figures 4 and 5A),

infected TFEB-WT cells induced a TFEB-dependent transcrip-

tional response that included many known targets (Figures 5A,

S5B, and S5C; Table S1; Sardiello et al., 2009). By comparing

stimulus-dependent differential expression patterns, we

identified genes that (1) displayed a greater magnitude of tran-

scriptional response following Torin treatment than following

Salmonella infection (e.g., CTSF, BLOC1S2, BLOC1S3, and

LGALS3); (2) shared a similar magnitude of transcriptional

response following either Torin treatment or Salmonella infection

(e.g., CTSS, WIPI1, C1R, C1S, and C3); or (3) were differentially

expressed in either Torin-treated or Salmonella-infected cells

(e.g., BHLHE40, BHLHE41, and PER2) (Figures 5B, 5C, S5B,

and S5C).

TFEB-dependent genes upregulated at steady state were

identified among those maximally expressed following both

Torin treatment and Salmonella infection, confirming that these

genes require low levels of nuclear TFEB for transcription (Fig-

ures 4, 5B, 5C, S5B, and S5C). Based on GO analyses, these

genes were enriched in immune response and autophagy path-

ways (Figures 5D and S5D; Table S5). Enrichment of autophagy

genes following Torin treatment and bacterial infection was

expected, because both mTOR inhibition and intracellular path-

ogens are known to induce a TFEB-dependent autophagy

response (Li et al., 2018; Murano et al., 2017; Najibi et al.,

2016; Napolitano et al., 2018; Roczniak-Ferguson et al., 2012).

We also detected Salmonella-specific upregulated genes,

including genes related to autophagy and lysosomes

(CALCOCO1, TBK1, DRAM1, GNS, HPS3, HPS4, and HPS4),

innate immune response (BFIFB4, IL1B, IL24, and IL6R), and

phosphoinositide lipid signaling and vesicular trafficking

(MTM1, SACM1L, ANKFY1, GOLPH3L, WDFY1, WDFY3, and

COPB2) (Table S5). These data provide the first evidence linking

xenophagy with upregulation of TFEB target genes. When inves-

tigating TFEB- and Torin-dependent genes that did not respond

to Salmonella infection byGO analyses, we identified enrichment

in genes functioning in mitochondrial processes (Figures 5E,

S5B, and S5D; Table S5), including glutaredoxins and subunits

of theNADH:ubiquinone oxidoreductase, cytochrome c oxidase,

and ubiquinol-cytochrome c reductase complexes. These find-

ings suggest that transcriptional regulation of a subset of targets

depends on the pathway by which TFEB is activated (Figures 5

and S5; Table S5). Notably, BHLHE40 and BHLHE41 were upre-

gulated only in response to Torin treatment, indicating a

response to the strength or nature of the stimulus (Figures 5A

and S5B).
8 Cell Reports 33, 108371, November 10, 2020
TFEB Protects and BHLHE40 and BHLHE41 Sensitize
Cells to Lysosomal Cell Death
We next sought to determine how TFEB target genes directly

influence lysosomal functions. Traditionally thought to function

predominantly in cellular degradative processes, lysosomes

are viewed as intracellular hubs integrating signals required

for both catabolic and anabolic pathways (Lawrence and

Zoncu, 2019; Perera and Zoncu, 2016). To identify genes

involved in lysosomal functions or regulation, we used L-

leucyl-L-leucine methyl ester (LLME) in a genome-wide

CRISPR-Cas9 screen. LLME induces lysosomal membrane

permeabilization and subsequent cell death by the release of

lysosomal enzymes (Repnik et al., 2017; Thiele and Lipsky,

1990). We reasoned that CRISPR-mediated disruption of

genes such as cathepsin C (CTSC), a lysosomal protease crit-

ical for LLME-induced cell death, would protect cells from

LLME treatment, whereas disruption of lysosomal biogenesis

or cellular homeostasis genes would sensitize cells (Brojatsch

et al., 2015; Jacobson et al., 2013). Because of their high

levels of lysosomal activity and sensitivity to LLME treatment

(Jin et al., 2018), BV2 microglial cells stably expressing Cas9

were transduced with a pooled CRISPR library, followed by

treatment with LLME or a mock control. Sequencing data for

both positively (protective) and negatively (sensitized) enriched

guide RNAs were deconvolved, and STARS score rankings

and false discovery rates (FDRs) were determined (Table S6;

Doench et al., 2016). Validating our results, CTSC was the

top-ranked positively enriched gene (Figure 6A; Table S6).

TFEB was negatively enriched, suggesting that its role in lyso-

somal biogenesis is required to protect cells from LLME-

induced cell death (Figure 6A; Table S6).

To pinpoint additional TFEB-dependent genes functioning in

lysosomal biology, we compared the list of genes upregulated

in a TFEB- and Torin-dependent manner with the output from

the genome-wide CRISPR screen. Several genes were nega-

tively enriched, including ones with higher STARS rankings

than TFEB: CSTB, NPC2, GALE, ZMIZ1, HECTD1, FAM102A,

SH3BP2, and BLOC1S2 (Figure 6B; Table S6). Additional com-

ponents of the biogenesis of lysosomal organelle complex 1—

BLOC1S1, BLOC1S5, and Snapin, which are thought to initiate

lysosomal biogenesis (Lee et al., 2012; Luzio et al., 2014)—

were among the top 5% of negatively enriched genes by STARS

ranking (Table S6). These data indicate that to survive the stress

of lysosomal damage inflicted by LLME treatment, cells respond

by translocating TFEB into the nucleus and initiating lysosomal

biogenesis pathways. TFEB target genes (BHLHE40, BHLHE41,

RRAGC, CASP8, SNX27, PPM1H, and IQCG) were also among

the top 10%of positively enriched genes, indicating that deletion

of these genes protects cells from LLME-induced cell death (Fig-

ure 6B; Table S6). Although caspase-8 depletion may prevent

caspase-dependent cell death upon LLME treatment, the pro-

tective roles that other TFEB targets play require further

investigation.

BHLHE40 and BHLHE41 Repress Expression of Select
TFEB Target Genes through a Negative Feedback Loop
Considering that BHLHE40 and BHLHE41 (1) are TFEB target

genes (Palmieri et al., 2011), (2) bind to the same consensus E



Figure 5. TFEB Transcriptional Signature Is

Modulated by Different Exogenous Stimuli

(A) Volcano plots illustrate differential gene

expression from TFEB-KO and TFEB-WT cell lines

treated with Torin (upper) or infected with

S. enterica (lower). Genes shown in red in left

panels are previously reported TFEB target genes

(Table S1: Sardiello et al., 2009), many of which are

significantly upregulated in response to both Torin

and intracellular bacteria based on logP and

logFC. Select genes functioning in autophagy,

lysosomal, and immune responses are highlighted

in cyan in the right panels. Compared with TFEB-

KO cells, TFEB transcript level is significantly

increased in response to stimuli, as denoted in red

in the right panels.

(B) Comparison of TFEB-dependent transcrip-

tional profiles in response to Torin and S. enterica

infection. Genes shown are differentially ex-

pressed in TFEB-WT versus TFEB-KO cells in

response to Torin treatment (logFC > ln4 or

logFC < �ln4 and q < 0.01).

(C) Bar plots of genes differentially expressed in

response to both Torin treatment and Salmonella

infection (logFC > ln4 or logFC < �ln4 and q <

0.01).

(D) Gene Ontology enrichment analysis of genes

upregulated in response to both Torin and Sal-

monella infection (logFC > ln2 and q < 0.05). Black

bars represent �log p values, and gray bars

represent odds ratios.

(E) Gene Ontology enrichment analysis of genes

upregulated in response to Torin (logFC > ln2 and

q < 0.05), but not in response to Salmonella

(logFC < ln1.5 and q > 0.9). Black bars represent

�log p values, and gray bars represent odds

ratios. See also Figures 4 and S5 and Tables S1

and S5.
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box motif as TFEB (Chung et al., 2015; Kanda et al., 2016; Naka-

shima et al., 2008; Nishiyama et al., 2012), (3) are only upregu-

lated in response to high levels of nuclear TFEB (Figures 4B

and 4D; Table S4), and (4) act in opposition to TFEB in response

to lysosomal damage (Figure 6; Table S6), we hypothesized that

BHLHE40 and BHLHE41 function as counter-regulators of TFEB

target genes through competitive DNA binding in a negative

feedback loop. To test this, we used the CRISPR-Cas9 system

to generate a BHLHE40/41 double-knockout (dKO) HeLa cell

line, which we reconstituted with empty vector (BHLHE40/41-

dKO) or with WT BHLHE40 and BHLHE41 (BHLHE40/41-WT).

Deletion and reconstitution of the BHLHE40/41 genes were
Cell
confirmed by DNA sequencing and

immunoblot (Figure S6A). Increases in

logFC of BHLHE40 and BHLHE41 tran-

scripts in BHLHE40/41-WT relative to

BHLHE40/41-dKO cells were observed

and served as internal controls for the

RNA sequencing data (Figure S6B). Vol-

cano plots representing BHLHE40/41-

dependent gene regulation revealed that

BHLHE40/41 both induced and
repressed gene transcription (Figure 7A)—in contrast to TFEB,

which predominantly induced gene transcription (Figure 1D). In

addition, the analysis demonstrated that TFEB- and Torin-

dependent upregulated genes were both up- and downregu-

lated in response to BHLHE40/41 reconstitution (Figure 7A).

Next, to identify genes upregulated by TFEB and downregu-

lated by BHLHE40/41 in an unbiased manner, we dissected

different branches of TFEB-dependent response pathways that

are preferentially activated upon different cellular conditions

and external stimuli using an unsupervised gene clustering

method (t-stochastic neighborhood embedding [tSNE]) on all

RNA sequencing datasets in our study. Validating this approach,
Reports 33, 108371, November 10, 2020 9



Figure 6. TFEB Protects and BHLHE40 and BHLHE41 Sensitize Cells

to Lysosomal Cell Death

Visualization of STARS analysis from a genome-wide CRISPR screen in BV2

cells identifying genes that sensitize cells to (negative logFC) or protect cells

from (positive logFC) LLME treatment.

(A) TFEB, BHLHE40, and BHLHE41 (red) and select genes of interest (cyan).

(B) Data from the genome-wide CRISPR screen are shown, with genes in red

representing all those found by RNA sequencing to be significantly upregu-

lated in TFEB-WT versus TFEB-KO cells following Torin treatment (logFC > ln4

and q < 0.01). Genes of particular interest are outlined with cyan. See also

Table S6.
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we successfully recovered known target genes that clustered

around TFEB (Figure 7B; Table S1; Sardiello et al., 2009). More-

over, we observed a large cluster of genes that were upregulated

in TFEB-WT cells and trended toward downregulation in

BHLHE40/41-WT cells following Torin treatment, including

genes that we identified as sensitive to low levels of nuclear

TFEB (CTSS, PPARGC1A, IFI30, and GPNMB) (Figures 4, 7B–

7D, S5B, and S5C). Limiting our analysis to the strongest puta-

tive competing targets from all genes (logFC > ln2 and logFC <

�ln2 in TFEB- and BHLHE40/41-WT versus TFEB- and

BHLHE40/41-KO cells, respectively, and q < 0.05 in both) (Fig-

ure 7E; Table S7), we searched for their overlap with known

motifs in published ChIP-seq datasets with HOMER (Heinz

et al., 2010) and found predominantly basic-helix-loop-helix

(bHLH) transcription factor binding site enrichment in their

promoter regions. Controlling the false discovery only among

bHLH transcription factor binding sites highlighted overenrich-

ment of TFE3/TFEB binding motifs (Palmieri et al., 2011; Sar-

diello et al., 2009) and the overlapping BHLHE40 and BHLHE41

binding motifs (Table S8). Published TFEB, BHLHE40, and
10 Cell Reports 33, 108371, November 10, 2020
BHLHE41 ChIP-seq datasets provided additional evidence

that these transcription factors are able to bind promoter regions

of competing target genes in cellular contexts (GEO:

GSM2354032, Doronzo et al., 2019; GEO: GSE106000,

ENCODE Project Consortium, 2012; GEO: GSM2797493 and

GSM2461743, Kreslavsky et al., 2017; Table S8).

To confirm the RNA sequencing data and analyses, several of

the genes we identified as most significantly upregulated by

TFEB and downregulated by BHLHE40/41 were examined by

qPCR: transcript levels of CTSS, IFI30, INSIG1, GPNMB, and

PPARGC1A were elevated in TFEB-expressing cells and

reduced in BHLHE40/41-expressing cells (Figure 7F). These

data validate previously reported TFEB, BHLHE40, and

BHLHE41 target genes from ChIP-seq analyses (ENCODE Proj-

ect Consortium, 2012; Doronzo et al., 2019; Kreslavsky et al.,

2017) and identify putative common targets that may be cell

type or stimulation specific (Figure 7G; Table S8). Altogether,

our data provide evidence for a BHLHE40/41-dependent nega-

tive feedback loop not previously described that counter-regu-

lates select TFEB target genes.

DISCUSSION

As a master regulator of essential cellular processes, TFEB

affects a range of lysosomal storage, metabolic, neurodegener-

ative, and cardiac diseases. Here, we used RNA sequencing and

genome-wide CRISPR approaches to discover TFEB localiza-

tion- and stimulus-specific responses. Clustering target genes

based on responsiveness to nuclear-localized TFEB and

evaluating their effects in response to lysosomal membrane

permeabilization revealed a BHLHE40/41-dependent counter-

regulatory mechanism capable of downregulating a subset of

TFEB targets.

By comparing transcriptional signatures at steady state or af-

ter stimulation, we observed that most TFEB-dependent genes

were upregulated in response to mTOR inhibition, including

known and previously unknown targets, such as mitochondrial

respiratory chain complex subunits. These observations indi-

cated that most TFEB targets are induced in response to

increased cellular demand and demonstrated that the level of

nuclear TFEB titrates the magnitude of transcription, providing

an effective mechanism by which cells tightly control responses

to cellular stimuli (Kribelbauer et al., 2019). In contrast, we

observed that select components of the complement, lyso-

somal, and autophagy pathways were transcriptionally up-

regulated at steady state in TFEB-WT cells. The magnitude of

expression of these genes did not change in response to nu-

clear-localized TFEB or Torin treatment, suggesting that their

enhancer motif is highly accessible and requires low levels of

nuclear TFEB for activation. Furthermore, deficiencies in the

lysosomal protease and classical complement component

genes are associated with lysosomal storage, neurodegenera-

tive, and autoimmune diseases (Butler et al., 2019; Lintner

et al., 2016; Macedo and Isaac, 2016; Marques et al., 2020; Na-

kajima et al., 2019; Prada et al., 2014; Tang et al., 2006). Thus,

cells likely require a constant level of transcription of these innate

immune response genes to maintain homeostasis or rapidly

respond to exogenous stimuli. Our data illustrate that TFEB



Figure 7. BHLHE40 and BHLHE41 Repress

Expression of Select TFEB Target Genes

through a Negative Feedback Loop

(A) Volcano plots depicting differential gene

expression in BHLHE40/41-WT versus BHLHE40/

41-KO cells reconstituted cells at steady state.

Highlighted in red (left panel) are genes signifi-

cantly upregulated in TFEB-WT versus TFEB-KO

cells following Torin treatment (logFC > ln4 and

q < 0.01). Highlighted in cyan (right panel) are

select TFEB target genes.

(B–E) tSNE plots representing all RNA sequencing

datasets in our study. Comparison of RNA

sequencing datasets from (B) TFEB-WT and

TFEB-KO cells or (C) BHLHE40/41-WT and

BHLHE40/41-dKO cells treated with Torin, in

which each gene (dot) is colored by the logFC. (D)

Known TFEB target genes or (E) strongest puta-

tive TFEB and BHLHE40/41 competing target

genes are highlighted in red.

(F) Gene expression of select TFEB and

BHLHE40/41 target genes in TFEB-KO, TFEB-

WT, BHLHE40/41-dKO, and BHLHE40/41-WT

cells as quantified by qRT-PCR. By two-tailed t

test analyses, all genes were significantly upre-

gulated in cells reconstituted with TFEB and

downregulated in those reconstituted with

BHLHE40/41. Data are representative from three

independent experiments (mean ± SEM [standard

error of the mean]). **p < 0.006, ****p < 0.0001.

(G) Venn diagram represents the number of the

128 strongest putative competing target genes

(logFC > ln2 and < �ln2 in TFEB- and BHLHE40/

41-WT versus TFEB- and BHLHE40/41-KO cells,

respectively, and q < 0.05 in both) bound by TFEB,

BHLHE40, and/or BHLHE41 based on the pub-

lished ChIP-seq datasets GEO: GSM2354032,

GSE106000, GSM2797493, and GSM2461743.

See also Figure S6 and Tables S7 and S8.
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target genes are regulated on multiple levels to differentiate their

responsiveness to the intensity and duration of stimulation.

Little is known about how different stimuli or cellular contexts

affect TFEB-dependent transcriptional signatures. We investi-

gated TFEB response to mTOR inhibition and bacterial infection.

Although both stimuli induced upregulation of genes in TFEB-WT

cells, GO analyses identified common and stimulation-specific

transcriptional signatures. Thisunbiasedanalysis identifiedshared

upregulation of genes classified as functioning in autophagic pro-

cesses. Both Torin treatment and Salmonella infection induced

TFEB-dependent transcriptional regulation of signal transduction

and immune response genes, such as tumor necrosis factor alpha

(TNF-a)-induced proteins (TNFAIP3 and TNFAIP6), complement

components (C1S,C1R, and C3), and interleukin-1 (IL-1) cytokine
Cell R
family members (IL1a, IL1R, and IL33).

We also discovered autophagy, lyso-

somal, and membrane trafficking genes

(CALCOCO1, TBK1, DRAM1, GNS,

HPS3, HPS4, HPS4, MTM1, SACM1L,

ANKFY1, GOLPH3L, WDFY1, WDFY3,

and COPB2) that were specifically upre-
gulated in response to Salmonella infection, which provides new

insights into host innate response to restrict bacteria andmaintain

cellular homeostasis through xenophagy (El-Houjeiri et al., 2019;

Murano et al., 2017; Visvikis et al., 2014).

The predominant difference observed between stimulation-

dependent transcriptional signatures was the activation of mito-

chondrial genes functioning in oxidative respiration following

Torin treatment. The overwhelming number of genes encoded

subunits for mitochondrial complexes I, III, and IV of the electron

transport chain. These data suggested that Torin-induced TFEB

translocation stimulates transcriptional activation of genes

required for mitochondrial oxidative phosphorylation to maintain

cellular ATP levels, in addition to stimulating mitochondrial

biogenesis through peroxisome proliferator-activated receptor
eports 33, 108371, November 10, 2020 11
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gamma coactivator 1 alpha (PGC1a) induction (Mansueto et al.,

2017). TFEB-dependent activation of oxidative phosphorylation

genes further establishes a role for TFEB inmitochondrial energy

production and metabolic homeostasis (Mansueto et al., 2017).

Deficiencies in mitochondrial complex genes have been linked

to immune-mediated T cell activation and differentiation (Baix-

auli et al., 2015; Brady et al., 2018; Mansueto et al., 2017; Nabar

and Kehrl, 2017), as well as classical mitochondrial diseases,

cancer, and neurodegenerative diseases (Fernández-Mosquera

et al., 2017; Lynch et al., 2019). Intracellular bacterial infection is

also expected to alter cellular metabolism (Cornejo et al., 2017;

Eisenreich et al., 2019). Our data may highlight a cellular

context-dependent difference, whereby a nutritional stress

response results in intense and rapid TFEB-dependent tran-

scriptional activation. Alternatively, a low steady-state level of

transcripts may be sufficient to maintain cellular homeostasis

until later time points during an infection as the intracellular bac-

terial burden increases. Therefore, it is possible that the selective

upregulation of mitochondrial oxidative phosphorylation genes

could depend on the stimulus, its intensity, or a combination of

these factors.

Finally, we discovered evidence suggesting that BHLHE40 and

BHLHE41 counteract TFEB transcriptional activation. First, these

two genes are significantly upregulated upon mTOR inhibition,

suggesting that neither gene is required at steady state. We also

noted that neither BHLHE40 nor BHLHE41 was differentially ex-

pressed following Salmonella infection, which may be a conse-

quence of the pathway by which TFEB is activated or of the inten-

sity of stimulation. Second, TFEB protects and BHLHE40/41

sensitizes cells to LLME-induced cell death. Third, BHLHE40/

41-dKO cells showed transcriptional effects opposite to those of

TFEB-KO cells. Specifically, transcript levels of select genes

were higher in TFEB-WT cells lacking BHLHE40/41 and lower in

BHLHE40/41-WT cells lacking TFEB. These data suggest a nega-

tive feedback mechanism, whereby BHLHE40 and BHLHE41

transcription is upregulated in response to stimulus-dependent

TFEB activation and subsequently represses transcription of

select TFEB target genes that influence lysosomal function.
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cón-Pérez, J.M., et al. (2015). Mitochondrial Respiration Controls Lysosomal

Function during Inflammatory T Cell Responses. Cell Metab. 22, 485–498.

Brady, O.A., Martina, J.A., and Puertollano, R. (2018). Emerging roles for TFEB

in the immune response and inflammation. Autophagy 14, 181–189.

Bray, M.A., Fraser, A.N., Hasaka, T.P., and Carpenter, A.E. (2012). Workflow

and metrics for image quality control in large-scale high-content screens.

J. Biomol. Screen. 17, 266–274.

Bray, M.A., Singh, S., Han, H., Davis, C.T., Borgeson, B., Hartland, C., Kost-

Alimova, M., Gustafsdottir, S.M., Gibson, C.C., and Carpenter, A.E. (2016).

Cell Painting, a high-content image-based assay for morphological profiling

using multiplexed fluorescent dyes. Nat. Protoc. 11, 1757–1774.

Brojatsch, J., Lima, H., Jr., Palliser, D., Jacobson, L.S., Muehlbauer, S.M., Fur-

tado, R., Goldman, D.L., Lisanti, M.P., and Chandran, K. (2015). Distinct ca-

thepsins control necrotic cell death mediated by pyroptosis inducers and lyso-

some-destabilizing agents. Cell Cycle 14, 964–972.

Budge, K.M., Neal, M.L., Richardson, J.R., and Safadi, F.F. (2018). Glycopro-

tein NMB: an Emerging Role in Neurodegenerative Disease. Mol. Neurobiol.

55, 5167–5176.

Butler, V.J., Cortopassi, W.A., Argouarch, A.R., Ivry, S.L., Craik, C.S., Jacob-

son, M.P., and Kao, A.W. (2019). Progranulin Stimulates the In VitroMaturation

of Pro-Cathepsin D at Acidic pH. J. Mol. Biol. 431, 1038–1047.

Carpenter, A.E., Jones, T.R., Lamprecht, M.R., Clarke, C., Kang, I.H., Friman,

O., Guertin, D.A., Chang, J.H., Lindquist, R.A., Moffat, J., et al. (2006). CellPro-

filer: image analysis software for identifying and quantifying cell phenotypes.

Genome Biol. 7, R100.

Chung, N., Zhang, X.D., Kreamer, A., Locco, L., Kuan, P.F., Bartz, S., Linsley,

P.S., Ferrer, M., and Strulovici, B. (2008). Median absolute deviation to

improve hit selection for genome-scale RNAi screens. J. Biomol. Screen. 13,

149–158.

Chung, S.Y., Kao, C.H., Villarroya, F., Chang, H.Y., Chang, H.C., Hsiao, S.P.,

Liou, G.G., and Chen, S.L. (2015). Bhlhe40 Represses PGC-1a Activity on

Metabolic Gene Promoters in Myogenic Cells. Mol. Cell. Biol. 35, 2518–2529.

Conway, K.L., Kuballa, P., Song, J.H., Patel, K.K., Castoreno, A.B., Yilmaz,

O.H., Jijon, H.B., Zhang, M., Aldrich, L.N., Villablanca, E.J., et al. (2013).

Atg16l1 is required for autophagy in intestinal epithelial cells and protection

of mice from Salmonella infection. Gastroenterology 145, 1347–1357.

Cornejo, E., Schlaermann, P., andMukherjee, S. (2017). How to rewire the host

cell: A home improvement guide for intracellular bacteria. J. Cell Biol. 216,

3931–3948.

Deus, C.M., Yambire, K.F., Oliveira, P.J., and Raimundo, N. (2020). Mitochon-

dria-Lysosome Crosstalk: From Physiology to Neurodegeneration. Trends

Mol. Med. 26, 71–88.

Doench, J.G., Fusi, N., Sullender, M., Hegde, M., Vaimberg, E.W., Donovan,

K.F., Smith, I., Tothova, Z., Wilen, C., Orchard, R., et al. (2016). Optimized

sgRNA design to maximize activity and minimize off-target effects of

CRISPR-Cas9. Nat. Biotechnol. 34, 184–191.
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L-Leucyl-L-Leucyl methyl ester (LLME) Cayman Chemicals Cat #16008
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Strep-Tactin Sepharose resin IBA Life Sciences Cat #2-1201-010
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Human: HeLa BHLHE40/BHLHE41 dKO This paper N/A
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Oligonucleotides

qPCR primers This paper See Table S2
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GFP-LC3-CGSW Laboratory of Christian M€unz N/A

EGFP-N1-TFEB Roczniak-Ferguson et al., 2012 Addgene #38119

BHLHE40 Human Tagged ORF clone OriGene RC210294L1
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lentiCRISPR v2 Ran et al., 2013 Addgene #52961
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Lead contact
Further information and requests for resources and reagents should be directed to andwill be fulfilled by the Lead Contact, Ramnik J.

Xavier (xavier@molbio.mgh.harvard.edu).

Materials availability
Materials generated in this study will be provided upon request.

Data and code availability
The accession number for the RNA sequencing data reported in this paper is database of Genotypes and Phenotypes (dbGaP) HeLa

Cell Genome Sequencing Studies: phs002099 and listed in Table S2.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cell lines
HeLa cells were cultured in Iscove’s Modified Dulbecco’s Medium supplemented with GlutaMAX, 10% Fetal Bovine Serum and

15 mg/ml gentamicin. TFEB-KO HeLa cells were generated by targeting exons 1, 4 and 5 of the coding region with TFEB-sgRNA

20-nucleotide guide sequences in the lentiCRISPR v2 backbone (Ran et al., 2013) and transducing low-passage HeLa cells. Two

days post-transduction, cells were placed under selection with 2 mg/ml of puromycin, and 4-days post-transduction, single cell

clones were generated by limiting dilution in 96-well plates. Similarly, double knockouts of BHLHE40 and BHLHE41 were generated

by simultaneously targeting exon 1 of BHLHE40 and exon 3 of BHLHE41 with sgRNA guides. Clones were screened for successful

knockout via western blot and Sanger sequencing.
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Vector construction
To complement the knockout cells, lentivirus was made based on N-terminal Flag-StrepII-tagged CSGW-T2A-blasticidin (TFEB and

BHLHE41; GFP-LC3-CSGW backbone was a generous gift from Dr. Christian M€unz, University of Z€urich) or N-terminal CSGW-T2A-

puromycin (BHLHE40) backbones. TFEB cDNA was sub-cloned out of EGFP-N1-TFEB (Roczniak-Ferguson et al., 2012). The TFEB

nuclear localized mutant (TFEB-nuc) wasmade by deleting the first 30 amino acids of the protein sequence containing the lysosomal

targeting sequence (Roczniak-Ferguson et al., 2012), and the TFEB cytoplasmic mutant (TFEB-cyto) was generated by mutating

basic residues found within the predicted nuclear localization signal (R245-R248) to alanine residues, as previously described (Rocz-

niak-Ferguson et al., 2012). BHLHE40 and BHLHE41 were subcloned from OriGene’s RC210294L1 and RC206882L1 plasmids into

the CSGW backbones. In addition to reconstituting the BHLHE40/41 double knockout cell line with BHLHE40 and BHLHE41, the

double knockout and reconstituted lines were transduced with TFEB-WT and corresponding empty vector to induce higher levels

of TFEB induced transcription. After reconstitution with empty vector, wild-type or mutant cDNA, cells were cultured under selection

(2 mg/ml puromycin and/or 5 mg/ml blasticidin). When cells were plated for experiments, they were plated in the absence of antibiotics

(bacterial or mammalian).

Bacterial strains
Salmonella enterica serovar Typhimurium strain SL1344 expressing the Photorhabdus luminescens lux operon (Xen26) (Conway

et al., 2013) and S. Typhimurium SL1344 DsRed2 (Rioux et al., 2007) were grown on Luria-Bertani (LB) agar or in LBmedia containing

30 mg/ml kanamycin.

METHOD DETAILS

Immunofluorescence microscopy
Cells were seeded onto 18mmglass coverslips in 12-well plates. The following day, cells were treated with DMSO or 2 mMTorin-1 for

3 h prior to processing formicroscopy. Briefly, cells werewashedwith phosphate buffered saline (PBS) then fixed for 15min at RTwith

PBS containing 4% (v/v) paraformaldehyde. After fixation, cells were washed with PBS, blocked and permeabilized for 1 h with PBS

containing 5% (v/v) goat serum and 0.1% (v/v) Triton X-100 then incubated overnight at 4�C in PBS containing 5% (v/v) goat serum

and mouse anti-FLAG antibody (1/1000). The following day, cells were washed with PBS, incubated for 1 h at RT with goat anti-

mouse secondary antibody then washed and mounted on glass slides. Confocal images were captured with an Andor Zyla 4.2

plus digital camera at 403 using a Nikon Ti2-E inverted microscope with W1 spinning disk confocal and Nikon NIS-Elements. For

LysoView 488, DQ-BSA or MitoTracker Red, cells were stained as per manufacturer’s instructions, and live confocal images were

captured using a Perkin Elmer Opera Phenix system equipped with a high NA 20x air objective and Perkin Elmer Harmony High-Con-

tent Imaging and Analysis Software.

Immunoprecipitation
TFEB knockout HeLa cells reconstituted with empty vector (TFEB-KO), TFEB-WT or TFEB-cyto were seeded into 10cm dishes. The

following day, cells were treated with DMSO or 2 mM Torin-1 for 2 h prior to scraping cells and lysing on ice for 30min. Lysate was

centrifuged for 15min at 4�C. From the supernatant, an input sample was collected, treated with 63 sample buffer, boiled, and stored

at �20�C. To immunoprecipitate TFEB, the remainder of the supernatant was transferred to a tube containing pre-washed Strep-

Tactin Sepharose resin and incubated on a rotator for 2 h at 4�C. Resin was washed three times with lysis buffer before boiling in

1x sample buffer. The input and immunoprecipitated samples were separated by SDS-Page, transferred to PVDF and detected

by immunoblot with antibodies recognizing the Phospho-(ser) 14-3-3 binding motif (1/1000), anti-FLAG M2 epitope (1/1000) and

Pan 14-3-3 (1/100). b-actin served as a loading control (1/1000).

LC3 turnover
TFEB knockout HeLa cells reconstituted with empty vector (TFEB-KO), TFEB-WT, TFEB-cyto, or TFEB-nuc were seeded in 24-well

plates at 6 x104 cells/well. The following day, cells were treated with 2 mM Torin-1 ± 10 mg/mL E64d/Pepstatin A for 6 h at 37�C. Cells
were washed and lysed with RIPA buffer containing protease inhibitor cocktail on ice for 30min. Prior to SDS-PAGE, protein concentra-

tionsweredeterminedbyBCAassay.Equal amountsofprotein sampleswere loadedandseparatedby4%–20%bis-trisSDS-PAGEgel,

transferred onto PVDF membranes and detected by immunoblot with rabbit anti-LC3B (1/1000). b-actin to serve as a loading control.

RNA sequencing sample preparation
TFEB and BHLHE40/41 cell lines were seeded in 12-well plates at 1.5x105 cells/well or 24-well plates at 7.5x104 cells/well, respec-

tively. The following day, cells were treated with DMSO (6 h), 2 mMTorin-1 (6 h) or infected with S. Typhimurium SL1344 DsRed2 (MOI

200:1; 6 h). After treatment, TFEB and BHLHE40/41 cells were lysed in 400 mL or 150 mL TCL-buffer (QIAGEN) containing 1% (v/v)

beta-mercaptoethanol, respectively, and stored at �80�C until sequenced.

Full-length cDNA libraries were prepared with lysate from approximately 200 cells per sample with a modified version of the

SmartSeq2 protocol previously described (Picelli et al., 2013). Post SmartSeq2, double stranded cDNA was purified with Agencourt

AMPure XP beads and tagged using the Nextera XT DNA Library Prep Kit and the Nextera XT index kit. Post reaction purification was
e3 Cell Reports 33, 108371, November 10, 2020
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performed with Agencourt AMPure XP beads. The samples were pooled, and size selection was performed by gel extraction with

Zymoclean gel DNA recovery column after a 2% E-Gel EX Agarose Gel. Samples were prepared and loaded onto a NextSeq

500 (Illumina) per the manufacturer’s instructions.

Quantitative PCR
Total RNA was extracted using RNeasy Plus Mini Kit after which cDNA was generated by reverse transcription using the iSCRIPT

cDNA synthesis kit according to manufacturer’s instructions. Real-time PCR was performed with gene specific primers using the

iQ SYBR Green Supermix kit as per manufacturer’s instructions. Relative mRNA abundance was calculated with the DDCt method

where samples were normalized to GAPDH or B2M.

Cell Painting
TFEB-KO, TFEB-WT, TFEB-nuc and TFEB-cyto HeLa cells were plated at a density of 1,500 cells/well in a 384-well plate (Perkin El-

mer; 384 CellCarrier Ultra Microplate) with 6 replicates per plate 48 h prior to staining. Cell Painting procedure followed the previously

published protocol (Bray et al., 2016). Briefly, nine different cell components and organelles were stained with fluorescent dyes: nu-

cleus, endoplasmic reticulum (concanavalin A/AlexaFluor488 conjugate), nucleoli and cytoplasmic RNA (SYTO14 green fluorescent

nucleic acid stain), Golgi apparatus and plasma membrane (wheat germ agglutinin/AlexaFluor594 conjugate), F-actin (phalloidin/

AlexaFluor594 conjugate) and mitochondria (MitoTracker Deep Red) or lysosomes (LysoTracker Deep Red). WGA and Mito-

Tracker/LysoTracker were added to living cells, with the remaining stains carried out after cell fixation with PBS containing 3.2%

(v/v) formaldehyde. Images from five fluorescent channels were captured at 20x magnification on an Opera Phenix High Content

Screening System (Perkin Elmer): DAPI (387/447 nm), GFP (472/520 nm), Cy3 (531/593 nm), Texas Red (562/624 nm), Cy5 (628/

692 nm). Nine sites per well were acquired, with laser based autofocus using the DAPI channel at the first site of each well.

Bacterial replication assay
Cells were plated in 96-well plates at a density of 1.5x104 cells/well in antibiotic-free media 18 h prior to infection (8 replicates per

condition). An overnight culture of bioluminescent S. Typhimurium SL1344 Xen26 was subcultured for 4 h and then diluted 1:200

in antibiotic-free media for infection of the cells. After a 30min infection, plates were washed 4 times with IMDM media containing

10% (v/v) FBS and 50 mg/ml gentamycin. At 2 h post-infection, culture media was replaced with IMDM media containing 10%

FBS and 20 mg/ml gentamycin. Luciferase counts per second were read every hour from 2–10 h post-infection using a PerkinElmer

TopCount NXT. Fold replication was calculated at each time point per well.

Genome-wide CRISPR knockout screen
The microglia-like cell line BV2 (kindly provided by Dr. Yuanan Lu, University of Hawai‘i at M�anoa) stably expressing Cas9 (Addgene,

52962; Sanjana et al., 2014) was transduced with the Brie mouse CRISPR knockout library (Addgene, 73632; Doench et al., 2016) as

previously described (Orchard et al., 2016). For the L-Leucyl-L-Leucine methyl ester (LLME) challenge, 500 cells per guide were

plated in duplicate for each treatment condition and after 16 h were treated with 2.5mM LLME or DMSO for mock condition. After

24 h treatment, cells were washed with growth media and new media was added. Surviving cells were allowed to propagate over

the next 7 days. Cells were harvested, re-plated then re-challenged with 2.5mM LLME. Cells were washed with growth media after

24 h treatment and new media was added. Surviving cells were allowed to propagate over the next 48 h. Cells were harvested and

DNA was isolated using the DNeasy Blood & Tissue Kit according to manufacturer’s instructions.

QUANTIFICATION AND STATISTICAL ANALYSIS

All statistical analyses not described in detail below were performed and visualized using GraphPad Prism8. Descriptions of statis-

tical tests used, number of replicates, mean and SEM can be found in figure legends.

RNA sequencing analysis
After sequencing, readswere aligned to the human reference genome hg19 using Tophat2 (Kim et al., 2013). Htseq-count (Anders et al.,

2015) summarized read counts for each gene, and R/Bioconductor packages edgeR (Robinson et al., 2010) was used for differential

expression (DE) analysis. Differential gene expression determined using edgeR was restricted to genes with average counts per million

(CPM) values greater than 1 in at least one of the two conditions compared. p valueswere obtained fromedgeR. FDRand q-value for the

remaining genes were calculated using Benjamini-Hochberg procedure. Differential gene expression thresholds can be found in the

figure legends.

Relative gene expression
The relative expression was calculated from the log2 CPM-transformed measurements. Specifically, for each gene, log2 CPMs were

scaled such that their minimum expression value was 0 and maximum value was 1. Only genes with relative expression values > 0.7

or < 0.3 in 8 of the 12 RNA sequencing samples were included in the analysis. The hierarchical clustering was done in pheatmap using

the complete linkage with Euclidean distance (default settings).
Cell Reports 33, 108371, November 10, 2020 e4
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Cell Painting
Workflow for image processing and cellular feature extraction has been previously described (Bray et al., 2016). In summary, Cell-

Profiler (Carpenter et al., 2006) software version 2.1.0 was used to correct the image channels for uneven illumination, and identify,

segment, and measure the cells. An image quality workflow (Bray et al., 2012) was applied to exclude saturated and/or out of focus

wells. Cellular morphological, intensity, textural, and adjacency statistics were then measured for the cell, nuclei, and cytoplasmic

sub-compartments. Details for the complete list of features and their meaning can be found here: https://github.com/

carpenterlab/2016_bray_natprot/wiki/What-do-Cell-Painting-features-mean%3F

Cellular features extracted were normalized as follows: for each feature, the median and median absolute deviation were calcu-

lated across all untreated cells within a plate; feature values for all the cells in the plate were then normalized by subtracting the

median and dividing by the median absolute deviation (MAD) times 1.4826 (Chung et al., 2008). Features having MAD = 0 in any plate

were excluded. Morpheus was used to visualize and analyze the data (https://software.broadinstitute.org/morpheus).

Principal components analysis was completed by first removing cell painting features with single or missing values. After averaging

wells for each cell line and stimulation, each feature was normalized to zero mean and unit variance. The top 2 principal components

were obtained using sklearn.

CRISPR screen analysis
Illumina sequencing and data deconvolution was performed at the Broad Institute as previously described (Orchard et al., 2016). For

analysis, read counts were log-normalized for each guide using the following formula: log-normalized reads per million for guide =

log2((# of reads for guide / total reads in condition x 1e6) +1). Log-normalized reads were averaged for each sample, and untreated

average was subtracted from LLME treated average to achieve the log2 fold changes for each sgRNA, which were then averaged to

gene-level log2 fold changes (https://github.com/mhegde/volcano_plots) as previously described (Table S6) (Orvedahl et al., 2019).

The STARS program (https://portals.broadinstitute.org/gpp/public/software/stars) was used to obtain gene-level p values (Table S6)

(Doench et al., 2016).

Gene identifier conversion
Mygene was used to convert gene identifiers between identifier systems (Xin et al., 2016). One-to-many maps/conversions are

resolved as follows: we regarded two gene identifiers in any identifier system(s) as the same gene if their converted ensembl IDs

have any overlap. For enrichment analyses, all converted identifiers are included (in background or test sets).

Gene ontology enrichment
Gene names were converted into uniprot IDs, then goatools (Klopfenstein et al., 2018) was used to compute gene ontology enrich-

ment and to obtain Bonferroni adjusted p values. Enrichments with Bonferroni adjusted p values < 0.05 are shown. Background

genes are limited to those expressed (average CPM > = 1) in either TFEB knockout or reconstituted cells in Torin-1 treatment. As

described in figure legends, GO enrichment is defined as logFC > ln2 and q-value < 0.05.

TSNE visualization
From all genes across all TFEB knockout and reconstituted (including overexpression) conditions and all BHLHE40/41 conditions,

across all stimulation (DMSO, Torin-1 or Salmonella) and all replicates, we removed low expressing genes (CPM < 1 in over 80%

of all samples). Log CPM of each gene was normalized to zero mean and unit variance across samples. We performed tSNE dimen-

sion reduction on the top 20 principal components of every gene using sklearn.

Known motif enrichment
HOMER analysis (Heinz et al., 2010) was used to compute known motif enrichment and to obtain enrichment p values. Background

genes were limited to those expressed (average CPM > = 1) in at least one of the four conditions (TFEB knockout or reconstituted, or

BHLHE40/41 knockout or reconstituted cells) in Torin-1 treatment. For bHLH-specific q-values, only motifs with ‘‘bHLH’’ annotations

were selected to re-run for a separate FDR control.
e5 Cell Reports 33, 108371, November 10, 2020
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Figure S1. TFEB nuclear translocation is necessary for robust autophagy induction and transcriptional 
response. Related to Figure 1. Representative immunoblot (A) and quantification (B) of LC3 conversion in 
TFEB-KO and reconstituted HeLa cell lines treated with DMSO (0.1%), Torin (1μM), or a combination of Torin 
and E64d/Pepstatin A for 4hrs. Quantification of LC3-II/LC3-I ratio was normalized to actin loading control. 
Data are representative of three independent experiments and were analyzed using ordinary two-way ANOVA 
and Tukey’s multiple comparisons test with individual variances for each comparison. Data are represented as 
mean +/- SEM (standard error of the mean). *p<0.05, **p<0.01. C) Cells were processed for RNA sequencing. 
Transcriptional responses to TFEB expression and localization are shown in volcano plots, where TFEB tran-
script is shown in cyan and a subset of known TFEB target genes (Table S1) (Sardiello et al., 2009) are shown 
in red.
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Figure S2. Quantitative PCR analysis confirms TFEB target genes are upregulated in response to TFEB 
nuclear localization. Related to Figure 2 and Table S2. Gene expression of select TFEB target genes in 
TFEB-KO, TFEB-WT, TFEB-cyto, and TFEB-nuc cells as quantified by qRT-PCR. Data shown are the average 
of duplicate wells and representative of three independent experiments. Data are represented as mean +/- 
SEM (standard error of the mean).
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Figure S3. Cell Painting analysis identifies subcellular phenotypic responses to TFEB expression and 
localization. Related to Figure 3. Heat map representing Morpheus analysis of the most significant cellular 
features by t-test illustrates phenotypic differentiation of TFEB-WT/TFEB-nuc from TFEB-KO/TFEB-cyto cells. 
Columns indicate cell type and rows indicate Cell Painting features [Compartment]_[FeatureGroup]_[Fea-
ture]_[Channel]_[Parameters] (Bray et al., 2016).
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Figure S4. Expression of TFEB-WT, but not TFEB-nuc, upregulated transcription in response to Torin 
treatment. Related to Figure 4 and Table S4. A) Volcano plot of genes differentially expressed in TFEB-WT 
cells as compared to TFEB-nuc following Torin treatment. Shown in red are a subset of known TFEB target 
genes (Table S1) (Sardiello et al., 2009). B-D) Panels show differential gene expression at steady-state 
(DMSO, blue) and with Torin treatment (green). Each bar corresponds to a gene, and the y-axis represents log 
fold change of differential gene expression (truncated logFC+/-ln4). Genes represented in the bar plots are all 
genes with significant differential expression (logFC>ln4 or logFC<-ln4 and q-value<0.01) in TFEB-WT relative 
to TFEB-nuc following Torin treatment. Panel B represent genes significantly upregulated with Torin treatment, 
panel C represents genes significantly upregulated with Torin treatment and not transcribed at detectable 
levels without Torin stimulation, and panel D represents TFEB-dependent genes for which transcription did not 
significantly change in response to Torin stimulation. 
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Figure S5. TFEB nuclear translocation is required for transcriptional response and host defense 
response to intracellular bacteria. Related to Figure 5. A) Intracellular bacterial replication in TFEB-KO, 
TFEB-WT, TFEB-cyto, and TFEB-nuc cells infected with bioluminescent S. enterica. Data shown are the 
average of eight independent wells and representative of three independent experiments. Data were analyzed 
using repeated measures two-way ANOVA with Geisser-Greenhouse correction and individual variances 
computed by Sidak’s multiple comparisons test. Data are represented as mean +/- SEM (standard error of the 
mean). ****p<0.0001. B) TFEB-KO and TFEB-WT cells were treated with Torin or infected with S. enterica then 
processed for RNA sequencing analysis. Response of select genes differentially expressed between TFEB-WT 
and TFEB-KO cells following Torin treatment (logFC>ln4 or logFC<-ln4 and q-value<0.01) are shown. A subset 
of genes differentially expressed following Torin treatment (green) are also differentially expressed in cells 
infected with Salmonella (pink). C) TFEB-KO and TFEB-WT cells were treated with Torin or infected with S. 
enterica then processed for RNA sequencing analysis. Select genes differentially expressed between 
TFEB-WT and TFEB-KO cells in response to both Torin treatment (green) and Salmonella infection (pink) 
(logFC>ln4 or logFC<-ln4 and q-value<0.01) are shown. D) Volcano plots illustrate differential gene expression 
from TFEB-KO and TFEB-WT cell lines treated with Torin (top) or infected with S. enterica (bottom). TFEB (red) 
and select genes functioning in autophagy, lysosome and immune responses (cyan) and mitochondrial respira-
tion (blue) are highlighted.
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Figure S6. Re-expression of BHLHE40 and BHLHE41 in BHLHE40/41-dKO cells is detected by immuno-
blot and RNA sequencing. Related to Figure 7. A) Immunoblots demonstrate BHLHE40 and BHLHE41 
proteins are detected with anti-BHLHE40 and anti-Flag antibodies, respectively, in BHLHE40/41-WT but not 
BHLHE40/41-dKO cells. Vinculin serves as a loading control. Data are representative of at least two indepen-
dent experiments. B) BHLHE40/41-dKO and BHLHE40/41-WT cell lines were processed for RNA sequencing 
analysis. As compared to dKO cells, BHLHE40 and BHLHE41 transcript levels (red) are significantly increased 
upon reconstitution.
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