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Supplemental Figure S1: Selection of cell-type specific CpGs for fibroblasts 

(A) Split of total samples (n = 579) into training (n = 409) and validation set (n = 170). 

(B) Multidimensional scaling (MDS) plot of the validation data (n = 170) shows that samples cluster by cell type. For the 

analysis, all CpGs shared between the 450K and the EPIC BeadChip were included (except XY chromosomes). 

(C) Chromosomal location and association with corresponding genes for the selected fibroblast-specific CpGs: lncRNA 

(RP11-60A8.1) and leucine rich repeats and immunoglobulin like domains 1 (LRIG1). Shown are mean β values from 

the training data set of neighboring CpGs for the respective cell types. The red lines depict the relevant CpGs. 

(D) Gene expression estimates of the Primary Cell Atlas (67) for LRIG1 (Affymetrix UG 133; probe 211596_s_at). Gene 

expression is relatively low in fibroblasts. Thus, there was no evidence for cell-type specific gene expression. Gene 

expression data was not available for the lncRNA RP11-60A8.1.  

(E) DNAm levels (β values) of the two selected CpGs from the FibroScore in the lung fibrosis dataset GSE63704 (450K 

BeadChip) (63). Two-sided t-test: *** p < 0.001. 

(F) DNAm levels (β values) of the two selected CpGs from the FibroScore in the liver cirrhosis dataset GSE60753 (450K 

BeadChip) (29). Two-sided t-test: : ** p < 0.01, NS = not significant.  
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Supplemental Figure S2: Cox proportional hazards adjusted survival curves for FibroScore 

Survival curves for the six types of cancer for which there is a significant difference in overall survival for patients with 

either high or low FibroScore. Depicted is the difference between the groups stratified as low or high FibroScore. The 

model takes (when available) sex, age, tumor stage and FibroScore into account.  
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Supplemental Figure S3: Survival analysis in other types of cancer 

Hazards ratios from Cox proportional hazards models for datasets from The Cancer Genome Atlas (TCGA). Depicted 

are all types of cancer for which there is no significant difference in overall survival for patients with either high or low 

FibroScore. Unless specified otherwise, models take into account sex, age, tumor stage, and the FibroScore stratified 

by the median (450K BeadChip data). If some of these parameters were not available, we indicated missing cofactors 

next to the reference: s = sex, a = age, and n = stage.  
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Supplemental Figure S4: Genomic context of cell-type-specific CpG sites 

Chromosomal location and association with corresponding genes for the selected cell-type-specific CpGs: Dynamin 2 

(DNM2), Myosin IG (MYO1G) encodes for the human minor histocompatibility antigen HA-2, which is only expressed in 

hematopoietic cells (65), Stathmin 1 (STMN1), DNA polymerase epsilon catalytic subunit A (POLE), WSC Domain 

Containing 1 (WSCD1), ArfGAP With GTPase Domain, Ankyrin Repeat And PH Domain 1 (AGAP1) is associated with 

neurodevelopmental disorders and overexpressed in brain (66), RAS-Associated Protein RAB3A (RAB3A) is also highly 

expressed in brain (66), and the lncRNA Deleted In Lymphocytic Leukemia 1 (DLEU1). Shown are mean β values from 

the training data set of neighboring CpGs for the respective cell types. The red lines depict the relevant CpGs.   
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Supplemental Figure S5: Gene expression of CpG related genes 

Gene expression (Affymetrix UG 133 Plus 2.0) of corresponding genes for the selected cell-type-specific CpGs: DNM2 

(202253_s_at), MYO1G (244654_at), STMN1 (1552803_a_at), POLE (216026_s_at), WSCD1 (213157_s_at), AGAP1 

(204066_s_at), RAB3A (204974_at) and the lncRNA DLEU1 (219076_s_at) from the Primary Cell Atlas (67).   
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Supplemental Figure S6: Comparison of different deconvolution methods 

(A) In addition to the NNLS model, two alternative deconvolution approaches were considered for in vitro neuron-glia-

DNA mixes from dataset GSE41826 (68): non-negative matrix factorization (NMF) and EpiDISH (69, 70). Comparison 

of expected versus predicted DNA proportions by deconvolution with different algorithms (NNLS, NMF and EpiDISH). 

(B) The predicted cell fractions for the neuron-glia-DNA mixes from dataset GSE41826 (68) are depicted based on the 

eight cell-type-specific CpGs for NMF and EpiDISH. The best correlation of the predicted cell fractions with the real 

mixture of neurons/glia was observed for the NNLS-based deconvolution (Figure 4), while EpiDISH did not misclassify 

any other cell type. 

(C) Cell type DNA mixes from dataset GSE122126 (7). Comparison of expected versus predicted DNA proportions by 

deconvolution with different reference matrices. 

(D) Pyrosequencing of DNA mixes. Comparison of expected versus predicted DNA proportions by deconvolution.  
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Supplemental Figure S7: Deconvolution of cell mixtures based on individual cell-type-specific CpGs 

(A) Deconvolution of normal tissues from the TCGA database (450K BeadChip). Shown are estimated cellular fractions. 

The relevant CpG for neurons was not available for TCGA datasets and therefore left out.  

(B) Deconvolution of healthy tissues based on pyrosequencing of DNAm at the eight relevant CpGs.  
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Supplemental Figure S8: Representative pyrograms 

Representative pyrograms are depicted for each pyrosequencing assay. Bisulfite conversion controls are marked in 

orange, CpG sites are marked in blue and the methylation level of the target CpG site is in square brackets. Images 

have been exported from the PyroMark Q48 Autoprep software from Qiagen. 
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Supplemental Table S1. 450k/EPIC Illumina BeadChip datasets used in this study 

GSE SAMPLE TYPE 
NUMBER OF 
SAMPLES 

REFERENCE IN 
MAIN TEXT 

Training dataset    
GSE34486* endothelial cells 10 17 
GSE40699 muscle cells, epithelial cells, hepatocytes, fibroblasts, 

astrocyte, endothelial cells 
26 18 

GSE41933 mesenchymal stromal cells 12 19 
GSE43976 leukocytes 10 20 
GSE50222 leukocytes 8 21 
GSE52025 fibroblasts 2 22 
GSE52112 mesenchymal stromal cells 34 23 
GSE58622 adipocytes 10 24 
GSE59065 leukocytes 20 25 
GSE59091 induced pluripotent stem cells, fibroblasts 12 26 
GSE59250 leukocytes 60 27 
GSE59796 leukocytes 4 28 
GSE60753 hepatocytes 15 29 
GSE63409 leukocytes 30 30 
GSE65078 induced pluripotent stem cells, fibroblasts 8 31 
GSE68134 induced pluripotent stem cells, fibroblasts 6 32 
GSE71955 leukocytes 20 33 
GSE74877 epithelial cells, melanocytes, mesenchymal stromal 

cells, fibroblasts, endothelial cells 
9 34 

GSE77135 fibroblasts 20 35 
GSE79144 glia, neurons 18 36 
GSE79695 mesenchymal stromal cells 12 37 
GSE82234 endothelial cells 3 38 
GSE85647 leukocytes 6 39 
GSE87095 leukocytes 10 30 
GSE87177 endothelial cells 1 41 
GSE88824 leukocytes 16 42 
GSE92843 epithelial cells 1 43 
GSE95096 fibroblasts 1 44 
GSE98203 neurons 10 45 
GSE99716 endothelial cells 1 46 
GSE103253* endothelial cells 10 47 
GSE107226 fibroblasts 4 48 

Validation dataset 

   

GSE34486* endothelial cells 6 17 
GSE51921 iPSCs, fibroblasts 6 49 
GSE53302 muscle stem cells 6 50 
GSE68851 fibroblasts 12 51 
GSE71244 leukocytes 24 52 
GSE74486 glia, neurons 15 53 
GSE85566 epithelial cells 6 54 
GSE86258 fibroblasts 7 55 
GSE86829 fibroblasts 3 56 
GSE87797 mesenchymal stromal cells 12 57 
GSE103253* endothelial cells 15 47 
GSE104287 leukocytes 8 58 
GSE106099 feto-placental endothelial cells 12 59 
GSE109042 buccal epithelial cells 6 60 
GSE111396 fibroblasts 14 61 
GSE122126 adipocytes, neurons, hepatocytes, endothelial cells, 

epithelial cells, leukocytes 
18 (13 EPIC) 7 

Other datasets 

   

GSE41826 glia-neuron DNA mixes 9 68 
GSE60753 normal and cirrhotic liver 100 29 
GSE63704 normal and fibrotic lung 80 63 
GSE122126 cell type DNA mixes 8 7 

* Samples from these studies were considered either for training or validation sets 
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Supplemental Table S2. Advantages and limitations of pyrosequencing versus Illumina BeadChips 

 
PYROSEQUENCING 
OF 8 CPGS 

ILLUMINA METHYLATIONEPIC BEADCHIP 
(~ 850.000 CPGS) 

Consumables per sample (including 
bisulfite conversion) 

~ 40 € 175 € to 600 €  * 

Working time 10 h ** 
Usually performed by service provider or 
core facility 

Time until results 2-3 days 
weeks/months (dependent on service 
provider) 

Preferred total DNA amount 200 - 500 ng 1200 ng 

Minimum input quantity of converted DNA 
80 - 160 ng (10-20 ng 
per reaction) 

250 ng 

Requirement of bioinformatic skills lower higher 

Data protection and privacy regulations 
analysis in house, no 
genome wide data 

Genome wide profiles may theoretically 
reveal donor identity 

* The given price range comprises consumables and personnel costs. On our requests, there was a considerable 

price range between different providers and with possible cooperation agreements. Consumable costs only for 

Infinium MethylationEPIC BeadChip Kit are provided by Illumina about 250€/sample. 

** The working time needs to be taken into account for cost calculation. However, this is largely dependent on the 

number of samples that can be processed in parallel.  
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Supplemental Table S3. Primer DNA sequences used for pyrosequencing 

NAME DNA SEQUENCE 

cg18096962_Forward GAGTATTGGGTTTATTTAGTTTTAGGAT 

cg18096962_Reverse_Biotin TCAAATTCTATTTACTACCCTCTTCC 

cg18096962_Sequencing GTTTTTATTTTTGAG 

cg18005280_Forward TATTGGTGTTATTGGGGGAGG 

cg18005280_Reverse_Biotin CCCACAACCATTCTAAAACAATC 

cg18005280_Sequencing TGTTATTGGGGGAGG 

cg10673833_Forward TGTTGTTAGGGTTGGAAGTTAATTT 

cg10673833_Reverse_Biotin CACCAACCTCCTCCAATACTAATATAA 

cg10673833_Sequencing GGGGAGGATTTAGT 

cg06421238_Forward TTGTGGGGGATGGGTAGT 

cg06421238_Reverse_Biotin ACCTCCTCCCTACAAATCCTATATCT 

cg06421238_Sequencing GATAAAGTTTAGGAAGAGGTT 

cg06631999_Forward_Biotin GGGTTGTTTTTTGGTTATTAGAGTTAGGTA 

cg06631999_Reverse CTCTTCTTTCCAATTTTTTCCAAATAATC 

cg06631999_Sequencing CTCTAACTCAATCCCTAAATAC 

cg23068797_Forward_Biotin TTTTTGGGTTTAGGAGGAATGTT 

cg23068797_Reverse CCAACTAATACCACATCTAAAACTATTTACAATAC 

cg23068797_Sequencing AATACCACATCTAAAACTATTTAC 

cg27309098_Forward_Biotin GAGGAAATTGAGGTTTAGAGATATGAA 

cg27309098_Reverse CTAAAATCAAACTTAAAATACAACTCCTTAATA 

cg27309098_Sequencing CAAAAAATTTTTACC 

cg27197524_Forward_Biotin GAAGAATTTGAATTTTAGGGAAGAAGTAT 

cg27197524_Reverse CCCAACAAACAAAAACAAAAATTCAATA 

cg27197524_Sequencing TACTAAACTCTAAAACCTAC 

cg21548464_Forward GTTTTTTAGTTGGGATTTATTTAGATTTGT 

cg21548464_Reverse_Biotin AACCCTTACCATCTTCTACCTAAACT 

cg21548464_Sequencing CATATTCAAAATTCTCATCAT 

cg09998451_Forward_Biotin GGGAATTTTGTATTTTAGTTGTGGATTTTT 

cg09998451_Reverse TAAACCTCAATTAACCCCTACTCAA 

cg09998451_Sequencing GTAAAATTTTGTTTGAT 

 

 


