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1 Methods

1.1 Helium Nanodroplet Isolation (HeNDI) Spectroscopy

The design of our helium nanodroplet isolation spectrometer has been descibed
recently. [1, 2, 3] Since many review articles on performing spectroscopy in
helium droplets have already been published, [4, 5, 6, 7, 8] only a brief summary
is given here.

The helium nanodroplet isolation spectrometer consists of four vacuum cham-
bers (i.e. the expansion chamber, the pickup chamber, the spectroscopy cham-
ber, and the detection chamber), which are differentially pumped and intercon-
nected using conflat flanges.

In the expansion chamber, helium droplets are generated by a continuous ex-
pansion of pre-cooled, highly pressurized, ultrapure 4He gas (99.9999 % purity)
through a nozzle with 5µm diameter into vacuum. For the present study, the
nozzle is maintained at 18 K and the backing pressure is 40 bar. The generated
helium droplets are further collimated using a skimmer of 0.5 mm diameter.
The helium droplets further cool down through evaporative cooling, until they
attain their equilibrium temperature of 0.37 K.

The collimated helium droplet beam enters the pickup chamber, where dopant
molecules are added. In the present study, small amounts of water are added
from an external reservoir to the chamber via a dosing valve. For spatially
confined pickup regions, it is well established that the pickup of molecules by
the droplets follows Poisson statistics. The probability of a pickup of k (dopant
molecules) by a helium droplet is given by:

Pk =
(σlρ)k

k!
exp(σlρ), (1)

where ρ is the number density directly proportional to its partial pressure of
the dopant molecule in the pickup chamber, σ is the cross-section of the helium
droplet and l is the length of the pickup region. By controlling the partial
pressure of the dopant molecule inside the pickup chamber, the pickup of the
dopant molecules by the helium droplets can be controlled. The thermal energy
of the dopant molecules rapidly dissipates by evaporation of helium atoms from
the droplet and they quickly equilibrate back to the temperature of 0.37 K, with
a typical cooling rate of 1010 K/s. [6]

The free-electron lasers, FEL-I and FEL-II, at the FELIX laboratory produce
radiation in the frequency region of 66 − 3600 cm−1. The operating principle
and technical details of these lasers are summarized elsewhere. [9] Only some
specific features of the FELIX radiation are discussed here. The FELIX radia-
tion consists of macropulses of ˜5−8µs duration, with a repetition rate of 10 Hz.
Each macropulse consists of a train of several thousand bandwidth-limited mi-
cropulses of a few ps duration, spaced by ˜1 ns. The energy for each micropulse
is up to 20µJ and for each macropulse up to 80 mJ. The spectral bandwidth
of each macropulse can be adjusted in the range of 0.2− 5 % of the central fre-
quency. For the frequency region of 70−550 cm−1, covered in the present study,
the spectral bandwidth was optimized to 0.2− 0.4 % of the central frequency.

In the spectroscopy chamber, the FELIX beam is aligned antiparallel and
collinear to the helium droplet beam. Undoped helium droplets are transparent
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to the IR radiation. However, in the case of doped helium droplets, the embed-
ded molecule can absorb IR radiation. During the subsequent relaxation, the
energy is transferred to the helium droplets, which results in the evaporation
of helium atoms (i.e. in the depletion of the helium droplets). Each evaporated
helium atom accounts for approximately 5 cm−1. [10] In helium droplets, the
relaxation process takes place at a nanosecond timescale. [8] Hence, excited
molecules will relax between the micropulses and, therefore, a molecule can be
excited multiple times within the duration of a single macropulse.

In the detection chamber, the helium droplets are ionized by electron impact
ionization. This chamber hosts a quadrupole mass spectrometer (Extrel QMS
MAX-1000), which is used to monitor the ion current of a certain fragment as a
function of time. Any evaporation of helium atoms reduces the ionization cross-
section of the helium droplets and, thus, decreases the measured ion current.

1.2 Twelve-dimensional (6d+6d) vibrational calculations

The methods used to calculate the VRT and FIR/THz spectra have been de-
scribed in full details previously, [11, 12] and are briefly recalled below. The
twelve-dimensional (12d) dimer system can be formally considered as made of
two subsystems, weakly coupled in the energy range considered here: i) the
“fast” intramolecular coordinates qA and qB associated to the monomer’s vi-
brations; ii) the “slow” intermolecular ones Q = (R,ΩA,ΩB) describing the
relative position and orientations of these monomers. The modes of interest in
this study only originate from these later coordinates.

The calculations first proceed by defining, from the WHBB water poten-
tial, [13] an adiabatic dimer potential Vad(Q) as the lowest solution, at fixed Q,
of the 6d intramolecular (qA, qB) subsystem. This approximation is justified
by the large energy separation between the two subsystems. Then, a correct
description of the intermolecular subsystem Q requires to resort to a collisional
formulation [14] as the Euler angles ΩA and ΩB experience large amplitude
motions.

For a given J rotational quantum number value VRT levels are obtained,
within each irreducible representation Γi of theG16 permutation-inversion (molec-
ular symmetry) group, [15] by the direct Lanczos iterative method [16] which
avoids explicitly building the corresponding Hamiltonian matrix. Only the re-
cursive application of the Hamiltonian operator Ĥinter on some initial random
vector |u0〉 is required. One advantage of this method is that energy levels con-
verge by increasing values in this case as the VRT levels, within a given Γi,
correspond to the less dense part of the spectrum.

The FIR/THz spectrum α(ν, T ) at temperature T is calculated in the usual
way, as the Boltzmann average over state-to-state transitions n′′ → n′, the
composite index n standing for the set (vKJMΓ) of quantum numbers,

α(ν, T ) =

{∑
n′′

∑
n′>n′′

In′←n′′ · L(ν, νt, γ)

}
× LT0

T
pWD ,

νt =
1

hc
(En′ − En′′)

(2)

using a van Vleck-Weisskopf line shape function L, and L is the Loschmidt’s
constant. n′ > n′′ means that the sum is restricted to levels n′ lying above level

2



n′′ as the stimulated emission is already accounted for by the term Pn′′ − Pn′

in the expression below

In′←n′′ =
8π3νt

4πε03hc
· (Pn′′ − Pn′) · Sn′←n′′ ,

Sn′←n′′ = 3
∑
M

∣∣∣〈ΨJ′MΓ′

v′

∣∣∣µSF
Z

∣∣∣ΨJ′′MΓ′′

v′′K′′

〉∣∣∣2 (3)

The calculations are for 4 K and so all significantly populated initial J states
were included in the calculations. It should be noted that for the low-lying pop-
ulated energy states n′′ at temperature 0.37 K, K ′′ can be considered as a good
quantum number as the water dimer is a near prolate symmetrical top. This
assumption is no longer valid for the final states ΨJ′MΓ′

v′ reached as the spectrum
covers the range ν ∈ [0, 600] cm−1. It results in basis set sizes of the order of
2× 105× (2J ′+ 1), which are very efficiently handled within a Lanczos scheme:

in that case, the initial recursion vector is defined by |u0〉 = µSF
Z

∣∣∣ΨJ′′MΓ′′

v′′K′′

〉
.

Scott and Wyatt [17] showed how one can directly get the residues 〈Ψn′ |u0〉,
i.e. the projections of the eigenstates Ψn′ onto the initial Lanczos vetor u0,
without actually computing the eigenstates per se. In the calculations of the
rovibrational line strength factors Sn′←n′′ , the following selection rules apply:
Γ+
i ↔ Γ−i ,∆J = 0,±1.

1.3 Quasiclassical Molecular Dynamics (QCMD)

The IR spectra of water dimer in the region from 0 to 600 cm−1 were calculated
using a QCMD approach to obtain the dipole-dipole autocorrelation function,
the Fourier transform of which provides the IR spectrum.

In QCMD simulations, zero-point energy is given initially to each normal
mode of the molecule. This approach is widely used in reaction dynamics,
where it is referred to as the quasiclassical approach, and so we use that termi-
nology here. This is an approximate semiclassical quantization procedure and
thus energy transfer between modes can occur, so this approach suffers from the
“zero-point energy leak”. The energy migration from high frequency intramolec-
ular modes to low-frequency intermolecular ones can result in rapid dissociation
of the dimer. To mitigate this rapid dissociation, we apply the approximate
semiclassical quantization to intermolecular modes only and give zero energy
initially to the intramolecular modes.

We used normal-mode sampling, described in Ref. [18], to prepare the initial
conditions of the trajectories. As mentioned above, zero-point energy was as-
signed to all the intermolecular modes, but we did not put any energy in other
intramolecular modes. The total angular momentum was set to zero. Five
hundred QCMD trajectories were run to obtain the spectrum. Each trajectory
was integrated for 24 ps, and the step size is 0.024 fs, using the velocity-Verlet
algorithm. The potential energies and forces were calculated using the WHBB
water potential, [19] which includes one accurate monomer potential [20] and
an intrinsic two-body one. [21] The dipole moment of the instantaneous con-
figuration was calculated every ten steps using the dipole moment surface that
consists of an accurate monomer component developed by Lodi et al. [22] and
an intrinsic two-body dipole developed by us. [23, 24] The dipole-dipole auto-
correlation function was calculated as C(t) = 〈µ(t) · µ(0)〉, where the brackets
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indicate an ensemble average over 500 trajectories of the same total energy.
Then C(t) was Fourier transformed to obtain the IR spectra.

1.4 Pressure-dependent intensity measurements

As discussed above, it is well established that the pickup of molecules by helium
droplets follows Poisson statistics. The probability of a pickup of k dopant
molecules by a helium droplet is given by equation 1.

Hence, when recording the signal intensity at a certain frequency while vary-
ing the dopant partial pressure (i.e. by taking a pickup curve), the underlying
cluster size of the signal can be determined. Normalization is achieved by plot-
ting the signal intensity as a function of the product σlρ.

In the present study, for each signal with significant IR intensity, a pickup
curve was recorded. In particular, pickup curves were obtained at the following
frequencies: 86, 99, 115, 185, 283, 296, 492, and 503 cm−1 (see Figure 1). Since
most signals were found to correspond to more than one water cluster size,
an extended model was used that takes into account contributions from two
different values k1 and k2:

Pk1,k2 = a1
(σlρ)k1

k1!
exp(σlρ) + a2

(σlρ)k2

k2!
exp(σlρ) , (4)

where a1 and a2 are the amplitudes of the individual contributions of the Poisson
statistics with k1 and k2, respectively.

2 Vibration-Rotational Tunneling (VRT) energy
diagram for the low frequency intermolecular
modes

By comparison to previous gas phase studies, the absorption bands in the fre-
quency range from 70 to 145 cm−1 in our HENDI study could be assigned to
transitions to the Donor Torsion (DT), Acceptor Wag (AW), and Acceptor Twist
(AT) mode. In the following, we display for each of these modes an energy dia-
gram including all experimentally observed transitions in the gas phase as well
as the transitions observed our study, see Figure 2, 3, and 4, respectively. All
states which are expected to be populated, assuming a Boltzmann population
at 0.37 K, are shown as solid lines.
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Figure 1: Normalized signal intensities of the signals in the FIR/THz spectrum
of water dimer (H2O)2 as a function of the product σlρ. Each pickup curve was
reproduced by Poisson statistics using either a model with a distinct value for
k or by a combined model with different values for k1 and k2 (black solid lines).
For the latter, the contributions of the models with distinct k values are shown
as dashed lines.
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Figure 2: Donor Torsion (DT) VRT energy level diagram. Parallel and perpen-
dicular transitions are shown as vertical and diagonal arrows, respectively; black
arrows: observed in the present study and in gas phase studies; blue arrows:
only observed in gas phase studies; red arrows: present study only. For bands
observed in the present study, the transition frequencies are shown next to the
arrows (black and red). Values shown in blue correspond to gas phase data. All
frequencies and energies are given in cm−1.
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Figure 3: Acceptor Wag (AW) VRT energy level diagram.
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Figure 4: Acceptor Twist (AT) VRT energy level diagram.
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