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ABSTRACT: Mass spectrometry imaging (MSI) has become a valuable tool in drug imaging because of 

its ability to provide a simultaneous spatial distribution of the drug and several other molecular ions 

present in the biological sample. An important application is the evaluation of homogeneity/heterogeneity 

of drug distribution in solid tumors. Solid tumors are known to be made up of different tissue 

subpopulations and their heterogeneity is supposed to have a direct and/or indirect influence on drug 

distribution. Hence, for further enhancement of penetration therapy performance, it is important to link a 

characterization of the tumor microenvironment with drug homogeneity. In this study, untargeted MSI 

data were used to understand the spatial heterogeneity within solid tumors, assessing its impact on the 

drug (paclitaxel) distribution.  The proposed approach was applied on MSI datasets already analyzed, 

focusing on tumor drug distribution. Untargeted MSI datasets were collected on different tumor xenograft 

models (ovarian and colon cancer cell lines) pre-treated or not with anti-angiogenesis compound 
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(bevacizumab). Our main data analysis steps involved: a) pre-processing of MSI data to make all 

biological samples directly comparable, b) unsupervised data clustering to find different tissue subtypes, 

c) quantification of drug heterogeneity using local indicators of spatial association (LISA) map and d) 

selection of important ion signals from identified clusters of interest using the spatial -aware statistical 

tools. Our clustering results show variation in tumor subpopulations and less spatial heterogeneity in the 

MSI data collected on samples treated with the anti-angiogenesis compound consistently with our 

previous data.  The local spatial structures identified in drug ion LISA maps show a correlation with 

clusters identified using a clustering method. Using the right spatial method, we were able to reduce the 

number of false-positive ions selected and identified the one that shows relevant spatial patterns in 

different tissue subtypes. Finally, our overall study shows that there is a direct association in drug 

homogeneity and spatial arrangement of different tissue subtypes in a solid tumor.  

Introduction 

Heterogeneity of the tumor microenvironment directly affects drug penetration reducing the therapeutic 

efficacy and contributing to the development of resistance[1,2]. For the above-mentioned reasons, 

knowledge about tumor spatial heterogeneity is then of paramount importance to optimize therapeutic 

outcomes[3]. In order to understand the relation between drug distribution and tissue 

homogeneity/heterogeneity, an imaging technique able to investigate both phenomena simultaneously 

would be highly desirable[4].  

Mass spectrometry imaging (MSI) is a molecular imaging technique that provides simultaneous 

information about spatial localization of drugs and other small molecules present in the biological 

sample[5,6]. It is one of the techniques of election to characterize tumor tissue subtypes[7–9]and it is also 

applied to map the distribution of drugs within the tissue[10–13]. Untargeted MSI datasets provide 

unprecedented opportunities to understand the drug distribution in association with tissue heterogeneity. 

Several computational algorithms have been implemented on MSI data for the identification of tumor 

tissue areas[7,8,14]and important molecular ions selection[8,15,16].  As far as our knowledge there is no 

work done that combines the tumor heterogeneity with a drug distribution profile. In a recent paper, we 



have proposed a new objective index (DHI)[17] to measure drug homogeneity in different MSI datasets 

and we aim at extending this work proposing a framework that can be used to investigate the relation 

between drug homogeneity and the observed tumor heterogeneity. The proposed approach encompasses 

the following steps.  

1. Identification of the different tissue sub-populations from an untargeted multi-sample MSI dataset 

(segmentation).  

2. Quantitative analysis of the spatial arrangement of the tissue subtypes across different samples. 

3. Extraction of discrete drug distribution maps.  

4. Matching of the segmented MSI dataset with the drug distribution maps. 

5. Selection of ion signals that can be used to differentiate specific tissue areas. 

Since the accessibility of a drug to a particular spatial location is expected to be linked to the metabolic 

and histological characteristics of the underlying tissues, multivariate unsupervised clustering was used 

to group the pixels into a limited number of groups which represent the different tissue 

subtypes[8,9,14,18–20] (Step 1). This step was performed after removing the drug-related peaks to avoid 

their influence in groups formation. The quantitative assessment of the spatial arrangement of the different 

clusters (Step 2) was performed by using a modified version of our DHI[17] index, which was optimized 

to characterize the spatial arrangement of the pixels on the clustered images. The local indicators of 

spatial association (LISA)[21,22] method was instead applied to create discrete drug distribution maps 

(Step 3). The association between LISA maps and identified segments was derived using Cramer’s[23] V 

method (Step 4). The identification of important ion signals able to differentiate the tissue subtypes was 

finally performed by using a spatial-aware statistical method that corrects for spatial autocorrelation[24] 

(Step 5). Since the application of these models in MSI is still uncommon, the optimal spatial model for 

biomarker selection was tested on a synthetic autocorrelated spatial dataset.  

In our study, the identification of tissue subpopulations was performed using K-means clustering with 

correlation distance. This non-spatial clustering method has already been used in many other MSI 

research[25–27] and was able to efficiently extract relevant structures. The spatially relevant clusters in 

drug ion image were detected based on Moran’s scatter plot or LISA map. LISA map is a commonly used 

method in spatial statistics where pixels are grouped into different clusters (zones) based on their similar 



or different behavior with neighboring pixels[28,29]. The potential of the proposed approach was tested 

on the same datasets that we used in our previous work[17,30] which consisted of the MSI untargeted 

analysis of a set of different tumor xenograft models from ovarian (A2780) and colon (HCT116) cancer 

cell lines. The study was designed to assess the effect of an anti-angiogenesis compound (bevacizumab) 

on the drug (paclitaxel) distribution[30]. For this purpose, half of the animals were pretreated twice (5 

and 1 days before excision) with bevacizumab, before being administered with paclitaxel a few hours 

(six) before excision. Even if it is impossible to exclude that the anticancer drug could be responsible for 

the observed spatial heterogeneity in metabolic profile[31], any relevant difference between the two 

treatment groups is likely to be associated with the direct or indirect effect of bevacizumab.  

EXPERIMENTAL SECTION 

MSI datasets  

MSI data were derived from the tumor-bearing mice, treated with paclitaxel (60 mg/kg) alone or in 

combination with bevacizumab (two intraperitoneal injections at 150 μg per mouse). For mice experiment, 

IRFMN adheres to the principles set out in the following laws, regulations, and policies governing the 

care and use of laboratory animals: Italian Governing Law (D.lgs 26/2014; Authorization n.19/2008-A 

issued March 6, 2008 by Ministry of Health); Mario Negri Institutional Regulations and Policies providing 

internal authorization for persons conducting animal experiments (Quality Management System 

Certificate–UNI EN ISO 9001:2008 –Reg. N° 6121); the NIH Guide for the Care and Use of Laboratory 

Animals (2011 edition) and EU directives and guidelines (EEC Council Directive 2010/63/UE).   

The complete details of the experiment experiments described here.[12,17,30].  Briefly, tumors were 

collected, frozen in liquid nitrogen and prepared for MSI analysis. A MALDI 4800 TOF-TOF (AB 

SCIEX, Old Connecticut Path, Framingham, MA) was used. And, mass spectra were recorded in full-

scan-profile mode over a limited mass range (m/z 199–500). Images of tissue sections were acquired using 

the 4800 Imaging Tool software with an imaging raster of 100 × 100 μm (pixel dimension of ca. 0.01 



mm2). The obtained dataset consisted of 131 349 (A2780) and 59 652 (HCT116) raw spectra from the 

tissue areas of all tumor models.   

MSI data pre-processing 

The initial data files in Analyze 7.5 format were opened in R[32] free software version 3.4.3 using the 

MALDIquant[33] package. Each MSI datafile contains mass spectra collected from both tumor tissue and 

a glass slide. To avoid any bias in pre-processing and data analysis steps, the mass spectra belonging to 

tumor tissue only were used. The identification of tumor tissue was performed by constructing a mask of 

the ion signal detected in the m/z = 281.1-281.44 range. This ion was confirmed to be a reliable tissue 

marker by visually comparing all MS images with their optical counterparts.  To correct for possible 

spectral misalignments across the different datasets, an adaptive binning approach was applied. To do 

this, first, a reference spectrum was created, which is a single maximum intensity spectrum of all the 

spectra. The main reasoning behind it is to acquire knowledge about the location and shape of all the ion 

peaks in our data and then optimize the bin size accordingly. Smoothing of the reference spectrum was 

performed by applying discrete wavelet transformation (Daubechies least asymmetric 8-tap filter with 

hard shrinkage) using a msDenoiseWavelet function from msProcess[34] R package. Peaks in the 

reference spectrum were identified by local maxima search above a certain threshold[17]. Initial bins were 

created based on those identified peaks. The bin size was further optimized on the bases of instrument 

characteristics merging together peaks showing a difference of less than 0.05m/z. To avoid that peaks are 

missed in low-intensity spectra, an extra bin of size 0.5 was added in the presence of a large gap between 

two identified peaks (especially towards the end of the spectra). The complete workflow of bin creation 

and maximum intensity spectra from two tumor MSI data are shown in Additional file 1.  

After bin identification, each MSI data file was reopened and peak picking was performed using an 

approach similar to the one applied to the reference spectrum and the identified peaks were assigned to 

their corresponding bins. To focus only on the more common ions, peaks that were present in less than 

20% of the tissue area were removed. Peaks only present in a single tumor model were rejected. To remove 



spatial noise, median filtering with a window size of 3x3 pixels was performed on each extracted ion 

image. We also performed edge correction in the individual dataset, as marginal pixels have enormously 

high intensity due to the surface difference between tissue and glass slide[35]. image. To make the spectra 

collected on the different pixels comparable median normalization was performed. Generalized log 

transformation was performed as a variance stabilization step using LMGene[36] in R. A plausible batch 

effect between the slices of certain mouse models was  removed using the removeBatchEffect function 

from R limma[37] package. Ion peaks with correlation with the drug compound (paclitaxel) (>0.5) were 

removed before cluster analysis. The overall dimension of the final data matrix belonging to A2780 and 

HCT116 is equal to 131 349 x 173 and 59   652 x 155, respectively.  

MSI data analysis 

Unsupervised data clustering  

Segmentation of MSI data collected on the complete set of sections from a specific cell-line was 

performed by unsupervised bisect k-means clustering[38] using correlation as a similarity measure. The 

individual clusters were allowed to split further until the largest cluster contains 40% of the pixels included 

in the initial data matrix. The number of clusters at each step was selected based on the calinhara internal 

validity index[39]. The clustering and validation were implemented using R-packages amap[40] and 

fpc[41], respectively. The outcomes of segmentation for the different sample groups (cell lines and 

bevacizumab treatment) were analyzed based on the following parameters: a) size and b) homogeneity of 

the individual clusters. The homogeneity of the individual clusters was assessed by using a slightly 

modified version of the drug homogeneity index (DHI) (see Additional File 2). Higher cluster 

homogeneity means the more continuous/homogeneous distribution of a particular tissue-type.  All these 

parameter values were normalized by the total number of pixels from the tumor models of each treatment 

condition. Statistical significance of pixel and homogeneity ratio under two treatment conditions was 

calculated using linear mixed models with the nlme[42] R-package.  

Quantification assessment of the drug distribution  



Spatial quantification of the drug heterogeneity was performed using the Moran’s I scatter plot[24], also 

known as the local indicators of spatial autocorrelation (LISA) map (see Additional File 2). This spatial-

aware method was selected because is expected to yield more robust results in the presence of the spatially 

autocorrelated drug signal.  

To create a Moran’s I scatter plot and/or LISA map required inputs are: original variable, spatially lagged 

variable and spatial weight matrix. The original variable in our case it is the ion intensity map of the drug 

peak.  The spatially lagged variable is constructed by multiplying the autoscaled version of the original 

variable with the help of the spatial weight matrix[24,43]. This weight matrix stores the connections 

between nearby observations (e.g. in a binary weight matrix the observations which lie within a certain 

range of autocorrelation receive a value of one else zero). The optimal range of autocorrelation can be 

decided based on spatial correlogram. A spatial correlogram[24] is a 2D plot where the spatial 

autocorrelation index (Moran’s I) is plotted as a function of lag distance where a positive value indicates 

the presence of autocorrelation within a certain distance range. To create a LISA map of a drug ion image 

the following steps were performed: 

● the optimal spatial weight matrix was created on the bases of the spatial correlogram plot (Figure 

1b).  

● the original variable was converted into its spatially lagged version (Figure 1c).  

● Moran’s I scatter plot was created by regressing the original variable against its spatially lagged 

version where pixels are grouped into four different zones usually called high-high, low-low, high-

low and low-high (Figure 1d).  

● Finally, a LISA map was constructed which is a two-dimensional image where pixels are labeled 

according to their class in Moran’s I scatter plot (Figure 1e).  

 

Figure 1. A schematic workflow of drug LISA map creation. a) Original drug ion image. b) Spatial 

correlogram of the drug-ion image where Moran’s I values (Ac1) are plotted against the lag distance 

(dists). c) spatially lagged image of the drug-ion. d) Moran’s I scatter plot where the drug signal and its 

spatially lagged version are regressed against each other. e) LISA clustered map of the drug ion where 

pixels falling in the same quadrant of the Moran scatter plot are grouped. 



In a LISA map or Moran’s I scatter plot, the high-high zone contains pixels that have a high intensity or 

above-average value and surrounded by a similar type of high-intensity pixels. The low-low zone contains 

pixels that have a lower intensity or below-average value and surrounded by a similar type of low-intensity 

pixels. The high-low zone contains pixels that have above-average value for themselves but surrounded 

by neighbors with below-average value. The reverse rule applies to the pixels fall in the low-high zone. 

Note, in a LISA map pixels falling in high-high and low-low zones show positive spatial autocorrelation 

and are spatially smooth. Therefore, a single zone of a LISA map may contain multiple clusters with 

approximately similar profiles.  

 

Association between clustered image and drug LISA map 

The obtained drug LISA maps were analyzed for their association with the unsupervised clusters obtained 

using unsupervised clustering. A quantitative analysis was performed to understand which cluster 

subtypes overlap most with which zone of the LISA map, for which the fraction of pixels in different 

zones and clusters in each tumor model was calculated. Further, the strength of association between those 

two vector classes (LISA map zones and unsupervised clusters) was estimated using Cramer’s V[24] 

method. Cramer’s V is a statistical measure similar to the Pearson correlation to find the correlation 

between two nominal variables and returns a correlation value within the range of 0-1.  

 

Representative ion signals selection from the identified clusters  

The method used to select representative ion signals from the identified clusters in the MSI data was first 

validated on synthetic spatially autocorrelated data. Two spatial approaches (spatial error model (SE), and 

spatial lag model (SL)) were compared with a standard non-spatial approach (ordinary least square 

(OLS)). Both spatial models[24,44] are modified versions of an OLS model and include spatial 

autocorrelation in a different component of the OLS model. The comparison of the performance of the 

above mentioned statistical methods with complete description of the synthetic data generation process is 

given in Additional File 3. 



All spatial models were fitted with the spdep[24] R package. Similar to what was done in the case of the 

LISA map, the right threshold for the spatial weight matrix was decided based on the spatial correlogram.  

In MSI data, the selection of ion signals from identified clusters was performed using the method which 

gives the best performance on our synthetic data. In order to do that, the outcomes of the original clustering 

were converted into a set of two-class images where each cluster is, in turn, compared with all the others. 

As the variables selection using the spatial method is computationally intensive, we only used a few tumor 

models in which the cluster of interest was present. Thus, per cluster five different tumor slices were 

selected, i.e. MSI data from 4 - 5 different tumor models. If a particular ion was found to be important in 

all five datasets, then it was considered as a significant ion signal for the respective cluster. The important 

ions were selected on the bases of the model p-values corrected for multiple testing by using the procedure 

of Benjamini & Hochberg[45].  

Results 

Unsupervised clustering of MSI data 

a) A2780 cell-line based MSI data 

The clustering method identified five unique clusters in the combined set of A2780  xenograft models 

(Figure 2 left). The majority of the replicates possess those five clusters in different ratios where clusters 

1 and 2 were predominant in all tumor models in both treatment conditions. The relative contribution of 

cluster 3 is reduced and cluster 4 is enhanced in the presence of bevacizumab (Figure 2, top right). Cluster 

3 showed a high overlap with the necrosis area[12] and noticed to be present in a relatively higher fraction 

among the tumor models not pretreated with bevacizumab. The small fraction of cluster 5 is present in all 

tumor models.   

Similar to the number of pixels, the homogeneity of clusters (parameter b) for the individual tumors was 

calculated using the modified version of our DHI and it is shown in Figure 2, bottom right. The figure 

highlights the clear difference in clusters homogeneity under the two treatment conditions, especially for 



cluster 2. The homogeneity of cluster 2 in the presence of bevacizumab treatment is much higher than the 

homogeneity of any other cluster in two treatment conditions. Without bevacizumab treatment also tumor 

models show high homogeneity for cluster 2 followed by cluster 3.  

Figure 2: Cluster analysis of A2780 tumor MSI data generated in the presence and absence of 

bevacizumab treatment. Left: Representation of clusters detected by the k-means method. Right: Ratio of 

a) pixels and b) homogeneity calculated from individual clusters under two treatment conditions. The red 

horizontal line is the global mean value of pixel and homogeneity ratio. Here, Pixel ratio = Number of 

pixels in individual clusters/Total number of pixels from all tumor MSI data under particular treatment 

conditions.  Homogeneity ratio =Size-zone of individual clusters for a given tumor model/Total number 

of pixels in that particular tumor model. With Beva = pretreated with bevacizumab and Without Beva = 

without bevacizumab pretreatment.     

b) HCT116 cell-line based MSI data  

Five clusters were identified in the HCT116 tumor cell line MSI data (see Additional File 4). Similar to 

the A2780-1A9 tumor MSI data, there was not a large observed difference in clusters population under 

the two treatment conditions. Cluster 2 and 3 were predominantly present in all tumor models irrespective 

of the treatment conditions (see Additional File 4 Figure S-1 top right). Cluster 1 was observed in a 

moderate amount and very small fractions of clusters 4 and 5 were present in all tumor models. The 

homogeneity assessment of the individual clusters in the two treatment conditions shows that cluster 3 

has high homogeneity in the case of bevacizumab treatment. In the absence of bevacizumab treatment, 

clusters 2 and 3 show more homogeneity (see Additional File 4 Figure S-1 bottom right).  

The statistical analysis of pixel and homogeneity ratio values was performed using a linear mixed model 

approach where range and p-value from both tumor models are given in Additional File 4 Table S-1. For 

the A2780-1A9 MSI data, the pixel ratios are not significantly different in the two treatment conditions. 

The homogeneity value of cluster 2 is close to significant which is derived with parameter 𝑁𝑢 = 5 in our 



homogeneity formula. In HCT116 MSI data, the number of pixels in cluster 1 and homogeneity ratio for 

cluster 2 is statistically significant in two treatment conditions. 

Association between clustered image and drug LISA map  

A visual comparison of the clustered images and drug LISA maps confirms the link between the drug 

distribution profile and the underlying clusters (Figure 3). For example, homogeneously high drug 

distribution areas (high-high (HH) zone in the LISA map) are mostly associated to cluster type 1 and 2, 

while, homogeneously low drug distribution areas (low-low (LL) zone in the LISA map) correspond to 

cluster type 3 and 5 (Table 1). The observed association between cluster types and the different zones of 

the LISA map is irrespective of treatment condition across all tumor models (Figure 4). 

Similar observations were made from HCT116 tumor MSI data (see Additional File 5). In HCT116 MSI 

data, clusters 1,2 and 3 show clear overlapping with spatially homogeneous zones of the LISA maps. The 

cluster 1 and 3 overlapped with high drug concentration areas in the tissue and cluster 2 with low drug 

concentration areas (see Additional File 5). The association between cluster 2 and low drug concentration 

areas in the LISA maps is more clear for HCT116 data than for A2780-1A9 data (Additional File 5 Table 

S-1).  

The statistical correlation between the clustered image and drug LISA map was calculated using Cramer’s 

V method. A very small fraction of pixels falls within high-low and low-high zones of the LISA map. 

Therefore, the Cramer’s V is calculated between HH, LL zones of LISA map with unsupervised clustered 

classes. For both tumor MSI data, the Cramer’s value across all tumor models was found to be within the 

range of 0.5 -0.8 (see Additional File 5 Table S-1) that confirmed the dependency of the drug on different 

tumor tissue areas.  

  

Figure 3: Individual clustered image (first column), LISA map (second column) and their combination 

are shown for few tumor models from A2780-1A9 MSI data.  The clusters found in high-high (HH), low-



low (LL), high-low (HL), and low-high (LH) zones of LISA map are highlighted. In LISA map, HH, LL, 

HL, and LH are zones identified in Moran’s I scatter plot. 

 

Table 1: The percentages of pixels belonging to different cluster classes falling into HH, LL, HL and LH 

zones of the LISA map for tumor MSI data shown in Figure 3.  

  Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cramer’s 

V* 

Image 1 HH 8.28% 23.5% 0.58% 5.75% 3.5% 0.501 

 LL 4.48% 4.92% 7.9% 5.26% 3.46% 

 HL 3.36% 7.85% 0.87% 2.68% 1.22%  

 LH 2.87% 5.46% 2.44% 2.58% 2.88%  

Image 2 HH 18.15% 13.34% 0.31% 2.98% 1.94% 0.643 

 LL 0.86% 9.39% 0.8% 7.49% 15.93% 

 HL 2.83% 8.5% 0.09% 1.6% 3.76%  

 LH 2.89% 3.57% 0.43% 2.1% 3.01%  

Image 3 HH 14.69% 13.55% 0.05% 5.77% 2.19% 0.463 

 LL 4.2% 11.57% 0.66% 9.22% 14.78% 

 HL 4.02% 7.19% 0.036% 1.56% 1.69%  

 LH 1.38% 2.65% 0.29% 1.79% 2.69%  

Image 4 HH 21.55% 17.09% 0.094% 1.95% 3.89% 0.69 

 LL 3.67% 1.91% 2.29% 6.2% 18.62% 

 HL 3.12% 2.20% 0.21% 1.93% 3.16%  

 LH 3.30% 3.44% 0.67% 1.4% 3.29%  

Image 5 HH 16.41% 20.53% 2.49% 4.2% 2.95% 0.601 

 LL 2.20% 3.10% 11.89% 2.33% 2.15% 



 HL 3.51% 4.43% 2.89% 1.43% 1.79%  

 LH 3.36% 5.99% 3.13% 2.74% 2.44%  

Image 6 HH 15.04% 23.57% 1.53% 0.99% 3.23% 0.62 

 LL 4.04% 4.12% 13.44% 2.05% 4.37% 

 HL 3.71% 6.59% 2.12% 1.19% 2.23%  

 LH 2.85% 3.64% 2.83% 0.98% 1.44%  

*Cramer’s Correlation is calculated between HH, LL zones of LISA map and unsupervised clusters.  

Figure 4:  Quantitative analysis to find the association between drug LISA maps and identified clusters 

from complete A2780-1A9 tumor MSI data. Here, each subplot highlights the fraction of pixels present 

in different zones of the LISA map under two treatment conditions. The red horizontal line in each 

subplot is a global mean value for pixel ratio for that particular zone.  With Beva: pre-treated with 

bevacizumab and without Beva: without pre-treatment with bevacizumab 

Ion signals selection from the identified clusters  

For variables selection, the performances of spatial (SE and SL) and non-spatial (OLS) methods were 

tested on synthetic spatially autocorrelated data. The SL method completely outperformed the other two 

methods (see Additional File 3); therefore, used for m/z values selection from unsupervised clusters 

identified in two MSI cancer datasets (Table 2). Note, cluster 4 identified in A2780-1A9 tumor data was 

present in a single tumor model and cluster 4 and 5 for HCT116 was present in very small fraction and 

did not follow any proper spatial structure , therefore those clusters were excluded from the ions selection 

step. The list of important ions is given in Additional file 9. In the A2780 cancer data, cluster 2 had 28 

ions showing a significant difference. In particular, the ion at m/z=335.41 had high intensity in all tumor 

models. The ion image of this particular ion showed a homogeneous distribution in the cluster (see 

Additional File 6 Figure S-1 top row). A larger number of significantly different ions was identified for 

cluster 3, mostly with low signal intensity.   



For the HCT116 MSI data, a large number of significant ions was identified in cluster 2 and 3.  In cluster 

3, the majority of ions had a high signal or positive regression coefficients in the spatial model, with the 

ion at m/z =281.315 showing the highest value. In cluster 2, ions with both high and low signals were 

present in equal portions (see Additional File 6 Figure S-1 bottom row).  

Table 2: The number of ion signals selected from different clusters in two tumor MSI data 

 Cluster 

type 

A2780 HCT116 

 1 26 22 

 2 28 83 

 3 91 70 

 5 35  

 

Discussion 

Several studies have shown that the tissue spatial heterogeneity within a solid tumor impacts on the drug 

distribution[2,10,12,30,46,47]. Different tissue characteristics and tumor microenvironment affect the 

drug distribution which means that the concentration of a drug at a given spatial location could be related 

to the tissue composition at that point. It is also true that the presence of the drug can induce a modification 

of the tumor structure[31], so in general, it is impossible to disentangle the two phenomena. In our case, 

the situation was fortunate since a part of the tumor-bearing mice had received bevacizumab treatment 

before drug (paclitaxel) treatment. Therefore, we assume that the observed differences in the spatial 

organization of tissue areas characterized by similar metabolic fingerprints can be interpreted as a direct 

or indirect effect of bevacizumab treatment which was given twice before drug injection.  This was also 

suggested by our previous study showing an increase in drug homogeneity in samples treated with 

bevacizumab[30]. The main goal of this research was to show that computational methods can be used to 



explore and quantify spatial heterogeneity within tumors and link the observed homo-/heterogeneous drug 

distribution to the alteration in microenvironment due to applied therapeutic strategy. To achieve these 

objectives, our data analysis involved a combination of methods from different research streams. First, 

the clustering of combined MSI data was performed using K-means with correlation distance and then 

those clusters were linked with drug distribution patterns obtained using the LISA method. As stated in 

the introduction, K-means clustering is efficiently being used in several studies performed on MSI data 

for the selection of relevant clusters[25–27]. Moreover, in another study, the authors also tested this 

method and compared it with several spatial methods, i.e., using simulated and real data and came to the 

same conclusion (unpublished observation). In the spatial data analysis field, a LISA map is a commonly 

known technique that identifies the spatially relevant clusters in a single two-dimensional 

image[21,22,43]. The LISA map provides an automated way to find spatially homogeneous clusters that 

are difficult to generate using a simple thresholding approach (see Additional File 8). Simple binary 

images were created using different threshold values. The images constructed with a threshold value of 

four show some resemblance with the LISA map (see Additional File 8). The binary images are not fully 

able to mimic the drug distribution profile. Moreover, the selection of the right threshold value from the 

drug ion image histogram is not very straightforward. In contrast, the LISA map is able to highlight the 

observed high and low intensity spatially homogeneous areas in drug ion images efficiently where for 

spatial weight matrix can be selected based on spatial correlogram. 

The clustering of MSI data was able to identify metabolic separated regions which cannot be observed in 

H&E stained tissue images[25]. This is clear if one compares the images shown in Figure 5.  The 

segmented image shows tissue subtypes in addition to the one which can be associated to the necrotic and 

fibrous regions on H&E stained image. The effect of the treatment with bevacizumab was visible in the 

segmented images.  In particular, the antiangiogenic compound was increasing homogeneity (both in the 

pattern of clusters and in the drug) even if no anti-angiogenesis treatment specific cluster was identified 

(Figure 2 and Additional File 4) Interestingly, these changes in distribution were  not affecting drug total 

concentration, which was approximately equal in the two treatment conditions (see Additional File 7). 



This confirmed the results of our previous publication[17] and our homogeneity assessment of clustered 

images (Figure 2 bottom right) that the tumor tissues from bevacizumab treatment are more homogeneous. 

Quantitative analysis of the LISA maps highlights the association between the drug distribution and the 

tissue metabolic fingerprint (Figure 4 and Additional File 5). In A2780-1A9 tumors, clusters 1 and 2 

overlap with the high-high homogeneous region of drug LISA map and cluster 2 was the most 

homogeneous (Figure 2- bottom right). For HCT116 tumors, clusters 1 and 3 showed some overlap with 

high-high zone, and cluster 3 was the one showing the higher homogeneity (see Additional File 5). 

Remarkably, the clusters associated with the HH and LL drug distribution regions are always the same, 

regardless of the pretreatment with bevacizumab, which is instead affecting the arrangement of the tissue 

subpopulations.  

In summary, in this paper, we provided a computational approach to understand the problem of drug 

homogeneity in association with tumor heterogeneity which validates the few conclusions made in 

previous studies. In addition, the proposed framework allowed to robustly select molecular signals which 

characterize the different tissue subpopulations which can be used to monitor the effects of therapeutic 

strategies on the tumor spatial heterogeneity. Considering that the focus of our investigation was 

methodological, we have not dealt with the identification of the characteristic ions, and this would require 

additional (and extensive) experimental efforts.   

 

Figure 5: Comparison of tumor tissue optical image (left column) with its clustered (middle column) and 

drug LISA (right column) image from two tumors MSI data (A2780-1A9, HCT116).  The black and red 

dots in H&E stained image represent the necrotic and fibrotic area, respectively. In the above figure, the 

optical images are adapted from scientific journal[10] published under CC BY license[48].  In the above 

LISA map HH (high-high), LL (low-low), HL (high-low), and LH (low-high) are zones identified in 

Moran’s I scatter plot.  



Conclusions  

In cancer research, one of the causes of drug therapy failure is tumor drug resistance often induced by 

scare drug penetration. This phenomenon is supposed to be linked to the presence of diverse tumor 

microenvironments which are difficult to identify with established histological techniques. In this work, 

we show that a molecular imaging technique like MSI, coupled with advanced data analysis strategies, 

offers a great opportunity to investigate the link between drug distribution and tissue heterogeneity. Our 

approach allowed to simultaneously investigate tissue histology and drug distribution and it was capable 

of detecting the effects on the tumor heterogeneity induced by a specific intervention (treatment with 

bevacizumab). We hope that the unsupervised approach proposed here will help oncologists to 

quantitatively evaluate the efficacy of therapeutic strategies.  
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Text S-1  

Moran index 

Moran’s I provides a global measure of spatial autocorrelation which is computed using the following 

formula1: 

𝐼 =  
𝑛

∑ (𝑦𝑖 − �̅�)2𝑛
𝑖=1

∑ ∑ 𝑤𝑖𝑗(𝑦𝑖 − �̅�)(𝑦𝑗 − �̅�)𝑛
𝑗=1

𝑛
𝑖=1

∑ ∑ 𝑤𝑖𝑗
𝑛
𝑗=1

𝑛
𝑖=1

 

where 𝑛 equals the total number of observations in the study area, 𝑦𝑖 is the value of the variable at site 

𝑖, 𝑦 is the mean value of the variable, 𝑤𝑖𝑗 represents the spatial weights. Moran’s I value is highly 

dependent upon spatial weight matrix 𝑤𝑖𝑗 description. One possibility of defining the neighbors (𝑤𝑖𝑗=1) 

is to use a distance threshold, for example, two sites are considered as neighbors if the distance between 

them is smaller than or equal to some threshold. If most similar observation lies next to each other then 

Moran’s I returns high spatial autocorrelation value which is close to 1 and vice-versa.  

Moran scatter plot  

Moran scatter plot provides a visual representation of spatial associations in the neighborhood around 

each observation[1]. It plots the original value of the observations on the horizontal axis and it’s spatially 

lagged or weighted version on the y-axis. Moran scatters plot contains four spatial regions or quadrants 

defined by the horizontal line y=0 and the vertical line x=0. Points in the upper right (or high-high) and 

lower left (or low-low) quadrants indicate positive spatial association that are the higher and lower than 

the sample mean, respectively. The lower right (or high-low) and upper left (or low-high) quadrants 

include observations that exhibit negative spatial association, i.e. little similarity to their neighboring 

ones.  Identify map regions based on Moran scatter plot collectively called as local indicators of spatial 

association (LISA)[2].  

Homogeneity index (HI) 

Homogeneity index (HI) formula, used to measure the homogeneous distribution of different tissue types 

in our clustered image, is based on our drug homogeneity index (DHI)[3] formula. Instead of summing 

the value across all grey-levels (as in original formula) we calculate the value for individual grey-level 

or cluster class using below formula: 

𝐻𝐼 =  
[∑ 𝑗𝑃(𝑖, 𝑗)

𝑁𝑧
𝑗=𝑁𝑢

]𝑖=1,..,𝑛

∑ ∑ 𝑃(𝑖, 𝑗)
𝑁𝑧
𝑗=𝑁𝑢

𝑛
𝑖=1

 

Here, 𝑃(𝑖, 𝑗) is the gray-level size-zone matrix (GLSZM) contains gray-levels or number of clusters (𝑛) 

for this particular study as rows and the size zones (𝑁𝑧) as columns. Numerator of 𝐻𝐼 shows 

homogeneity value for individual cluster class which is further normalized based on the size of GLSZM 

to get the contribution of the particular cluster in a given image.  

References 

(1)  Bivand, R. S.; Pebesma, E. J.; Gomez-Rubio, V. Applied Spatial Data Analysis with R; 

Springer New York: New York, NY, 2008. https://doi.org/10.1007/978-0-387-78171-6. 

(2)  Anselin, L. Local Indicators of Spatial Association-LISA. Geogr. Anal. 2010, 27 (2), 93–115. 

https://doi.org/10.1111/j.1538-4632.1995.tb00338.x. 

Click here to download Personal Cover AdditionalFile2.docx

https://www.editorialmanager.com/giga/download.aspx?id=95046&guid=0e30a950-a618-4913-921a-af61587742d7&scheme=1
https://www.editorialmanager.com/giga/download.aspx?id=95046&guid=0e30a950-a618-4913-921a-af61587742d7&scheme=1


(3)  Prasad, M.; Postma, G.; Morosi, L.; Giordano, S.; Giavazzi, R.; D’Incalci, M.; Falcetta, F.; 

Davoli, E.; Jansen, J.; Franceschi, P. Drug-Homogeneity Index in Mass-Spectrometry Imaging. 

Anal. Chem. 2018, 90 (22), 13257–13264. https://doi.org/10.1021/acs.analchem.8b01870. 

 


