
Supplementary materials for ‘How Intractability Spans the

Cognitive and Evolutionary Levels of Explanation’

Patricia Rich1,2, Mark Blokpoel3, Ronald de Haan4, and Iris van Rooij3

1 University of Hamburg, Philosophy Department
2 University of Bayreuth, Philosophy Department

3 Radboud University, Donders Institute for Brain, Cognition, and Behaviour
4 Institute for Logic, Language and Computation, University of Amsterdam

1 Computational Complexity Basics

The proofs presented in these Supplementary Materials build on concepts and techniques from
computational complexity theory. We briefly introduce the key ideas. For more detailed treatments
we refer the reader to textbooks on the topic (e.g. Arora and Barak, 2009; van Rooij, Blokpoel,
Kwisthout, and Wareham, 2019). It is implicit in the debates between the approaches we consider that
computations that take more than some polynomial amount of resources (time, space, randomness)
are intractable (Chater, Tenenbaum, & Yuille, 2006; Gigerenzer, Hoffrage, & Goldstein, 2008). We
refer the reader to extensive discussion, including defenses and qualifications, of this view elsewhere
(van Rooij et al., 2019; van Rooij, 2008).

Computational complexity theory distinguishes, among other things, between the classes P and
NP. These are both classes of decision problems, i.e., problem with only Yes or No answers. Here is
an example of a decision problem that we will be using in our proofs:

Exact Cover by 3-Sets
Input: A set U of 3n elements, and a family F = {F1, . . . , Fm} of subsets of U , such
that for each 1 ≤ j ≤ m it holds that |Fj | = 3.
Question: Does there exist F ′ ⊆ F such that |F ′| = n and

⋃
F ′ = U?

The class P is the class of decision problems that can be solved using a polynomial-time algorithm,
i.e., an algorithm that takes on the order of nc basic computational steps, for some constant c (also
denoted as O(n2)). The class NP is the class of decision problems with the property that if the
answer is Yes, then there exist a proof that the answer is Yes (called a ‘witness’ or ‘certificate’)
that can be verified in polynomial-time. It is known that P ⊆ NP, and conjectured that P 6= NP
(Fortnow, 2009). Since this conjecture is widely believed by computer scientists and mathematicians,
and to the best of our knowledge none of our intended interlocutors question this conjecture, we
assume it here and throughout the main text of the article.

Using the P 6= NP conjecture it can be proven that some problems in (or outside) NP are not
in P, and hence not polynomial-time solvable. Among them are the NP-hard problems. NP-hard
problems have the property that if any one of them were to be polynomial-time solvable then P =

1

Figure 1: Proving (by contradiction) the intractability of F ′ via polynomial-time reduction from F .

NP (which would contradict the P 6= NP conjecture). Hence, assuming P 6= NP a problem can be
shown to be intractable (i.e., not polynomial-time solvable) by proving it NP-hard.

A problem can be proven NP-hard using the technique of polynomial-time reduction. It works
as follows: Let F : I → O be a known intractable (NP-hard) problem, and let F ′ : I ′ → O′ be a
new problem of interest. Then we say ′I polynomial-time reduces to F ′ if there exist two tractable
(i.e., polynomial-time) algorithms A and B where A can transform any input i ∈ I into an input
A(i) = i′ ∈ I ′ such that B(F ′(A(i))) = F (i). Observe that if F ′ were to be tractable, then algorithms
A and B could be used to tractably solve F . Since F is known to be intractable, a polynomial-time
reduction from F ′ to F proves that F must be intractable too (see Figure 1 for an illustration).

Problems that are both NP-hard and in NP are called NP-complete. The example decision
problem that we presented, Exact Cover by 3-Sets, is a known NP-complete problem (Garey &
Johnson, 1979). We will use this decision problem as a starting point for our proofs. In a sense, it
does not matter which problem we use, since it is known that every NP-complete problem can be
polynomial-time reduced to every other NP-complete problem.

In the main text of the paper, we consider search problems rather than decision problems. That
is, the problems are not concerned with answering a binary Yes-No question for a given input, but
are concerned with computing a different output. For example, C-Architecture Adaptation
deals with the problem of computing an architecture C ∈ C with certain properties—if it exists.

Notions of intractability that are typically used in computational complexity theory are based on
decision problems—e.g., NP-hardness. In the proofs that follow in this supplementary material (in
Section 2), we use these hardness notions to show that search problems are not tractably solvable.
We do this by showing that if (1) we could solve the search problems tractably, then (2) we could
also solve some NP-hard decision problem in polynomial time. Formally, we show this implication
by using what is called a polynomial-time Turing reduction.1 This gives us as result the statement
that we cannot solve these search problems tractably, unless P = NP.

1For a formal definition of Turing reductions—see, e.g., (Arora & Barak, 2009).

2

2 Proofs

Theorem 1. C-Architecture Adaptation is NP-hard.

Proof. We show NP-hardness by a polynomial-time reduction from X3C, that works as follows. We
take an input of X3C, and we use this input to construct an input of C-Architecture Adaptation.
Then, we show that we can use any polynomial-time algorithm for C-Architecture Adaptation
to decide in polynomial time whether the answer for the original input of X3C is “yes” or “no.”2

Let (U,F) be an instance of X3C, where U = {u1, . . . , un}, where F = {F1, . . . , Fm}, and
where |Fj | = 3 and Fj ⊆ U for each 1 ≤ j ≤ m. We construct an input of C-Architecture
Adaptation as follows.

We take the set {s0, s1, . . . , sn} of relevant situations, and we take the set A = {a1, a2} of actions.
All representations in R are binary strings of length m. The perception function p : S → R is defined
as follows. We let p(s0) = 000 . . . 0, i.e., the string consisting of m zeroes. For each 1 ≤ i ≤ n,
we let p(si) be the string ri,1 . . . ri,m, where ri,` = 1 if si ∈ F` and ri,` = 0 if si 6∈ F`. We
then define m : 2A × S → [0, 1] as follows. We let m(B, s0) = 1 if B = {a2} and m(B, s0) = 0
if B ∈ 2A \ {{a2}}. Similarly, for each 1 ≤ i ≤ n we let m(B, si) = 1 if B = {a1} and m(B, si) = 0
if B ∈ 2A \ {{a1}}. In other words, for situation s0, only the singleton set {a2} gives value 1, and
all other sets of actions give value 0, and for all other situations si, only the singleton set {a1} gives
value 1, and all other sets of actions give value 0. This construction is illustrated for an example
instance of X3C in Figure 2.

s ∈ S p(s) ∈ R unique B s.t. m(B, s) = 1

s0 00000 {a2}
s1 11000 {a1}
s2 10110 {a1}
s3 01101 {a1}
s4 10000 {a1}
s5 01011 {a1}
s6 00111 {a1}

Figure 2: Construction of S, A, R, p and m in the proof of Theorem 1, for the example input (U,F),
where U = {u1, . . . , u6}, F = {F1, . . . , F5}, F1 = {u1, u2, u4}, F2 = {u1, u3, u5}, F3 = {u2, u3, u6},
F4 = {u2, u5, u6}, and F5 = {u3, u5, u6}. In this example, the architecture C{1,5} achieves a maximal
cumulative value for m.

As the class C of architectures, we consider the set of all singleton sets CL = {cL} where L ⊆
{1, . . . ,m} is a set of size exactly n/3. Each such cL : R → A is the function that is defined as
follows. For L = {i1, . . . , in/3}, the function cL takes as input a binary string r ∈ R of length m,
and it returns a1 if there is some ij ∈ L such that the ij-th bit of r equals 1, and it returns a2
otherwise. Moreover, each such CL = {cL} has a fixed constant cost, say, cost(CL) = 0. Finally, we
let vmin = 1 and dmax = 0.

2Technically, this is what is called a Turing reduction—see, e.g., (Arora & Barak, 2009).

3

We now show that we can use any polynomial-time algorithm A for C-Architecture Adap-
tation to decide whether there exists a subset F ′ ⊆ F of size |F ′| = n/3 such that

⋃
F ′ = U .

We do so by running the algorithm A on the instance of C-Architecture Adaptation that we
constructed. This algorithm then either (i) outputs some CL ∈ C, or (ii) it outputs something else,
e.g., the string “none found.” We consider these two cases separately.

In case (i), we check whether
∑

s∈S m(CL(p(s)), s)/|S| ≥ vmin = 1. If this is the case (i.a),
we know that in each situation s ∈ S, the architecture CL outputs a set B of actions such
that m(B, s) = 1. Then, by construction of the input, this can only be the case if F ′ = {Fj | j ∈ L}
has the property that

⋃
F ′ = U . Moreover, we also know that |F ′| = n/3. Thus, we can conclude

that the answer to the original input for X3C is “yes.”
Next, we show that in case (i.b), where

∑
s∈S m(CL(p(s)), s)/|S| < 1, and in case (ii), where

the algorithm A outputs something that is not in C, the answer to the original input for X3C
is “no.” In both cases, the algorithm does not output an architecture C with the property
that

∑
s∈S m(C(p(s)), s)/|S| ≥ vmin = 1. We show that if the answer to the original input for X3C

would be “yes,” then there exists an architecture C with the property that
∑

s∈S m(C(p(s)), s)/|S| ≥
vmin = 1, which contradicts our assumption that the algorithm A works correctly to solve C-
Architecture Adaptation.

Suppose that there is some F ′ ⊆ F such that |F ′| = n/3 and
⋃
F ′ = U . Then take the

architecture CL, where L contains all 1 ≤ j ≤ m such that Fj ∈ F ′. Then |L| = n/3, since |F ′| = n/3.
Moreover, one can straightforwardly verify that in each s ∈ S the architecture CL outputs a set B
of actions such that m(B, s) = 1. In other words,

∑
s∈S m(CL(p(s)), s)/|S| = 1. This concludes our

proof.

Theorem 2. C-Architecture Adaptation is NP-hard for C = {C | C is an adaptive toolbox}.

Proof. To prove this, we can directly use the proof of Theorem 1. The class C of architectures used
in this proof is a subset of all architectures implemented by a toolbox that looks at at most n/3
cues. Moreover, all arguments in the proof carry through if instead we consider the class of all
fast-and-frugal trees of size at most n/3 (each of which has constant cost). Therefore, this proof also
shows that C-Architecture Adaptation is NP-hard for C = {C | C is an adaptive toolbox}.

Note that the number k = n/3 grows linearly in the size of the number |S| of relevant situations.
However, by making copies of situation s0 in the proof of Theorem 1, we can make the number k
(i.e., the number of bits any given heuristic can access) much smaller than the number |S| of relevant
situations.

Theorem 3. C-Architecture Adaptation is NP-hard for C = {C | C is a massively modular
architecture}.

Proof. To prove this, we use a modified version of the proof of Theorem 1. What we change in
the proof of Theorem 1 is the following. We modify m, by letting m(B, s0) = 1 if B = {a2}
and m(B, s0) = 0 if B ∈ 2A \ {{a2}}, and for each 1 ≤ i ≤ n, letting m(B, si) = 1 if B = {a1, a2}
and m(B, si) = 0 if B ∈ 2A \ {{a1, a2}}. In other words, for situation s0, only the set {a2} gives
value 1, and all other sets of actions give value 0, and for all other situations si, only the singleton
set {a1, a2} gives value 1, and all other sets of actions give value 0. Moreover, we introduce two
copies s′0, s

′′
0 of situation s0, that behave exactly like situation s0.

Now, consider the set Call = {c0, c1, . . . , cm} of functions ci : R→ A, where c0 is the function
that looks at the first bit, and always outputs {a2} (regardless of the value of the first bit), and
where for each 1 ≤ j ≤ m, the function cj looks at the j-th bit, outputs the action a1 if the bit

4

equals 1, and outputs the action a2 if the bit equals 0. Then, as the class of architectures, we
take C = {C | C ⊆ Call, |C| ≤ |S|/3}. Each such C ∈ C has a fixed constant cost, say, cost(C) = 0.

All arguments in the proof of Theorem 1 carry through (in an analogous form) if we consider
this modified construction and the adapted class C of architectures. Moreover, these architectures fit
the conditions of massively modular architectures. Therefore, this proof also shows that Massively
Modular Architecture Adaptation is NP-hard.

Theorem 4. C-Architecture Adaptation is NP-hard for C = {C | C is a resource rational
architecture}.

Proof. To prove this, we use a modified version of the proof of Theorem 1. What we change from
the proof of Theorem 1 is the following. As class C of architectures, we consider the set of all
singleton sets C = {c} such that c is any polynomial-time computable function c : R→ A. For each
such C = {c}, the cost cost(C) is the maximum number of bits of p(s) ∈ R that c looks at in any
situation s ∈ S.

By using arguments that are entirely analogous to the arguments used in the proof of Theorem 1
for this class C of architectures, we get that the answer to the original input of X3C is “yes” if and
only if there is an architecture C of cost n/3 that has the property that

∑
s∈S m(C(p(s)), s)/|S| ≥

vmin = 1. Moreover, by construction there is no architecture C of cost < n/3 that has the property
that

∑
s∈S m(C(p(s)), s)/|S| ≥ vmin = 1. Therefore, analogously to the arguments in the proof of

Theorem 1, we can use any polynomial-time algorithm A for C-Architecture Adaptation to
decide X3C in polynomial time.

Since this class C of architectures fits the conditions of resource-rational architectures, this proof
shows that if C = {C | C is a resource rational architecture} then C-Architecture Adaptation
is NP-hard.

Theorem 5. C-Architecture Adaptation is polynomial-time solvable for C = {C | C is a
classically rational architecture}.

Proof. We show that C-Architecture Adaptation is polynomial-time solvable for
C = {C | C is a classically rational architecture} by describing a polynomial-time computable
algorithm A that solves this problem. The algorithm A takes as input a description of the sets S, R
and A. It also takes as input a description of the functions p : S → R and m : 2A × S → [0, 1]—
without loss of generality, we suppose that these functions p and m are given in the form of (a
description of) Turing machines that compute these functions.

The algorithm A outputs an architecture C = {c} that achieves a maximal value of∑
s∈S m(C(p(s)), s)/|S|. The function c : R → A is computed by an algorithm B—that does not

necessarily run in polynomial time. This algorithm B does the following:

1. Take as input any r ∈ R.

2. Compute the subset of situations S′ ⊆ S that are represented as r, i.e., ∀s∈S′p(s) = r. This is
equivalent to computing p−1(r), where p−1 denotes the inverse of p.

3. Iterate over all actions in A selecting the action a ∈ A that maximizes the value of∑
s∈p−1(r) m({a}, s).

4. Output a.

5

By doing so, B maximizes the value of
∑

s∈S m(C(p(s)), s)/|S|.
Given a description of the sets S, R and A, and a description of the algorithms that compute the

functions m and p, algorithm A can in polynomial time construct a description of a Turing machine
that computes algorithm B as given above. This is the case, because the algorithm consisting of
steps (1)–(4) is always the same, modulo some input parameters—only S, R, A and the descriptions
of algorithms computing m and p change. These changing parameters can easily be plugged into a
pre-defined algorithm in polynomial time. By doing so, A solves the problem C-Architecture
Adaptation in polynomial time for C = {C | C is a classically rational architecture}.

References

Arora, S. & Barak, B. (2009). Computational complexity – a modern approach. Cambridge University
Press.

Chater, N., Tenenbaum, J. B., & Yuille, A. (2006). Probabilistic models of cognition: Conceptual
foundations. Elsevier.

Fortnow, L. (2009). The Status of the P Versus NP Problem. Communications of the ACM, 52 (9),
78–86.

Garey, M. R. & Johnson, D. R. (1979). Computers and intractability. San Francisco: W. H. Freeman
and Company, New York.

Gigerenzer, G., Hoffrage, U., & Goldstein, D. G. (2008). Fast and frugal heuristics are plausible
models of cognition: Reply to Dougherty, Franco-Watkins, and Thomas (2008). Psychological
Review, 115 (1), 230–239.

van Rooij, I., Blokpoel, M., Kwisthout, J., & Wareham, T. (2019). Cognition and intractability: A
guide to classical and parameterized complexity analysis. Cambridge: Cambridge University
Press.

van Rooij, I. (2008). The tractable cognition thesis. Cognitive science, 32 (6), 939–984.

6

	Computational Complexity Basics
	Proofs

