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local spatial structures identified in drug ion LISA maps show a correlation with clusters
identified using a clustering method. Using the right spatial method, we were able to
reduce the number of false-positive ions selected and identified the one that shows
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that there is a direct association in drug homogeneity and spatial arrangement of
different tissue subtypes in a solid tumor.
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Response to Reviewers: Dear Editor.
We would like to thank the reviewers’ for their constructive comments and suggestions.
We are including a point-by-point discussion of their comments hereafter. We also
revised our manuscript accordingly wherever it was required. The R package from our
paper is online available and registered at bio.tools and Scicrunch (bio.tools:
corrdrugtumormsi, RRID : SCR_018962). We believe all these changes increase the
reproducibility of our paper and now is suitable to publish in the Gigascience journal.

Please consult the uploaded Personal Cover file 'EditorLetter.docx' for the response to
the reviewers with figures as additional support of our response and the Peronal Cover
file 'Fequency ofmolecularIonsInMSIdata.xlsx' with some data mentioned in our repose
to the reviewers.

Yours sincerely
Dr. Geert Postma

Reviewer #1:
Question 1.1 The authors present a computational method for identifying spatial
regions with molecularly distinct regions between control and drug therapy using
previously published data. The method is well described and paper is somewhat easy
to follow. The code and attached data was reviewed as well and appears clear and
would be easily translatable to other projects. A more formal implementation as an R
package would be desirable as the workflow is quite complex it would benefit to make
a more accessible API so less experienced users wouldn't get lost.
Answer: A R package is developed that includes all main methods from our paper
(bio.tools: corrdrugtumormsi, RRID : SCR_018962 ). Interested users can install our R-
package from the Github website and refer to vignette for the usage of different
functions in our package.

Question 1.2 For step 1 in the processing: How are 'drug' related peaks guaranteed to
be removed from the 'microenvironment' segmentation? In processing, it is mentioned
that ion peaks with correlation > 0.5 with the drug compound were removed. This
seems like it would bias the segmentation if the drug had a very discrete distribution in
a very particular histological region. One can imagine a scenario where a drug is
distributed in area "A" exclusively along with other endogenous compounds. These
endogenous compounds would be then be removed from the segmentation pipeline
simply because the drug was highly partitioned into this region. Could the peaks be
derived solely from undosed control tissue? Otherwise the authors statement may be
misleading.
Answer: We agree with the reviewer's comment that the selection of drug-related
peaks based on the correlation approach could give biased results. Unfortunately, in
our study, we only had one control MSI data set per cell line, and the selection and
removal of drug-related peaks based on a single animal also seem quite biased
approach. Therefore, we used a heuristic approach where we removed the peaks that
show more than 0.5 correlation with drug ion peak and also the peaks present in less
than 20% tumor tissue area. In this way, we expected to have not too many ions with
discrete distribution and ions with a high correlation with drug ion peak removed. We
have validated this approach, see below.
Drug-related peaks in control animal:
The ion intensity distribution of removed peaks in a control tissue from two tumor MSI
data (A2780-1A9, HCT116) is shown in Figure 1 (see Personal Cover file
'EditorLetter.docx' ). Since the control animal has not been treated with drug compound
we do not expect those removed peaks to be present in MSI data. But, unfortunately,
that is not the case, in the figure, the drug (284.12) and its isotopic peaks (285.155) are
completely absent in the control animal and other removed peaks are visible.
Therefore, it seems that the threshold of 0.5 we used in our study is quite low and we
need a much higher threshold to avoid removing non-drug-related peaks. On using a
correlation threshold of 0.9 only the drug isotopic peak is removed from our data,
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therefore instead of 0.5, we will recommend the minimum correlation threshold of 0.9 in
our paper.
Apart from the above analysis, we also checked whether specific peaks which could be
considered as drug-related peaks were absent in the control tumor MSI data but
present in the treated animal data. We did not notice such peaks. There were few
empty bins in the control MSI data but those bins are also empty in the majority of
treated animals. This observation was made for both tumor MSI datasets. See added
file ‘FrequencyofmoelcularIonsInMSIdata.xls’ where the count of the pixel with non-
zero ion-intensity value across all tumor models is given.
We also looked at the impact of the removed peaks on the segmentation results. An
impact of the removed peaks on the segmentation results is expected if the removed
peaks are related to a unique spatial structure. The correlation between removed and
other remaining peaks was calculated. All removed peaks (except for drug and its
isotopic peaks) show a high correlation with many other peaks. Therefore, we don’t
expect our segmentation results to be biased with our approach. This statement is
confirmed by the segmentation of the control tissue. The clustering of control MSI data
was performed in both scenarios: with and without drug-related peaks (Figure 2, see
Personal Cover file 'EditorLetter.docx' ) similar cluster structures were derived.

Figure 1, Figure 2, see Personal Cover file 'EditorLetter.docx'

Based on the analysis on control MSI data we agree with the reviewer that our
statement regarding the removal of drug-related peaks based on correlation >0.5 is not
sufficient therefore in the absence of control tissue a high correlation threshold (0.9)
should be used.

Question 1.3 The authors note that mass spectral validation of model-identified
differential ions is not possible and that is reasonable. In general, the spatial models
presented in the findings are compelling. However, as this paper deals with spatial
characterization of tissue, there appears to be no spatial validation. Indeed the obvious
choice of the gold standard in pathology, H&E microscopy, is present in Figure 5 but
the size of the images is so small it is negligible for spatial validation. Secondly, there
are numerous published MSI examples(DOI: 10.1021/jasms.8b04879,
doi:10.1074/mcp.O115.053918, https://doi.org/10.1038/srep36814) where there are
clean and distinct, immediate visual association of segmented MSI images to
histological regions in H&E, but here the segmentation doesn't seem to replicate much
of the structure visible in Figure 5, at least AS PRESENTED. This comment isn't to
push for models integrating H&E as an input but to have some qualitative result
describing
the types of cells present in the tumor regions associated with the major clusters. While
molecular histology is valid, it is unusual for it to not mimic classical histology.
Minor comments
All figures containing should have a scale bar indicating the physical dimension of the
images.

Answer: We agree with the reviewer's comment that there needs to be more evidence
regarding clusters identity and tissue types present in our dataset. However, the MSI
data used in this study was initially generated to understand drug homogeneity in
different types of solid tumors, and there was little histology-related work done to
identify the tissue types. At this stage histological informations available, like
proliferation/necrosis, vessels1 allowed us to correlate only what has been discussed
in the text. Future studies will be aimed at the validation of different clustering features
presented in this work with more specific, dedicated histological studies.
The reviewer's comment is correct that the optical image in Figure 5 does not show
proper correlation with our clustered images, therefore we will remove all images
except images 2 and 5 were necrosis region is visible both in the optical image and our
clustered images.

Small errors:
Introduction
* Techniques of election <- is not proper English. Perhaps 'A valuable technique' would
be less awkward.
Answer: modified accordingly.
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Reviewer #2:
This is an interesting paper addressing how MSI can be effectively used to better
understand the link between drug and the characteristics of malignant tissue. While it is
not surprising that the physicochemical properties of both the tissue and the drug are
important to passive tumor penetration and local exposure, MSI provides an important
opportunity to understand the spatial and temporal dynamics of this process, and the
development of effective computational workflows is vital. A few questions/suggestions
for the authors follow:

Question 2.1 To what extent can the most prominent histochemical changes occurring
post-bevacizumab treatment be captured by m/z range and other experimental settings
studied in this untargeted MSI experiment? Since it used a limited mass range, certain
important changes (e.g., in cell-surface protein expression, lipid membrane
composition, etc.) may not have been measured. The authors may have addressed
this question in their cited previous work, but it would be helpful to provide some
additional context.
Answer: We agree with the reviewer, our  MSI data cover a limited mass range where
we cannot see certain changes. However, the MSI data used in this study was initially
generated to understand drug homogeneity in different types of solid tumors, and there
was little histology-related work done to identify the tissue types. Our major focus, at
this stage was not in a comprehensive metabolite study, but in methodology
development. Future studies will be focussed, with more specific histology, on local
metabolic effects of drugs and larger mass range will be used¬¬¬

Question 2.2 Since the focus of this paper is methodology, evaluation of the approach
against known ground-truths is critical. In that regard, the efforts of the authors in
developing a synthetic dataset and evaluating the methods on it is appreciated. There
are a few ways that this assessment could be expanded to provide additional
information about the robustness of the workflow. For example, Additional File 3
includes plots showing the synthetic data and some of its characteristics, but to what
extent do the statistical properties of the synthetic data compare with those of real MSI
datasets? The SL method was recommended, but how sensitive is it to the selection of
the weight matrix? If it is sensitive, are there any recommendations for selecting the
weight matrix based on data characteristics? When bridging to the experimental data,
has the method been tested on MSI datasets (including synthetic ones) with available
complementary ground-truth labeling to help evaluate the extent to which identified
clusters map to known differences? It is mentioned that peaks that were present in less
than 20% of the tissue were removed to focus on more common ions. To place this
20% cutoff in context, what was the coverage area of the clusters identified? It seems
possible that this step may omit significant portions of tissue heterogeneity. For future
applications of this workflow, how should this cutoff threshold be selected? Overall,
how robust are the results/workflow recommendations to the choices of distance metric
and clustering index?
Answer:
a)MSI data is a type of spatial data where nearby observations are highly correlated
with each other. In our study, we had used the spatial autocorrelation function to
generate similar spatially autocorrelated synthetic data. In additional File 3, a spatial
correlogram plot from our synthetic data is presented, which is quite comparable with
the spatial correlogram of drug molecular ions from different tumor MSI data shown in
Additional File 5.
b)Yes, the results from spatial methods depend upon the selection of the spatial weight
matrix. We performed a small simulation study with MSI data. And, we included our
conclusion and recommendation in the discussion section, page 17.
c)In our study, we don’t have ground-truth labeling. Therefore it was not possible to
completely validate the identify clusters. The validation of identified clusters was
performed with H&E stained images shown in Additional File 5 where the necrosis
tissue present in the optical image shows similarity with clusters in the A2780-1A9 and
HCT116 data.
d)In our study, we discarded peaks with less than 20% coverage area, assuming that
they represent the noisy peaks and could influence our clustering algorithm. The
decision of discarding those peaks was based on multiple trials. For the removal of
peaks, we tried a threshold of 10%, 20%, and 30%. With a threshold of 10%, we
missed some noisy peaks and with 30% we excluded a few extra peaks in our data.
Therefore, a threshold of 20% seems a reasonable choice. Moreover, this step of peak
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removal was performed on each tumor MSI data separately. Therefore, unless
particular peaks were present as noise in all datasets, we do not expect them to be
completely removed from our input data for the clustering.

The range of different clusters size derived across all tumor models is shown in Table 1
below. In our MSI data, we have identified the clusters of size smaller than 20% of total
tumor tissue area which means after removing a fraction of peaks (which we assume
noise-related) we are still able to find spatially relevant smaller clusters.

Table 1. Range of different clusters size in two tumor MSI data.
Cluster 1Cluster 2Cluster 3Cluster 4Cluster 5
A2780Minimum size21262440224153
    Maximum size34292959169112703078
HCT116Minimum size337734558208186
    Maximum size83316741297682605

Question 2.3 Given the dose of the drug administered, how much exposure within the
tumor is expected based on pharmacology, and how might this affect the output? It
would also help to provide more explanation of Figure S1 in Additional File 7. In it, the
concentration (units undefined) of the drug in each cluster appears to be very similar,
across both cell lines and treatment arms; however, the comparison between the
clusters and the LISA maps appears to suggest differently. Also, interpretation of the
LISA maps of drug exposure in Figure 3 and the data in Table 1 in terms of histology is
briefly in the Discussion, but it would be helpful to expand on this.
Answer: For drug MSI data generation, the solid tumors were explanted from mice 6
hours after drug treatment. Therefore we do not expect dramatic changes in tissue
architecture due to the drug compound. Moreover, all tumor models have received
drug treatment, so if any metabolic change occurs, we expect it to be consistent across
all tumor MSI data.
Additional File 7, Figure 1, shows the average amount of drug in each cluster-type
under two treatment conditions. The drug average value in each cluster is further
normalized with the sum of the average drug in a particular treatment condition. Note,
this second step is performed simply to show the drug concentration in the range of 0-
1. Apart from that the average drug concentration profile from steps 1 and 2 is similar.

References
1.Cesca, M.; Morosi, L.; Berndt, A.; Fuso Nerini, I.; Frapolli, R.; Richter, P.; Decio, A.;
Dirsch, O.; Micotti, E.; Giordano, S.; et al. Bevacizumab-Induced Inhibition of
Angiogenesis Promotes a More Homogeneous Intratumoral Distribution of Paclitaxel,
Improving the Antitumor Response. Mol. Cancer Ther. 2016, 15 (1), 125–135.
https://doi.org/10.1158/1535-7163.MCT-15-0063.
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ABSTRACT: Mass spectrometry imaging (MSI) has become a valuable tool in drug imaging because of 

its ability to provide a simultaneous spatial distribution of the drug and several other molecular ions 

present in the biological sample. An important application is the evaluation of homogeneity/heterogeneity 

of drug distribution in solid tumors. Solid tumors are known to be made up of different tissue 

subpopulations and their heterogeneity is supposed to have a direct and/or indirect influence on drug 

distribution. Hence, for further enhancement of penetration therapy performance, it is important to link a 

characterization of the tumor microenvironment with drug homogeneity. In this study, untargeted MSI 

data were used to understand the spatial heterogeneity within solid tumors, assessing its impact on the 

drug (paclitaxel) distribution.  The proposed approach was applied on MSI datasets already analyzed, 

focusing on tumor drug distribution. Untargeted MSI datasets were collected on different tumor xenograft 

Manuscript Click here to access/download;Manuscript;Manuscript
withoutTrackChanges.docx

https://www.editorialmanager.com/giga/download.aspx?id=102842&guid=bde9e0e9-8cef-45b4-9b45-bc54dea365bd&scheme=1
https://www.editorialmanager.com/giga/download.aspx?id=102842&guid=bde9e0e9-8cef-45b4-9b45-bc54dea365bd&scheme=1


2 

 

models (ovarian and colon cancer cell lines) pre-treated or not with anti-angiogenesis compound 

(bevacizumab). Our main data analysis steps involved: a) pre-processing of MSI data to make all 

biological samples directly comparable, b) unsupervised data clustering to find different tissue subtypes, 

c) quantification of drug heterogeneity using local indicators of spatial association (LISA) map and d) 

selection of important ion signals from identified clusters of interest using the spatial -aware statistical 

tools. Our clustering results show variation in tumor subpopulations and less spatial heterogeneity in the 

MSI data collected on samples treated with the anti-angiogenesis compound consistently with our 

previous data.  The local spatial structures identified in drug ion LISA maps show a correlation with 

clusters identified using a clustering method. Using the right spatial method, we were able to reduce the 

number of false-positive ions selected and identified the one that shows relevant spatial patterns in 

different tissue subtypes. Finally, our overall study shows that there is a direct association in drug 

homogeneity and spatial arrangement of different tissue subtypes in a solid tumor.  

Introduction 

Heterogeneity of the tumor microenvironment directly affects drug penetration reducing the therapeutic 

efficacy and contributing to the development of resistance[1,2]. For the above-mentioned reasons, 

knowledge about tumor spatial heterogeneity is then of paramount importance to optimize therapeutic 

outcomes[3]. In order to understand the relation between drug distribution and tissue 

homogeneity/heterogeneity, an imaging technique able to investigate both phenomena simultaneously 

would be highly desirable[4].  

Mass spectrometry imaging (MSI) is a molecular imaging technique that provides simultaneous 

information about spatial localization of drugs and other small molecules present in the biological 

sample[5,6]. It is a valuable technique to characterize tumor tissue subtypes[7–9]and it is also applied to 

map the distribution of drugs within the tissue[10–13]. Untargeted MSI datasets provide unprecedented 

opportunities to understand the drug distribution in association with tissue heterogeneity. Several 

computational algorithms have been implemented on MSI data for the identification of tumor tissue 
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areas[7,8,14]and important molecular ions selection[8,15,16].  As far as our knowledge there is no work 

done that combines the tumor heterogeneity with a drug distribution profile. In a recent paper, we have 

proposed a new objective index (DHI)[17] to measure drug homogeneity in different MSI datasets and 

we aim at extending this work proposing a framework that can be used to investigate the relation between 

drug homogeneity and the observed tumor heterogeneity. The proposed approach encompasses the 

following steps.  

1. Identification of the different tissue sub-populations from an untargeted multi-sample MSI dataset 

(segmentation).  

2. Quantitative analysis of the spatial arrangement of the tissue subtypes across different samples. 

3. Extraction of discrete drug distribution maps.  

4. Matching of the segmented MSI dataset with the drug distribution maps. 

5. Selection of ion signals that can be used to differentiate specific tissue areas. 

Since the accessibility of a drug to a particular spatial location is expected to be linked to the metabolic 

and histological characteristics of the underlying tissues, multivariate unsupervised clustering was used 

to group the pixels into a limited number of groups which represent the different tissue 

subtypes[8,9,14,18–20] (Step 1). This step was performed after removing the drug-related peaks to avoid 

their influence in groups formation. The quantitative assessment of the spatial arrangement of the different 

clusters (Step 2) was performed by using a modified version of our DHI[17] index, which was optimized 

to characterize the spatial arrangement of the pixels on the clustered images. The local indicators of 

spatial association (LISA)[21,22] method was instead applied to create discrete drug distribution maps 

(Step 3). The association between LISA maps and identified segments was derived using Cramer’s[23] V 

method (Step 4). The identification of important ion signals able to differentiate the tissue subtypes was 

finally performed by using a spatial-aware statistical method that corrects for spatial autocorrelation[24] 

(Step 5). Since the application of these models in MSI is still uncommon, the optimal spatial model for 

biomarker selection was tested on a synthetic autocorrelated spatial dataset.  

In our study, the identification of tissue subpopulations was performed using K-means clustering with 

correlation distance. This non-spatial clustering method has already been used in many other MSI 
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research[25–27] and was able to efficiently extract relevant structures. The spatially relevant clusters in 

drug ion image were detected based on Moran’s scatter plot or LISA map. LISA map is a commonly used 

method in spatial statistics where pixels are grouped into different clusters (zones) based on their similar 

or different behavior with neighboring pixels[28,29]. The potential of the proposed approach was tested 

on the same datasets that we used in our previous work[17,30] which consisted of the MSI untargeted 

analysis of a set of different tumor xenograft models from ovarian (A2780) and colon (HCT116) cancer 

cell lines. The study was designed to assess the effect of an anti-angiogenesis compound (bevacizumab) 

on the drug (paclitaxel) distribution[30]. For this purpose, half of the animals were pretreated twice (5 

and 1 days before excision) with bevacizumab, before being administered with paclitaxel a few hours 

(six) before excision. Even if it is impossible to exclude that the anticancer drug could be responsible for 

the observed spatial heterogeneity in metabolic profile[31], any relevant difference between the two 

treatment groups is likely to be associated with the direct or indirect effect of bevacizumab.  

EXPERIMENTAL SECTION 

MSI datasets  

MSI data were derived from the tumor-bearing mice, treated with paclitaxel (60 mg/kg) alone or in 

combination with bevacizumab (two intraperitoneal injections at 150 μg per mouse). For mice experiment, 

IRFMN adheres to the principles set out in the following laws, regulations, and policies governing the 

care and use of laboratory animals: Italian Governing Law (D.lgs 26/2014; Authorization n.19/2008-A 

issued March 6, 2008 by Ministry of Health); Mario Negri Institutional Regulations and Policies providing 

internal authorization for persons conducting animal experiments (Quality Management System 

Certificate–UNI EN ISO 9001:2008 –Reg. N° 6121); the NIH Guide for the Care and Use of Laboratory 

Animals (2011 edition) and EU directives and guidelines (EEC Council Directive 2010/63/UE).   

The complete details of the experiment experiments described here.[12,17,30].  Briefly, tumors were 

collected, frozen in liquid nitrogen and prepared for MSI analysis. A MALDI 4800 TOF-TOF (AB 
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SCIEX, Old Connecticut Path, Framingham, MA) was used. And, mass spectra were recorded in full-

scan-profile mode over a limited mass range (m/z 199–500). Images of tissue sections were acquired using 

the 4800 Imaging Tool software with an imaging raster of 100 × 100 μm (pixel dimension of ca. 0.01 

mm2). The obtained dataset consisted of 131 349 (A2780) and 59 652 (HCT116) raw spectra from the 

tissue areas of all tumor models.   

MSI data pre-processing 

The initial data files in Analyze 7.5 format were opened in R[32] free software version 3.4.3 using the 

MALDIquant[33] package. Each MSI datafile contains mass spectra collected from both tumor tissue and 

a glass slide. To avoid any bias in pre-processing and data analysis steps, the mass spectra belonging to 

tumor tissue only were used. The identification of tumor tissue was performed by constructing a mask of 

the ion signal detected in the m/z = 281.1-281.44 range. This ion was confirmed to be a reliable tissue 

marker by visually comparing all MS images with their optical counterparts.  To correct for possible 

spectral misalignments across the different datasets, an adaptive binning approach was applied. To do 

this, first, a reference spectrum was created, which is a single maximum intensity spectrum of all the 

spectra. The main reasoning behind it is to acquire knowledge about the location and shape of all the ion 

peaks in our data and then optimize the bin size accordingly. Smoothing of the reference spectrum was 

performed by applying discrete wavelet transformation (Daubechies least asymmetric 8-tap filter with 

hard shrinkage) using a msDenoiseWavelet function from msProcess[34] R package. Peaks in the 

reference spectrum were identified by local maxima search above a certain threshold[17]. Initial bins were 

created based on those identified peaks. The bin size was further optimized on the bases of instrument 

characteristics merging together peaks showing a difference of less than 0.05m/z. To avoid that peaks are 

missed in low-intensity spectra, an extra bin of size 0.5 was added in the presence of a large gap between 

two identified peaks (especially towards the end of the spectra). The complete workflow of bin creation 

and maximum intensity spectra from two tumor MSI data are shown in Additional file 1.  
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After bin identification, each MSI data file was reopened and peak picking was performed using an 

approach similar to the one applied to the reference spectrum and the identified peaks were assigned to 

their corresponding bins. To focus only on the more common ions, peaks that were present in less than 

20% of the tissue area were removed. Peaks only present in a single tumor model were rejected. To remove 

spatial noise, median filtering with a window size of 3x3 pixels was performed on each extracted ion 

image. We also performed edge correction in the individual dataset, as marginal pixels have enormously 

high intensity due to the surface difference between tissue and glass slide[35]. image. To make the spectra 

collected on the different pixels comparable median normalization was performed. Generalized log 

transformation was performed as a variance stabilization step using LMGene[36] in R. A plausible batch 

effect between the slices of certain mouse models was  removed using the removeBatchEffect function 

from R limma[37] package. Ion peaks with correlation with the drug compound (paclitaxel) (>0.9 ) were 

removed before cluster analysis. The overall dimension of the final data matrix belonging to A2780 and 

HCT116 is equal to 131 349 x 173 and 59   652 x 155, respectively.  

MSI data analysis 

Unsupervised data clustering  

Segmentation of MSI data collected on the complete set of sections from a specific cell-line was 

performed by unsupervised bisect k-means clustering[38] using correlation as a similarity measure. The 

individual clusters were allowed to split further until the largest cluster contains 40% of the pixels included 

in the initial data matrix. The number of clusters at each step was selected based on the calinhara internal 

validity index[39]. The clustering and validation were implemented using R-packages amap[40] and 

fpc[41], respectively. The outcomes of segmentation for the different sample groups (cell lines and 

bevacizumab treatment) were analyzed based on the following parameters: a) size and b) homogeneity of 

the individual clusters. The homogeneity of the individual clusters was assessed by using a slightly 

modified version of the drug homogeneity index (DHI) (see Additional File 2). Higher cluster 
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homogeneity means the more continuous/homogeneous distribution of a particular tissue-type.  All these 

parameter values were normalized by the total number of pixels from the tumor models of each treatment 

condition. Statistical significance of pixel and homogeneity ratio under two treatment conditions was 

calculated using linear mixed models with the nlme[42] R-package.  

Quantification assessment of the drug distribution  

Spatial quantification of the drug heterogeneity was performed using the Moran’s I scatter plot[24], also 

known as the local indicators of spatial autocorrelation (LISA) map (see Additional File 2). This spatial-

aware method was selected because is expected to yield more robust results in the presence of the spatially 

autocorrelated drug signal.  

To create a Moran’s I scatter plot and/or LISA map required inputs are: original variable, spatially lagged 

variable and spatial weight matrix. The original variable in our case it is the ion intensity map of the drug 

peak.  The spatially lagged variable is constructed by multiplying the autoscaled version of the original 

variable with the help of the spatial weight matrix[24,43]. This weight matrix stores the connections 

between nearby observations (e.g. in a binary weight matrix the observations which lie within a certain 

range of autocorrelation receive a value of one else zero). The optimal range of autocorrelation can be 

decided based on spatial correlogram. A spatial correlogram[24] is a 2D plot where the spatial 

autocorrelation index (Moran’s I) is plotted as a function of lag distance where a positive value indicates 

the presence of autocorrelation within a certain distance range. To create a LISA map of a drug ion image 

the following steps were performed: 

● the optimal spatial weight matrix was created on the bases of the spatial correlogram plot (Figure 

1b).  

● the original variable was converted into its spatially lagged version (Figure 1c).  

● Moran’s I scatter plot was created by regressing the original variable against its spatially lagged 

version where pixels are grouped into four different zones usually called high-high, low-low, high-

low and low-high (Figure 1d).  

● Finally, a LISA map was constructed which is a two-dimensional image where pixels are labeled 

according to their class in Moran’s I scatter plot (Figure 1e).  
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Figure 1. A schematic workflow of drug LISA map creation. a) Original drug ion image. b) Spatial 

correlogram of the drug-ion image where Moran’s I values (Ac1) are plotted against the lag distance 

(dists). c) spatially lagged image of the drug-ion. d) Moran’s I scatter plot where the drug signal and its 

spatially lagged version are regressed against each other. e) LISA clustered map of the drug ion where 

pixels falling in the same quadrant of the Moran scatter plot are grouped. 

In a LISA map or Moran’s I scatter plot, the high-high zone contains pixels that have a high intensity or 

above-average value and surrounded by a similar type of high-intensity pixels. The low-low zone contains 

pixels that have a lower intensity or below-average value and surrounded by a similar type of low-intensity 

pixels. The high-low zone contains pixels that have above-average value for themselves but surrounded 

by neighbors with below-average value. The reverse rule applies to the pixels fall in the low-high zone. 

Note, in a LISA map pixels falling in high-high and low-low zones show positive spatial autocorrelation 

and are spatially smooth. Therefore, a single zone of a LISA map may contain multiple clusters with 

approximately similar profiles.  

 

Association between clustered image and drug LISA map 

The obtained drug LISA maps were analyzed for their association with the unsupervised clusters obtained 

using unsupervised clustering. A quantitative analysis was performed to understand which cluster 

subtypes overlap most with which zone of the LISA map, for which the fraction of pixels in different 

zones and clusters in each tumor model was calculated. Further, the strength of association between those 

two vector classes (LISA map zones and unsupervised clusters) was estimated using Cramer’s V[24] 

method. Cramer’s V is a statistical measure similar to the Pearson correlation to find the correlation 

between two nominal variables and returns a correlation value within the range of 0-1.  

 

Representative ion signals selection from the identified clusters  
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The method used to select representative ion signals from the identified clusters in the MSI data was first 

validated on synthetic spatially autocorrelated data. Two spatial approaches (spatial error model (SE), and 

spatial lag model (SL)) were compared with a standard non-spatial approach (ordinary least square 

(OLS)). Both spatial models[24,44] are modified versions of an OLS model and include spatial 

autocorrelation in a different component of the OLS model. The comparison of the performance of the 

above mentioned statistical methods with complete description of the synthetic data generation process is 

given in Additional File 3. 

All spatial models were fitted with the spdep[24] R package. Similar to what was done in the case of the 

LISA map, the right threshold for the spatial weight matrix was decided based on the spatial correlogram.  

In MSI data, the selection of ion signals from identified clusters was performed using the method which 

gives the best performance on our synthetic data. In order to do that, the outcomes of the original clustering 

were converted into a set of two-class images where each cluster is, in turn, compared with all the others. 

As the variables selection using the spatial method is computationally intensive, we only used a few tumor 

models in which the cluster of interest was present. Thus, per cluster five different tumor slices were 

selected, i.e. MSI data from 4 - 5 different tumor models. If a particular ion was found to be important in 

all five datasets, then it was considered as a significant ion signal for the respective cluster. The important 

ions were selected on the bases of the model p-values corrected for multiple testing by using the procedure 

of Benjamini & Hochberg[45].  

Results 

Unsupervised clustering of MSI data 

a) A2780 cell-line based MSI data 

The clustering method identified five unique clusters in the combined set of A2780  xenograft models 

(Figure 2 left). The majority of the replicates possess those five clusters in different ratios where clusters 

1 and 2 were predominant in all tumor models in both treatment conditions. The relative contribution of 
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cluster 3 is reduced and cluster 4 is enhanced in the presence of bevacizumab (Figure 2, top right). Cluster 

3 showed a high overlap with the necrosis area[12] and noticed to be present in a relatively higher fraction 

among the tumor models not pretreated with bevacizumab. The small fraction of cluster 5 is present in all 

tumor models.   

Similar to the number of pixels, the homogeneity of clusters (parameter b) for the individual tumors was 

calculated using the modified version of our DHI and it is shown in Figure 2, bottom right. The figure 

highlights the clear difference in clusters homogeneity under the two treatment conditions, especially for 

cluster 2. The homogeneity of cluster 2 in the presence of bevacizumab treatment is much higher than the 

homogeneity of any other cluster in two treatment conditions. Without bevacizumab treatment also tumor 

models show high homogeneity for cluster 2 followed by cluster 3.  

Figure 2: Cluster analysis of A2780 tumor MSI data generated in the presence and absence of 

bevacizumab treatment. Left: Representation of clusters detected by the k-means method. Right: Ratio of 

a) pixels and b) homogeneity calculated from individual clusters under two treatment conditions. The red 

horizontal line is the global mean value of pixel and homogeneity ratio. Here, Pixel ratio = Number of 

pixels in individual clusters/Total number of pixels from all tumor MSI data under particular treatment 

conditions.  Homogeneity ratio =Size-zone of individual clusters for a given tumor model/Total number 

of pixels in that particular tumor model. With Beva = pretreated with bevacizumab and Without Beva = 

without bevacizumab pretreatment.     

b) HCT116 cell-line based MSI data  

Five clusters were identified in the HCT116 tumor cell line MSI data (see Additional File 4). Similar to 

the A2780-1A9 tumor MSI data, there was not a large observed difference in clusters population under 

the two treatment conditions. Cluster 2 and 3 were predominantly present in all tumor models irrespective 

of the treatment conditions (see Additional File 4 Figure S-1 top right). Cluster 1 was observed in a 

moderate amount and very small fractions of clusters 4 and 5 were present in all tumor models. The 
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homogeneity assessment of the individual clusters in the two treatment conditions shows that cluster 3 

has high homogeneity in the case of bevacizumab treatment. In the absence of bevacizumab treatment, 

clusters 2 and 3 show more homogeneity (see Additional File 4 Figure S-1 bottom right).  

The statistical analysis of pixel and homogeneity ratio values was performed using a linear mixed model 

approach where range and p-value from both tumor models are given in Additional File 4 Table S-1. For 

the A2780-1A9 MSI data, the pixel ratios are not significantly different in the two treatment conditions. 

The homogeneity value of cluster 2 is close to significant which is derived with parameter 𝑁𝑢 = 5 in our 

homogeneity formula. In HCT116 MSI data, the number of pixels in cluster 1 and homogeneity ratio for 

cluster 2 is statistically significant in two treatment conditions. 

Association between clustered image and drug LISA map  

The spatially distinct regions based on observed drug distribution profiles were identified using LISA 

maps in all tumor models. The LISA map was created using the spatial weight matrix with an 

autocorrelation value equal to five since in spatial correlograms high positive spatial autocorrelation was 

observed within this range (see Additional File 5 S-1).   

A visual comparison of the clustered images and drug LISA maps confirms the link between the drug 

distribution profile and the underlying clusters (Figure 3). For example, homogeneously high drug 

distribution areas (high-high (HH) zone in the LISA map) are mostly associated to cluster type 1 and 2, 

while, homogeneously low drug distribution areas (low-low (LL) zone in the LISA map) correspond to 

cluster type 3 and 5 (Table 1). The observed association between cluster types and the different zones of 

the LISA map is irrespective of treatment condition across all tumor models (Figure 4). 

Similar observations were made from HCT116 tumor MSI data (see Additional File 5). In HCT116 MSI 

data, clusters 1,2 and 3 show clear overlapping with spatially homogeneous zones of the LISA maps. The 

cluster 1 and 3 overlapped with high drug concentration areas in the tissue and cluster 2 with low drug 

concentration areas (see Additional File 5). The association between cluster 2 and low drug concentration 
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areas in the LISA maps is more clear for HCT116 data than for A2780-1A9 data (Additional File 5 Table 

S-1).  

The statistical correlation between the clustered image and drug LISA map was calculated using Cramer’s 

V method. A very small fraction of pixels falls within high-low and low-high zones of the LISA map. 

Therefore, the Cramer’s V is calculated between HH, LL zones of LISA map with unsupervised clustered 

classes. For both tumor MSI data, the Cramer’s value across all tumor models was found to be within the 

range of 0.5 -0.8 (see Additional File 5 Table S-1) that confirmed the dependency of the drug on different 

tumor tissue areas.  

  

Figure 3: Individual clustered image (first column), LISA map (second column) and their combination 

are shown for few tumor models from A2780-1A9 MSI data.  The clusters found in high-high (HH), low-

low (LL), high-low (HL), and low-high (LH) zones of LISA map are highlighted. In LISA map, HH, LL, 

HL, and LH are zones identified in Moran’s I scatter plot. 

 

Table 1: The percentages of pixels belonging to different cluster classes falling into HH, LL, HL and LH 

zones of the LISA map for tumor MSI data shown in Figure 3.  

  Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cramer’s 

V* 

Image 1 HH 8.28% 23.5% 0.58% 5.75% 3.5% 0.501 

 LL 4.48% 4.92% 7.9% 5.26% 3.46% 

 HL 3.36% 7.85% 0.87% 2.68% 1.22%  

 LH 2.87% 5.46% 2.44% 2.58% 2.88%  

Image 2 HH 18.15% 13.34% 0.31% 2.98% 1.94% 0.643 
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 LL 0.86% 9.39% 0.8% 7.49% 15.93% 

 HL 2.83% 8.5% 0.09% 1.6% 3.76%  

 LH 2.89% 3.57% 0.43% 2.1% 3.01%  

Image 3 HH 14.69% 13.55% 0.05% 5.77% 2.19% 0.463 

 LL 4.2% 11.57% 0.66% 9.22% 14.78% 

 HL 4.02% 7.19% 0.036% 1.56% 1.69%  

 LH 1.38% 2.65% 0.29% 1.79% 2.69%  

Image 4 HH 21.55% 17.09% 0.094% 1.95% 3.89% 0.69 

 LL 3.67% 1.91% 2.29% 6.2% 18.62% 

 HL 3.12% 2.20% 0.21% 1.93% 3.16%  

 LH 3.30% 3.44% 0.67% 1.4% 3.29%  

Image 5 HH 16.41% 20.53% 2.49% 4.2% 2.95% 0.601 

 LL 2.20% 3.10% 11.89% 2.33% 2.15% 

 HL 3.51% 4.43% 2.89% 1.43% 1.79%  

 LH 3.36% 5.99% 3.13% 2.74% 2.44%  

Image 6 HH 15.04% 23.57% 1.53% 0.99% 3.23% 0.62 

 LL 4.04% 4.12% 13.44% 2.05% 4.37% 

 HL 3.71% 6.59% 2.12% 1.19% 2.23%  

 LH 2.85% 3.64% 2.83% 0.98% 1.44%  

*Cramer’s Correlation is calculated between HH, LL zones of LISA map and unsupervised clusters.  

Figure 4:  Quantitative analysis to find the association between drug LISA maps and identified clusters 

from complete A2780-1A9 tumor MSI data. Here, each subplot highlights the fraction of pixels present 

in different zones of the LISA map under two treatment conditions. The red horizontal line in each 

subplot is a global mean value for pixel ratio for that particular zone.  With Beva: pre-treated with 

bevacizumab and without Beva: without pre-treatment with bevacizumab 
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Ion signals selection from the identified clusters  

For variables selection, the performances of spatial (SE and SL) and non-spatial (OLS) methods were 

tested on synthetic spatially autocorrelated data. The SL method completely outperformed the other two 

methods (see Additional File 3); therefore, used for m/z values selection from unsupervised clusters 

identified in two MSI cancer datasets (Table 2). Note, cluster 4 identified in A2780-1A9 tumor data was 

present in a single tumor model and cluster 4 and 5 for HCT116 was present in very small fraction and 

did not follow any proper spatial structure , therefore those clusters were excluded from the ions selection 

step. The list of important ions is given in Additional file 9. In the A2780 cancer data, cluster 2 had 28 

ions showing a significant difference. In particular, the ion at m/z=335.41 had high intensity in all tumor 

models. The ion image of this particular ion showed a homogeneous distribution in the cluster (see 

Additional File 6 Figure S-1 top row). A larger number of significantly different ions was identified for 

cluster 3, mostly with low signal intensity.   

For the HCT116 MSI data, a large number of significant ions was identified in cluster 2 and 3.  In cluster 

3, the majority of ions had a high signal or positive regression coefficients in the spatial model, with the 

ion at m/z =281.315 showing the highest value. In cluster 2, ions with both high and low signals were 

present in equal portions (see Additional File 6 Figure S-1 bottom row).  

Table 2: The number of ion signals selected from different clusters in two tumor MSI data 

 Cluster 

type 

A2780 HCT116 

 1 26 22 

 2 28 83 

 3 91 70 
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 5 35  

 

Discussion 

Several studies have shown that the tissue spatial heterogeneity within a solid tumor impacts on the drug 

distribution[2,10,12,30,46,47]. Different tissue characteristics and tumor microenvironment affect the 

drug distribution which means that the concentration of a drug at a given spatial location could be related 

to the tissue composition at that point. It is also true that the presence of the drug can induce a modification 

of the tumor structure[31], so in general, it is impossible to disentangle the two phenomena. In our case, 

the situation was fortunate since a part of the tumor-bearing mice had received bevacizumab treatment 

before drug (paclitaxel) treatment. Therefore, we assume that the observed differences in the spatial 

organization of tissue areas characterized by similar metabolic fingerprints can be interpreted as a direct 

or indirect effect of bevacizumab treatment which was given twice before drug injection.  This was also 

suggested by our previous study showing an increase in drug homogeneity in samples treated with 

bevacizumab[30]. The main goal of this research was to show that computational methods can be used to 

explore and quantify spatial heterogeneity within tumors and link the observed homo-/heterogeneous drug 

distribution to the alteration in microenvironment due to applied therapeutic strategy. To achieve these 

objectives, our data analysis involved a combination of methods from different research streams. First, 

the clustering of combined MSI data was performed using K-means with correlation distance and then 

those clusters were linked with drug distribution patterns obtained using the LISA method. As stated in 

the introduction, K-means clustering is efficiently being used in several studies performed on MSI data 

for the selection of relevant clusters[25–27]. Moreover, in another study, the authors also tested this 

method and compared it with several spatial methods, i.e., using simulated and real data and came to the 

same conclusion (unpublished observation). In the spatial data analysis field, a LISA map is a commonly 

known technique that identifies the spatially relevant clusters in a single two-dimensional 
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image[21,22,43]. The LISA map provides an automated way to find spatially homogeneous clusters that 

are difficult to generate using a simple thresholding approach (see Additional File 8). Simple binary 

images were created using different threshold values. The images constructed with a threshold value of 

four show some resemblance with the LISA map (see Additional File 8). The binary images are not fully 

able to mimic the drug distribution profile. Moreover, the selection of the right threshold value from the 

drug ion image histogram is not very straightforward. In contrast, the LISA map is able to highlight the 

observed high and low intensity spatially homogeneous areas in drug ion images efficiently where for 

spatial weight matrix can be selected based on spatial correlogram. 

The clustering of MSI data was able to identify metabolic separated regions which cannot be observed in 

H&E stained tissue images[25]. This is clear if one compares the images shown in Figure 5.  The 

segmented image shows tissue subtypes in addition to the one which can be associated to the necrotic and 

fibrous regions on H&E stained image. The effect of the treatment with bevacizumab was visible in the 

segmented images.  In particular, the antiangiogenic compound was increasing homogeneity (both in the 

pattern of clusters and in the drug) even if no anti-angiogenesis treatment specific cluster was identified 

(Figure 2 and Additional File 4). Interestingly, the average drug concentration in the individual clusters 

under the two treatment conditions is approximately equal (see Additional File 7). This confirmed the 

results of our previous publication[17] and our homogeneity assessment of clustered images (Figure 2 

bottom right) that the tumor tissues from bevacizumab treatment are more homogeneous. 

Quantitative analysis of the LISA maps shows the dependency of the observed drug distribution profiles 

and the underlying tissue-types  (Figure 4 and Additional File 5). In A2780-1A9 tumors, clusters 1 and 2  

have a high affinity for the  drug and while clusters 3 and 5 show a lower than the average drug 

concentration (Figure 4 and Table 1).   

For HCT116 tumors, clusters 1 and 3 showed some overlap with the high-high zone, and cluster 2 with 

the  low-low zone (see Additional File 5). Remarkably, the clusters associated with the HH and LL drug 



17 

 

distribution regions are always the same, regardless of the pretreatment with bevacizumab, which is 

instead affecting the arrangement of the tissue subpopulations.  

The dependency of spatial methods on the spatial weight matrix 

Two commonly known spatial methods (LISA map and spatial lagged regression) were used in our study 

to find the spatially homogeneous clusters and spatially relevant ions from different clusters, respectively. 

Both spatial methods required the spatial weight matrix as an input. Therefore, the dependency of results 

on the spatial weight matrix was tested (see Additional File 10 and 11). The variables selection was 

performed using the SL method for a range of autocorrelation or lag distance values (1-15) in the spatial 

weight matrix in tumor MSI data (see Additional File 10). The SL method selects mostly the same 

molecular ions at different lag distance values. All variables selected have positive Moran’s I value at the 

above-mentioned autocorrelation range. Therefore, based on our analysis of MSI data we had not noticed 

the dependency of the SL method on the spatial weight matrix. A similar observation was made when this 

analysis was performed on synthetic data (see Additional File 3). In the case of our synthetic data, the 

accuracy of SL starts decreasing after a lag distance of 6 since some false positive selection was observed, 

but sensitivity remains constant as the true variables were all selected. However, in the case of real MSI 

data, this type of plot is not feasible. Therefore we looked at Moran’s spatial autocorrelation value of all 

selected variables (see Additional File 10). After the lag distance of 5 the Moran’s I value of the selected 

variables starts to approach zero. Therefore, even though in our analysis the list of molecular ions was 

mostly consistent we will not recommend going beyond the lag distance of 5, as at such large 

autocorrelation range we may start including some noisy variables in our list. 

A similar approach is used to test the dependency of a LISA map on the spatial weight matrix. The LISA 

map of the drug ion image for a particular tumor tissue was constructed with different spatial weight 

matrices (see Additional File 10). The LISA map created with the lag distance of one contains large 

homogenous areas (LL and HH). On the increasing the lag distance, the pixels from different areas start 
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mixing, i.e. the size of HL and LH regions gradually start increasing and the LISA map becomes less 

reliable. Therefore similar to the spatial regression method, the spatial weight matrix with a maximum lag 

distance of 5 is preferable for a LISA map.    

 

In summary, in this paper, we provide a computational approach to understand the problem of drug 

homogeneity in association with tumor heterogeneity which validates the few conclusions made in 

previous studies. We provide a complete workflow of data pre-processing of MSI data, the association 

between the drug and identified clusters, and the selection of molecular from identified clusters. In our 

paper, we have used different methods to get different pieces of information. The dependency of spatial 

methods on the spatial weight matrix is discussed above. Apart from that, if the user wants to use our 

approach on their MSI data, they also need to consider the parameters used in our studies, such as peak 

removal with less than 20% coverage area and the clustering index. In our case, before setting a 20% 

threshold we tried a 10 -30% threshold to be sure if the majority of noisy peaks have been removed and 

no other important peaks. A similar task was performed during the clustering of MSI data. The number 

of clusters was selected using the internal clustering index method but the stopping criteria in bisect 

clustering (40%) was set according to our data dimension and the number of expected clusters in our MSI 

data. If the MSI data contain very small spatial structures than this threshold needs to be reduced. In 

general, we believe that our paper completes the pipeline for the analysis of untargeted drug MSI data and 

will be useful for the groups working with a similar problem. A R pipeline includes all the methods from 

our papers is online available (RRID: SCR 018962, bio.tools: corrdrugtumormsi)    

 

Figure 5: Comparison of tumor tissue optical images (rightcolumn) with its clustered image (left column) 

from two tumor MSI data (A2780-1A9, HCT116).  The black and red dots in the H&E stained images 
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represent the necrotic and fibrotic area, respectively. The optical images are adapted from a scientific 

journal[10] published under CC BY license[48].   

Conclusions  

In cancer research, one of the causes of drug therapy failure is tumor drug resistance often induced by 

scare drug penetration. This phenomenon is supposed to be linked to the presence of diverse tumor 

microenvironments which are difficult to identify with established histological techniques. In this work, 

we show that a molecular imaging technique like MSI, coupled with advanced data analysis strategies, 

offers a great opportunity to investigate the link between drug distribution and tissue heterogeneity. Our 

approach allowed to simultaneously investigate tissue histology and drug distribution and it was capable 

of detecting the effects on the tumor heterogeneity induced by a specific intervention (treatment with 

bevacizumab). We hope that the unsupervised approach proposed here will help oncologists to 

quantitatively evaluate the efficacy of therapeutic strategies.  
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ABSTRACT: Mass spectrometry imaging (MSI) has become a valuable tool in drug imaging because of 

its ability to provide a simultaneous spatial distribution of the drug and several other molecular ions 

present in the biological sample. An important application is the evaluation of homogeneity/heterogeneity 

of drug distribution in solid tumors. Solid tumors are known to be made up of different tissue 

subpopulations and their heterogeneity is supposed to have a direct and/or indirect influence on drug 

distribution. Hence, for further enhancement of penetration therapy performance, it is important to link a 

characterization of the tumor microenvironment with drug homogeneity. In this study, untargeted MSI 

data were used to understand the spatial heterogeneity within solid tumors, assessing its impact on the 

drug (paclitaxel) distribution.  The proposed approach was applied on MSI datasets already analyzed, 

focusing on tumor drug distribution. Untargeted MSI datasets were collected on different tumor xenograft 
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models (ovarian and colon cancer cell lines) pre-treated or not with anti-angiogenesis compound 

(bevacizumab). Our main data analysis steps involved: a) pre-processing of MSI data to make all 

biological samples directly comparable, b) unsupervised data clustering to find different tissue subtypes, 

c) quantification of drug heterogeneity using local indicators of spatial association (LISA) map and d) 

selection of important ion signals from identified clusters of interest using the spatial -aware statistical 

tools. Our clustering results show variation in tumor subpopulations and less spatial heterogeneity in the 

MSI data collected on samples treated with the anti-angiogenesis compound consistently with our 

previous data.  The local spatial structures identified in drug ion LISA maps show a correlation with 

clusters identified using a clustering method. Using the right spatial method, we were able to reduce the 

number of false-positive ions selected and identified the one that shows relevant spatial patterns in 

different tissue subtypes. Finally, our overall study shows that there is a direct association in drug 

homogeneity and spatial arrangement of different tissue subtypes in a solid tumor.  

Introduction 

Heterogeneity of the tumor microenvironment directly affects drug penetration reducing the therapeutic 

efficacy and contributing to the development of resistance[1,2]. For the above-mentioned reasons, 

knowledge about tumor spatial heterogeneity is then of paramount importance to optimize therapeutic 

outcomes[3]. In order to understand the relation between drug distribution and tissue 

homogeneity/heterogeneity, an imaging technique able to investigate both phenomena simultaneously 

would be highly desirable[4].  

Mass spectrometry imaging (MSI) is a molecular imaging technique that provides simultaneous 

information about spatial localization of drugs and other small molecules present in the biological 

sample[5,6]. It is a valuable technique one of the techniques of election to characterize tumor tissue 

subtypes[7–9]and it is also applied to map the distribution of drugs within the tissue[10–13]. Untargeted 

MSI datasets provide unprecedented opportunities to understand the drug distribution in association with 

tissue heterogeneity. Several computational algorithms have been implemented on MSI data for the 



3 

 

identification of tumor tissue areas[7,8,14]and important molecular ions selection[8,15,16].  As far as our 

knowledge there is no work done that combines the tumor heterogeneity with a drug distribution profile. 

In a recent paper, we have proposed a new objective index (DHI)[17] to measure drug homogeneity in 

different MSI datasets and we aim at extending this work proposing a framework that can be used to 

investigate the relation between drug homogeneity and the observed tumor heterogeneity. The proposed 

approach encompasses the following steps.  

1. Identification of the different tissue sub-populations from an untargeted multi-sample MSI dataset 

(segmentation).  

2. Quantitative analysis of the spatial arrangement of the tissue subtypes across different samples. 

3. Extraction of discrete drug distribution maps.  

4. Matching of the segmented MSI dataset with the drug distribution maps. 

5. Selection of ion signals that can be used to differentiate specific tissue areas. 

Since the accessibility of a drug to a particular spatial location is expected to be linked to the metabolic 

and histological characteristics of the underlying tissues, multivariate unsupervised clustering was used 

to group the pixels into a limited number of groups which represent the different tissue 

subtypes[8,9,14,18–20] (Step 1). This step was performed after removing the drug-related peaks to avoid 

their influence in groups formation. The quantitative assessment of the spatial arrangement of the different 

clusters (Step 2) was performed by using a modified version of our DHI[17] index, which was optimized 

to characterize the spatial arrangement of the pixels on the clustered images. The local indicators of 

spatial association (LISA)[21,22] method was instead applied to create discrete drug distribution maps 

(Step 3). The association between LISA maps and identified segments was derived using Cramer’s[23] V 

method (Step 4). The identification of important ion signals able to differentiate the tissue subtypes was 

finally performed by using a spatial-aware statistical method that corrects for spatial autocorrelation[24] 

(Step 5). Since the application of these models in MSI is still uncommon, the optimal spatial model for 

biomarker selection was tested on a synthetic autocorrelated spatial dataset.  

In our study, the identification of tissue subpopulations was performed using K-means clustering with 

correlation distance. This non-spatial clustering method has already been used in many other MSI 
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research[25–27] and was able to efficiently extract relevant structures. The spatially relevant clusters in 

drug ion image were detected based on Moran’s scatter plot or LISA map. LISA map is a commonly used 

method in spatial statistics where pixels are grouped into different clusters (zones) based on their similar 

or different behavior with neighboring pixels[28,29]. The potential of the proposed approach was tested 

on the same datasets that we used in our previous work[17,30] which consisted of the MSI untargeted 

analysis of a set of different tumor xenograft models from ovarian (A2780) and colon (HCT116) cancer 

cell lines. The study was designed to assess the effect of an anti-angiogenesis compound (bevacizumab) 

on the drug (paclitaxel) distribution[30]. For this purpose, half of the animals were pretreated twice (5 

and 1 days before excision) with bevacizumab, before being administered with paclitaxel a few hours 

(six) before excision. Even if it is impossible to exclude that the anticancer drug could be responsible for 

the observed spatial heterogeneity in metabolic profile[31], any relevant difference between the two 

treatment groups is likely to be associated with the direct or indirect effect of bevacizumab.  

EXPERIMENTAL SECTION 

MSI datasets  

MSI data were derived from the tumor-bearing mice, treated with paclitaxel (60 mg/kg) alone or in 

combination with bevacizumab (two intraperitoneal injections at 150 μg per mouse). For mice experiment, 

IRFMN adheres to the principles set out in the following laws, regulations, and policies governing the 

care and use of laboratory animals: Italian Governing Law (D.lgs 26/2014; Authorization n.19/2008-A 

issued March 6, 2008 by Ministry of Health); Mario Negri Institutional Regulations and Policies providing 

internal authorization for persons conducting animal experiments (Quality Management System 

Certificate–UNI EN ISO 9001:2008 –Reg. N° 6121); the NIH Guide for the Care and Use of Laboratory 

Animals (2011 edition) and EU directives and guidelines (EEC Council Directive 2010/63/UE).   

The complete details of the experiment experiments described here.[12,17,30].  Briefly, tumors were 

collected, frozen in liquid nitrogen and prepared for MSI analysis. A MALDI 4800 TOF-TOF (AB 
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SCIEX, Old Connecticut Path, Framingham, MA) was used. And, mass spectra were recorded in full-

scan-profile mode over a limited mass range (m/z 199–500). Images of tissue sections were acquired using 

the 4800 Imaging Tool software with an imaging raster of 100 × 100 μm (pixel dimension of ca. 0.01 

mm2). The obtained dataset consisted of 131 349 (A2780) and 59 652 (HCT116) raw spectra from the 

tissue areas of all tumor models.   

MSI data pre-processing 

The initial data files in Analyze 7.5 format were opened in R[32] free software version 3.4.3 using the 

MALDIquant[33] package. Each MSI datafile contains mass spectra collected from both tumor tissue and 

a glass slide. To avoid any bias in pre-processing and data analysis steps, the mass spectra belonging to 

tumor tissue only were used. The identification of tumor tissue was performed by constructing a mask of 

the ion signal detected in the m/z = 281.1-281.44 range. This ion was confirmed to be a reliable tissue 

marker by visually comparing all MS images with their optical counterparts.  To correct for possible 

spectral misalignments across the different datasets, an adaptive binning approach was applied. To do 

this, first, a reference spectrum was created, which is a single maximum intensity spectrum of all the 

spectra. The main reasoning behind it is to acquire knowledge about the location and shape of all the ion 

peaks in our data and then optimize the bin size accordingly. Smoothing of the reference spectrum was 

performed by applying discrete wavelet transformation (Daubechies least asymmetric 8-tap filter with 

hard shrinkage) using a msDenoiseWavelet function from msProcess[34] R package. Peaks in the 

reference spectrum were identified by local maxima search above a certain threshold[17]. Initial bins were 

created based on those identified peaks. The bin size was further optimized on the bases of instrument 

characteristics merging together peaks showing a difference of less than 0.05m/z. To avoid that peaks are 

missed in low-intensity spectra, an extra bin of size 0.5 was added in the presence of a large gap between 

two identified peaks (especially towards the end of the spectra). The complete workflow of bin creation 

and maximum intensity spectra from two tumor MSI data are shown in Additional file 1.  
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After bin identification, each MSI data file was reopened and peak picking was performed using an 

approach similar to the one applied to the reference spectrum and the identified peaks were assigned to 

their corresponding bins. To focus only on the more common ions, peaks that were present in less than 

20% of the tissue area were removed. Peaks only present in a single tumor model were rejected. To remove 

spatial noise, median filtering with a window size of 3x3 pixels was performed on each extracted ion 

image. We also performed edge correction in the individual dataset, as marginal pixels have enormously 

high intensity due to the surface difference between tissue and glass slide[35]. image. To make the spectra 

collected on the different pixels comparable median normalization was performed. Generalized log 

transformation was performed as a variance stabilization step using LMGene[36] in R. A plausible batch 

effect between the slices of certain mouse models was  removed using the removeBatchEffect function 

from R limma[37] package. Ion peaks with correlation with the drug compound (paclitaxel) (>0.9 0.5) 

were removed before cluster analysis. The overall dimension of the final data matrix belonging to A2780 

and HCT116 is equal to 131 349 x 173 and 59   652 x 155, respectively.  

MSI data analysis 

Unsupervised data clustering  

Segmentation of MSI data collected on the complete set of sections from a specific cell-line was 

performed by unsupervised bisect k-means clustering[38] using correlation as a similarity measure. The 

individual clusters were allowed to split further until the largest cluster contains 40% of the pixels included 

in the initial data matrix. The number of clusters at each step was selected based on the calinhara internal 

validity index[39]. The clustering and validation were implemented using R-packages amap[40] and 

fpc[41], respectively. The outcomes of segmentation for the different sample groups (cell lines and 

bevacizumab treatment) were analyzed based on the following parameters: a) size and b) homogeneity of 

the individual clusters. The homogeneity of the individual clusters was assessed by using a slightly 

modified version of the drug homogeneity index (DHI) (see Additional File 2). Higher cluster 
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homogeneity means the more continuous/homogeneous distribution of a particular tissue-type.  All these 

parameter values were normalized by the total number of pixels from the tumor models of each treatment 

condition. Statistical significance of pixel and homogeneity ratio under two treatment conditions was 

calculated using linear mixed models with the nlme[42] R-package.  

Quantification assessment of the drug distribution  

Spatial quantification of the drug heterogeneity was performed using the Moran’s I scatter plot[24], also 

known as the local indicators of spatial autocorrelation (LISA) map (see Additional File 2). This spatial-

aware method was selected because is expected to yield more robust results in the presence of the spatially 

autocorrelated drug signal.  

To create a Moran’s I scatter plot and/or LISA map required inputs are: original variable, spatially lagged 

variable and spatial weight matrix. The original variable in our case it is the ion intensity map of the drug 

peak.  The spatially lagged variable is constructed by multiplying the autoscaled version of the original 

variable with the help of the spatial weight matrix[24,43]. This weight matrix stores the connections 

between nearby observations (e.g. in a binary weight matrix the observations which lie within a certain 

range of autocorrelation receive a value of one else zero). The optimal range of autocorrelation can be 

decided based on spatial correlogram. A spatial correlogram[24] is a 2D plot where the spatial 

autocorrelation index (Moran’s I) is plotted as a function of lag distance where a positive value indicates 

the presence of autocorrelation within a certain distance range. To create a LISA map of a drug ion image 

the following steps were performed: 

● the optimal spatial weight matrix was created on the bases of the spatial correlogram plot (Figure 

1b).  

● the original variable was converted into its spatially lagged version (Figure 1c).  

● Moran’s I scatter plot was created by regressing the original variable against its spatially lagged 

version where pixels are grouped into four different zones usually called high-high, low-low, high-

low and low-high (Figure 1d).  

● Finally, a LISA map was constructed which is a two-dimensional image where pixels are labeled 

according to their class in Moran’s I scatter plot (Figure 1e).  
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Figure 1. A schematic workflow of drug LISA map creation. a) Original drug ion image. b) Spatial 

correlogram of the drug-ion image where Moran’s I values (Ac1) are plotted against the lag distance 

(dists). c) spatially lagged image of the drug-ion. d) Moran’s I scatter plot where the drug signal and its 

spatially lagged version are regressed against each other. e) LISA clustered map of the drug ion where 

pixels falling in the same quadrant of the Moran scatter plot are grouped. 

In a LISA map or Moran’s I scatter plot, the high-high zone contains pixels that have a high intensity or 

above-average value and surrounded by a similar type of high-intensity pixels. The low-low zone contains 

pixels that have a lower intensity or below-average value and surrounded by a similar type of low-intensity 

pixels. The high-low zone contains pixels that have above-average value for themselves but surrounded 

by neighbors with below-average value. The reverse rule applies to the pixels fall in the low-high zone. 

Note, in a LISA map pixels falling in high-high and low-low zones show positive spatial autocorrelation 

and are spatially smooth. Therefore, a single zone of a LISA map may contain multiple clusters with 

approximately similar profiles.  

 

Association between clustered image and drug LISA map 

The obtained drug LISA maps were analyzed for their association with the unsupervised clusters obtained 

using unsupervised clustering. A quantitative analysis was performed to understand which cluster 

subtypes overlap most with which zone of the LISA map, for which the fraction of pixels in different 

zones and clusters in each tumor model was calculated. Further, the strength of association between those 

two vector classes (LISA map zones and unsupervised clusters) was estimated using Cramer’s V[24] 

method. Cramer’s V is a statistical measure similar to the Pearson correlation to find the correlation 

between two nominal variables and returns a correlation value within the range of 0-1.  

 

Representative ion signals selection from the identified clusters  
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The method used to select representative ion signals from the identified clusters in the MSI data was first 

validated on synthetic spatially autocorrelated data. Two spatial approaches (spatial error model (SE), and 

spatial lag model (SL)) were compared with a standard non-spatial approach (ordinary least square 

(OLS)). Both spatial models[24,44] are modified versions of an OLS model and include spatial 

autocorrelation in a different component of the OLS model. The comparison of the performance of the 

above mentioned statistical methods with complete description of the synthetic data generation process is 

given in Additional File 3. 

All spatial models were fitted with the spdep[24] R package. Similar to what was done in the case of the 

LISA map, the right threshold for the spatial weight matrix was decided based on the spatial correlogram.  

In MSI data, the selection of ion signals from identified clusters was performed using the method which 

gives the best performance on our synthetic data. In order to do that, the outcomes of the original clustering 

were converted into a set of two-class images where each cluster is, in turn, compared with all the others. 

As the variables selection using the spatial method is computationally intensive, we only used a few tumor 

models in which the cluster of interest was present. Thus, per cluster five different tumor slices were 

selected, i.e. MSI data from 4 - 5 different tumor models. If a particular ion was found to be important in 

all five datasets, then it was considered as a significant ion signal for the respective cluster. The important 

ions were selected on the bases of the model p-values corrected for multiple testing by using the procedure 

of Benjamini & Hochberg[45].  

Results 

Unsupervised clustering of MSI data 

a) A2780 cell-line based MSI data 

The clustering method identified five unique clusters in the combined set of A2780  xenograft models 

(Figure 2 left). The majority of the replicates possess those five clusters in different ratios where clusters 

1 and 2 were predominant in all tumor models in both treatment conditions. The relative contribution of 
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cluster 3 is reduced and cluster 4 is enhanced in the presence of bevacizumab (Figure 2, top right). Cluster 

3 showed a high overlap with the necrosis area[12] and noticed to be present in a relatively higher fraction 

among the tumor models not pretreated with bevacizumab. The small fraction of cluster 5 is present in all 

tumor models.   

Similar to the number of pixels, the homogeneity of clusters (parameter b) for the individual tumors was 

calculated using the modified version of our DHI and it is shown in Figure 2, bottom right. The figure 

highlights the clear difference in clusters homogeneity under the two treatment conditions, especially for 

cluster 2. The homogeneity of cluster 2 in the presence of bevacizumab treatment is much higher than the 

homogeneity of any other cluster in two treatment conditions. Without bevacizumab treatment also tumor 

models show high homogeneity for cluster 2 followed by cluster 3.  

Figure 2: Cluster analysis of A2780 tumor MSI data generated in the presence and absence of 

bevacizumab treatment. Left: Representation of clusters detected by the k-means method. Right: Ratio of 

a) pixels and b) homogeneity calculated from individual clusters under two treatment conditions. The red 

horizontal line is the global mean value of pixel and homogeneity ratio. Here, Pixel ratio = Number of 

pixels in individual clusters/Total number of pixels from all tumor MSI data under particular treatment 

conditions.  Homogeneity ratio =Size-zone of individual clusters for a given tumor model/Total number 

of pixels in that particular tumor model. With Beva = pretreated with bevacizumab and Without Beva = 

without bevacizumab pretreatment.     

b) HCT116 cell-line based MSI data  

Five clusters were identified in the HCT116 tumor cell line MSI data (see Additional File 4). Similar to 

the A2780-1A9 tumor MSI data, there was not a large observed difference in clusters population under 

the two treatment conditions. Cluster 2 and 3 were predominantly present in all tumor models irrespective 

of the treatment conditions (see Additional File 4 Figure S-1 top right). Cluster 1 was observed in a 

moderate amount and very small fractions of clusters 4 and 5 were present in all tumor models. The 
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homogeneity assessment of the individual clusters in the two treatment conditions shows that cluster 3 

has high homogeneity in the case of bevacizumab treatment. In the absence of bevacizumab treatment, 

clusters 2 and 3 show more homogeneity (see Additional File 4 Figure S-1 bottom right).  

The statistical analysis of pixel and homogeneity ratio values was performed using a linear mixed model 

approach where range and p-value from both tumor models are given in Additional File 4 Table S-1. For 

the A2780-1A9 MSI data, the pixel ratios are not significantly different in the two treatment conditions. 

The homogeneity value of cluster 2 is close to significant which is derived with parameter 𝑁𝑢 = 5 in our 

homogeneity formula. In HCT116 MSI data, the number of pixels in cluster 1 and homogeneity ratio for 

cluster 2 is statistically significant in two treatment conditions. 

Association between clustered image and drug LISA map  

The spatially distinct regions based on observed drug distribution profiles were identified using LISA 

maps in all tumor models. The LISA map was created using the spatial weight matrix with an 

autocorrelation value equal to five since in spatial correlogram derived from different tumor MSI data,  

high positive spatial autocorrelation was observed within this range (see Additional File 5 S-1).   

A visual comparison of the clustered images and drug LISA maps confirms the link between the drug 

distribution profile and the underlying clusters (Figure 3). For example, homogeneously high drug 

distribution areas (high-high (HH) zone in the LISA map) are mostly associated to cluster type 1 and 2, 

while, homogeneously low drug distribution areas (low-low (LL) zone in the LISA map) correspond to 

cluster type 3 and 5 (Table 1). The observed association between cluster types and the different zones of 

the LISA map is irrespective of treatment condition across all tumor models (Figure 4). 

Similar observations were made from HCT116 tumor MSI data (see Additional File 5). In HCT116 MSI 

data, clusters 1,2 and 3 show clear overlapping with spatially homogeneous zones of the LISA maps. The 

cluster 1 and 3 overlapped with high drug concentration areas in the tissue and cluster 2 with low drug 

concentration areas (see Additional File 5). The association between cluster 2 and low drug concentration 
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areas in the LISA maps is more clear for HCT116 data than for A2780-1A9 data (Additional File 5 Table 

S-1).  

The statistical correlation between the clustered image and drug LISA map was calculated using Cramer’s 

V method. A very small fraction of pixels falls within high-low and low-high zones of the LISA map. 

Therefore, the Cramer’s V is calculated between HH, LL zones of LISA map with unsupervised clustered 

classes. For both tumor MSI data, the Cramer’s value across all tumor models was found to be within the 

range of 0.5 -0.8 (see Additional File 5 Table S-1) that confirmed the dependency of the drug on different 

tumor tissue areas.  

  

Figure 3: Individual clustered image (first column), LISA map (second column) and their combination 

are shown for few tumor models from A2780-1A9 MSI data.  The clusters found in high-high (HH), low-

low (LL), high-low (HL), and low-high (LH) zones of LISA map are highlighted. In LISA map, HH, LL, 

HL, and LH are zones identified in Moran’s I scatter plot. 

 

Table 1: The percentages of pixels belonging to different cluster classes falling into HH, LL, HL and LH 

zones of the LISA map for tumor MSI data shown in Figure 3.  

  Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cramer’s 

V* 

Image 1 HH 8.28% 23.5% 0.58% 5.75% 3.5% 0.501 

 LL 4.48% 4.92% 7.9% 5.26% 3.46% 

 HL 3.36% 7.85% 0.87% 2.68% 1.22%  

 LH 2.87% 5.46% 2.44% 2.58% 2.88%  

Image 2 HH 18.15% 13.34% 0.31% 2.98% 1.94% 0.643 
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 LL 0.86% 9.39% 0.8% 7.49% 15.93% 

 HL 2.83% 8.5% 0.09% 1.6% 3.76%  

 LH 2.89% 3.57% 0.43% 2.1% 3.01%  

Image 3 HH 14.69% 13.55% 0.05% 5.77% 2.19% 0.463 

 LL 4.2% 11.57% 0.66% 9.22% 14.78% 

 HL 4.02% 7.19% 0.036% 1.56% 1.69%  

 LH 1.38% 2.65% 0.29% 1.79% 2.69%  

Image 4 HH 21.55% 17.09% 0.094% 1.95% 3.89% 0.69 

 LL 3.67% 1.91% 2.29% 6.2% 18.62% 

 HL 3.12% 2.20% 0.21% 1.93% 3.16%  

 LH 3.30% 3.44% 0.67% 1.4% 3.29%  

Image 5 HH 16.41% 20.53% 2.49% 4.2% 2.95% 0.601 

 LL 2.20% 3.10% 11.89% 2.33% 2.15% 

 HL 3.51% 4.43% 2.89% 1.43% 1.79%  

 LH 3.36% 5.99% 3.13% 2.74% 2.44%  

Image 6 HH 15.04% 23.57% 1.53% 0.99% 3.23% 0.62 

 LL 4.04% 4.12% 13.44% 2.05% 4.37% 

 HL 3.71% 6.59% 2.12% 1.19% 2.23%  

 LH 2.85% 3.64% 2.83% 0.98% 1.44%  

*Cramer’s Correlation is calculated between HH, LL zones of LISA map and unsupervised clusters.  

Figure 4:  Quantitative analysis to find the association between drug LISA maps and identified clusters 

from complete A2780-1A9 tumor MSI data. Here, each subplot highlights the fraction of pixels present 

in different zones of the LISA map under two treatment conditions. The red horizontal line in each 

subplot is a global mean value for pixel ratio for that particular zone.  With Beva: pre-treated with 

bevacizumab and without Beva: without pre-treatment with bevacizumab 
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Ion signals selection from the identified clusters  

For variables selection, the performances of spatial (SE and SL) and non-spatial (OLS) methods were 

tested on synthetic spatially autocorrelated data. The SL method completely outperformed the other two 

methods (see Additional File 3); therefore, used for m/z values selection from unsupervised clusters 

identified in two MSI cancer datasets (Table 2). Note, cluster 4 identified in A2780-1A9 tumor data was 

present in a single tumor model and cluster 4 and 5 for HCT116 was present in very small fraction and 

did not follow any proper spatial structure , therefore those clusters were excluded from the ions selection 

step. The list of important ions is given in Additional file 9. In the A2780 cancer data, cluster 2 had 28 

ions showing a significant difference. In particular, the ion at m/z=335.41 had high intensity in all tumor 

models. The ion image of this particular ion showed a homogeneous distribution in the cluster (see 

Additional File 6 Figure S-1 top row). A larger number of significantly different ions was identified for 

cluster 3, mostly with low signal intensity.   

For the HCT116 MSI data, a large number of significant ions was identified in cluster 2 and 3.  In cluster 

3, the majority of ions had a high signal or positive regression coefficients in the spatial model, with the 

ion at m/z =281.315 showing the highest value. In cluster 2, ions with both high and low signals were 

present in equal portions (see Additional File 6 Figure S-1 bottom row).  

Table 2: The number of ion signals selected from different clusters in two tumor MSI data 

 Cluster 

type 

A2780 HCT116 

 1 26 22 

 2 28 83 

 3 91 70 



15 

 

 5 35  

 

Discussion 

Several studies have shown that the tissue spatial heterogeneity within a solid tumor impacts on the drug 

distribution[2,10,12,30,46,47]. Different tissue characteristics and tumor microenvironment affect the 

drug distribution which means that the concentration of a drug at a given spatial location could be related 

to the tissue composition at that point. It is also true that the presence of the drug can induce a modification 

of the tumor structure[31], so in general, it is impossible to disentangle the two phenomena. In our case, 

the situation was fortunate since a part of the tumor-bearing mice had received bevacizumab treatment 

before drug (paclitaxel) treatment. Therefore, we assume that the observed differences in the spatial 

organization of tissue areas characterized by similar metabolic fingerprints can be interpreted as a direct 

or indirect effect of bevacizumab treatment which was given twice before drug injection.  This was also 

suggested by our previous study showing an increase in drug homogeneity in samples treated with 

bevacizumab[30]. The main goal of this research was to show that computational methods can be used to 

explore and quantify spatial heterogeneity within tumors and link the observed homo-/heterogeneous drug 

distribution to the alteration in microenvironment due to applied therapeutic strategy. To achieve these 

objectives, our data analysis involved a combination of methods from different research streams. First, 

the clustering of combined MSI data was performed using K-means with correlation distance and then 

those clusters were linked with drug distribution patterns obtained using the LISA method. As stated in 

the introduction, K-means clustering is efficiently being used in several studies performed on MSI data 

for the selection of relevant clusters[25–27]. Moreover, in another study, the authors also tested this 

method and compared it with several spatial methods, i.e., using simulated and real data and came to the 

same conclusion (unpublished observation). In the spatial data analysis field, a LISA map is a commonly 

known technique that identifies the spatially relevant clusters in a single two-dimensional 
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image[21,22,43]. The LISA map provides an automated way to find spatially homogeneous clusters that 

are difficult to generate using a simple thresholding approach (see Additional File 8). Simple binary 

images were created using different threshold values. The images constructed with a threshold value of 

four show some resemblance with the LISA map (see Additional File 8). The binary images are not fully 

able to mimic the drug distribution profile. Moreover, the selection of the right threshold value from the 

drug ion image histogram is not very straightforward. In contrast, the LISA map is able to highlight the 

observed high and low intensity spatially homogeneous areas in drug ion images efficiently where for 

spatial weight matrix can be selected based on spatial correlogram. 

The clustering of MSI data was able to identify metabolic separated regions which cannot be observed in 

H&E stained tissue images[25]. This is clear if one compares the images shown in Figure 5.  The 

segmented image shows tissue subtypsubtypees in addition to the one which can be associated to the 

necrotic and fibrous regions on H&E stained image. The effect of the treatment with bevacizumab was 

visible in the segmented images.  In particular, the antiangiogenic compound was increasing homogeneity 

(both in the pattern of clusters and in the drug) even if no anti-angiogenesis treatment specific cluster was 

identified (Figure 2 and Additional File 4). Interestingly, the average drug concentration in the individual 

clusters under the two treatment conditions is approximately equal these changes in distribution were  not 

affecting drug total concentration, which was approximately equal in the two treatment conditions (see 

Additional File 7). This confirmed the results of our previous publication[17] and our homogeneity 

assessment of clustered images (Figure 2 bottom right) that the tumor tissues from bevacizumab treatment 

are more homogeneous. 

 

Quantitative analysis of the LISA maps shows the dependency of highlights the association between 

thethe observed drug distribution profiles and the underlying tissue-types metabolic fingerprint (Figure 4 
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and Additional File 5). In A2780-1A9 tumors, clusters 1 and 2  have a high affinity for the  drug and while 

clusters 3 and 5 show a lower than the average drug concentration ( Figure 4 and Table 1).   

In A2780-1A9 tumors, clusters 1 and 2 overlap with the high-high homogeneous region of drug LISA 

map and cluster 2 was the most homogeneous (Figure 2- bottom right). For HCT116 tumors, clusters 1 

and 3 showed some overlap with the high-high zone, and cluster 23 with the  low-low zone was the one 

showing the higher homogeneity (see Additional File 5). Remarkably, the clusters associated with the HH 

and LL drug distribution regions are always the same, regardless of the pretreatment with bevacizumab, 

which is instead affecting the arrangement of the tissue subpopulations.  

The dependency of spatial methods on the spatial weight matrix 

Two commonly known spatial methods (LISA map and spatial lagged regression) were used in our study 

to find the spatially homogeneous clusters and spatially relevant ions from different clusters, respectively. 

Both spatial methods required the spatial weight matrix as an input. Therefore, the dependency of results  

 

 

 

 

 

on the spatial weight matrix was tested (see Additional File 10 and 11). The variables selection was 

performed using the SL method for a  range of autocorrelation or lag distance values (1-15) in the  spatial 

weight matrix in tumor MSI data (see Additional File 10). The SL method selects mostly the same 

molecular ions at different lag distance values. All variables selected have positive Moran’s I value at the 

above-mentioned autocorrelation range. Therefore, based on our analysis of MSI data we had not noticed 
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the dependency of the SL method on the spatial weight matrix. A similar observation was made when this 

analysis was performed on synthetic data (see Additional File 3). In the case of our synthetic data, the 

accuracy of SL starts decreasing after a lag distance of 6 since some false positive selection was observed, 

but sensitivity remains constant as the true variables were all selected. However, in the case of real MSI 

data, this type of plot is not feasible. Therefore we looked at Moran’s spatial autocorrelation value of all 

selected variables (see Additional File 10). After the lag distance of 5 the Moran’s I value of the selected 

variables starts to approach zero. Therefore, even though in our analysis the list of molecular ions was 

mostly consistent we will not recommend going beyond the lag distance of 5, as at such large 

autocorrelation range we may start including some noisy variables in our list. 

A similar approach is used to test the dependency of a LISA map on the spatial weight matrix. The LISA 

map of the drug ion image for a particular tumor tissue was constructed with different spatial weight 

matricesx (see Additional File 10). The LISA map created with the lag distance of one contains large 

homogenous areas (LL and HH). On the increasing the lag distance, the pixels from different areas start 

mixing, i.e. the size of HL and LH regions gradually start increasing and the LISA map becomes less 

reliable. Therefore similar to the spatial regression method, the spatial weight matrix with a maximum lag 

distance of 5 is preferable for a LISA map.    

 

In summary, in this paper, we provided a computational approach to understand the problem of drug 

homogeneity in association with tumor heterogeneity which validates the few conclusions made in 

previous studies. We provide a  complete workflow ofdata pre-processing of MSI data, the association 

between the drug and identified clusters, and the selection of molecular from identified clusters. In our 

paper, we have used different methods to get  different pieces of information. The dependency of spatial 

methods on the spatial weight matrix is discussed above. Apart from that, if theuser wants to use our 

approach on their MSI data, they also need to consider the parameters used in our studies, such as peaks 
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removal with less than 20% coverage area and the clustering index. In our case, before setting a 20% 

threshold we tried a 10 -30% threshold to be sure if the majority of noisy peaks have been removed and 

no other important peaks. A similar task was performed during the clustering of MSI data. The number 

of clusters was selected using the internal clustering index method but the stopping criteria in bisect 

clustering (40%) was set according to our data dimension and the number of expected clusters in our MSI 

data. If the MSI data contain very small spatial structures than this threshold needs to be reduced. In 

general, we believe that our paper completes the pipeline for the analysis of untargeted drug MSI data and 

will  be useful for the groups working with a similar problem. A R pipeline includes all the methods from 

our papers is online available (RRID: SCR 018962, bio.tools: corrdrugtumormsi)   In addition, the 

proposed framework allowed to robustly select molecular signals which characterize the different tissue 

subpopulations which can be used to monitor the effects of therapeutic strategies on the tumor spatial 

heterogeneity. Considering that the focus of our investigation was methodological, we have not dealt with 

the identification of the characteristic ions, and this would require additional (and extensive) experimental 

efforts.   

 

Figure 5: Comparison of tumor tissue optical images (rightleft column) with its clustered image (middle 

left column) and drug LISA (right column) image from two tumors MSI data (A2780-1A9, HCT116).  

The black and red dots in the  H&E stained images represent the necrotic and fibrotic area, respectively. 

In the above figure, tThe optical images are adapted from a scientific journal[10] published under CC BY 

license[48].  In the above LISA map HH (high-high), LL (low-low), HL (high-low), and LH (low-high) 

are zones identified in Moran’s I scatter plot.  

Conclusions  

In cancer research, one of the causes of drug therapy failure is tumor drug resistance often induced by 

scare drug penetration. This phenomenon is supposed to be linked to the presence of diverse tumor 
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microenvironments which are difficult to identify with established histological techniques. In this work, 

we show that a molecular imaging technique like MSI, coupled with advanced data analysis strategies, 

offers a great opportunity to investigate the link between drug distribution and tissue heterogeneity. Our 

approach allowed to simultaneously investigate tissue histology and drug distribution and it was capable 

of detecting the effects on the tumor heterogeneity induced by a specific intervention (treatment with 

bevacizumab). We hope that the unsupervised approach proposed here will help oncologists to 

quantitatively evaluate the efficacy of therapeutic strategies.  
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We would like to thank the reviewers’ for their constructive comments and suggestions. We 
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manuscript accordingly wherever it was required. The R package from our paper is online 

available and registered at bio.tools and Scicrunch (bio.tools: corrdrugtumormsi, RRID : 

SCR_018962). We believe all these changes increase the reproducibility of our paper and 
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Reviewer #1: 

Question 1.1 The authors present a computational method for identifying spatial regions 

with molecularly distinct regions between control and drug therapy using previously 

published data. The method is well described and paper is somewhat easy to follow. The 

code and attached data was reviewed as well and appears clear and would be easily 

translatable to other projects. A more formal implementation as an R package would be 

desirable as the workflow is quite complex it would benefit to make a more accessible API so 

less experienced users wouldn't get lost. 

Answer: A R package is developed that includes all main methods from our paper (bio.tools: 

corrdrugtumormsi, RRID : SCR_018962 ). Interested users can install our R-package from 

the Github website and refer to vignette for the usage of different functions in our package.   

Question 1.2 For step 1 in the processing: How are 'drug' related peaks guaranteed to be 

removed from the 'microenvironment' segmentation? In processing, it is mentioned that ion 

peaks with correlation > 0.5 with the drug compound were removed. This seems like it would 

bias the segmentation if the drug had a very discrete distribution in a very particular 

histological region. One can imagine a scenario where a drug is distributed in area "A" 

exclusively along with other endogenous compounds. These endogenous compounds would 

be then be removed from the segmentation pipeline simply because the drug was highly 

partitioned into this region. Could the peaks be derived solely from undosed control tissue? 

Otherwise the authors statement may be misleading. 

Answer: We agree with the reviewer's comment that the selection of drug-related peaks 

based on the correlation approach could give biased results. Unfortunately, in our study, we 

only had one control MSI data set per cell line, and the selection and removal of drug-related 

peaks based on a single animal also seem quite biased approach. Therefore, we used a 

heuristic approach where we removed the peaks that show more than 0.5 correlation with 

drug ion peak and also the peaks present in less than 20% tumor tissue area. In this way, 

we expected to have not too many ions with discrete distribution and ions with a high 

correlation with drug ion peak removed. We have validated this approach, see below. 

Drug-related peaks in control animal:  

The ion intensity distribution of removed peaks in a control tissue from two tumor MSI data 

(A2780-1A9, HCT116) is shown in Figure 1. Since the control animal has not been treated 

with drug compound we do not expect those removed peaks to be present in MSI data. But, 

unfortunately, that is not the case, in the figure, the drug (284.12) and its isotopic peaks 

(285.155) are completely absent in the control animal and other removed peaks are visible. 

Therefore, it seems that the threshold of 0.5 we used in our study is quite low and we need a 

much higher threshold to avoid removing non-drug-related peaks. On using a correlation 

threshold of 0.9 only the drug isotopic peak is removed from our data, therefore instead of 

0.5, we will recommend the minimum correlation threshold of 0.9 in our paper.  

Apart from the above analysis, we also checked whether specific peaks which could be 

considered as drug-related peaks were absent in the control tumor MSI data but present in 

the treated animal data. We did not notice such peaks. There were few empty bins in the 

control MSI data but those bins are also empty in the majority of treated animals. This 

observation was made for both tumor MSI datasets. See added file 

‘FrequencyofmoelcularIonsInMSIdata.xls’ where the count of the pixel with non-zero ion-

intensity value across all tumor models is given.  



We also looked at the impact of the removed peaks on the segmentation results. An impact 

of the removed peaks on the segmentation results is expected if the removed peaks are 

related to a unique spatial structure. The correlation between removed and other remaining 

peaks was calculated. All removed peaks (except for drug and its isotopic peaks) show a 

high correlation with many other peaks. Therefore, we don’t expect our segmentation results 

to be biased with our approach. This statement is confirmed by the segmentation of the 

control tissue. The clustering of control MSI data was performed in both scenarios: with and 

without drug-related peaks (Figure 2) similar cluster structures were derived.  

 

 

 

 



 

Figure 1: Molecular ion images of peaks removed from our data based on correlation with 

drug ion peak. A and B: control tumor tissues from A2780-1A9 and HCT116 cell-line 

respectively (A1, A2: two different slices).   

 

Figure 2: Clustering of control tumor tissue with (Top row) and without (Bottom row) drug 

correlated peaks.  



Based on the analysis on control MSI data we agree with the reviewer that our statement 

regarding the removal of drug-related peaks based on correlation >0.5 is not sufficient 

therefore in the absence of control tissue a high correlation threshold (0.9) should be used.   

 

Question 1.3 The authors note that mass spectral validation of model-identified differential 

ions is not possible and that is reasonable. In general, the spatial models presented in the 

findings are compelling. However, as this paper deals with spatial characterization of tissue, 

there appears to be no spatial validation. Indeed the obvious choice of the gold standard in 

pathology, H&E microscopy, is present in Figure 5 but the size of the images is so small it is 

negligible for spatial validation. Secondly, there are numerous published MSI examples(DOI: 

10.1021/jasms.8b04879, doi:10.1074/mcp.O115.053918, https://doi.org/10.1038/srep36814) 

where there are clean and distinct, immediate visual association of segmented MSI images 

to histological regions in H&E, but here the segmentation doesn't seem to replicate much of 

the structure visible in Figure 5, at least AS PRESENTED. This comment isn't to push for 

models integrating H&E as an input but to have some qualitative result describing 

the types of cells present in the tumor regions associated with the major clusters. While 

molecular histology is valid, it is unusual for it to not mimic classical histology. 

Minor comments 

All figures containing should have a scale bar indicating the physical dimension of the 

images. 

 

Answer: We agree with the reviewer's comment that there needs to be more evidence 

regarding clusters identity and tissue types present in our dataset. However, the MSI data 

used in this study was initially generated to understand drug homogeneity in different types 

of solid tumors, and there was little histology-related work done to identify the tissue types. 

At this stage histological informations available, like proliferation/necrosis, vessels1 allowed 

us to correlate only what has been discussed in the text. Future studies will be aimed at the 

validation of different clustering features presented in this work with more specific, dedicated 

histological studies. 

The reviewer's comment is correct that the optical image in Figure 5 does not show proper 

correlation with our clustered images, therefore we will remove all images except images 2 

and 5 were necrosis region is visible both in the optical image and our clustered images.   

 

Small errors: 

Introduction 

* Techniques of election <- is not proper English. Perhaps 'A valuable technique' would be 

less awkward. 

Answer: modified accordingly. 
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Reviewer #2:  

This is an interesting paper addressing how MSI can be effectively used to better understand 

the link between drug and the characteristics of malignant tissue. While it is not surprising 

that the physicochemical properties of both the tissue and the drug are important to passive 

tumor penetration and local exposure, MSI provides an important opportunity to understand 

the spatial and temporal dynamics of this process, and the development of effective 

computational workflows is vital. A few questions/suggestions for the authors follow: 

 

Question 2.1 To what extent can the most prominent histochemical changes occurring post-

bevacizumab treatment be captured by m/z range and other experimental settings studied in 

this untargeted MSI experiment? Since it used a limited mass range, certain important 

changes (e.g., in cell-surface protein expression, lipid membrane composition, etc.) may not 

have been measured. The authors may have addressed this question in their cited previous 

work, but it would be helpful to provide some additional context. 

Answer: We agree with the reviewer, our  MSI data cover a limited mass range where we 

cannot see certain changes. However, the MSI data used in this study was initially 

generated to understand drug homogeneity in different types of solid tumors, and there was 

little histology-related work done to identify the tissue types. Our major focus, at this stage 

was not in a comprehensive metabolite study, but in methodology development. Future 

studies will be focussed, with more specific histology, on local metabolic effects of drugs and 

larger mass range will be used 

 

Question 2.2 Since the focus of this paper is methodology, evaluation of the approach 

against known ground-truths is critical. In that regard, the efforts of the authors in developing 

a synthetic dataset and evaluating the methods on it is appreciated. There are a few ways 

that this assessment could be expanded to provide additional information about the 

robustness of the workflow. For example, Additional File 3 includes plots showing the 

synthetic data and some of its characteristics, but to what extent do the statistical properties 

of the synthetic data compare with those of real MSI datasets? The SL method was 

recommended, but how sensitive is it to the selection of the weight matrix? If it is sensitive, 

are there any recommendations for selecting the weight matrix based on data 

characteristics? When bridging to the experimental data, has the method been tested on 

MSI datasets (including synthetic ones) with available complementary ground-truth labeling 

to help evaluate the extent to which identified clusters map to known differences? It is 

mentioned that peaks that were present in less than 20% of the tissue were removed to 

focus on more common ions. To place this 20% cutoff in context, what was the coverage 

area of the clusters identified? It seems possible that this step may omit significant portions 

of tissue heterogeneity. For future applications of this workflow, how should this cutoff 

threshold be selected? Overall, how robust are the results/workflow recommendations to the 

choices of distance metric and clustering index? 

Answer:  

a) MSI data is a type of spatial data where nearby observations are highly correlated 

with each other. In our study, we had used the spatial autocorrelation function to 

generate similar spatially autocorrelated synthetic data. In additional File 3, a spatial 

correlogram plot from our synthetic data is presented, which is quite comparable with 

the spatial correlogram of drug molecular ions from different tumor MSI data shown 

in Additional File 5.   



b) Yes, the results from spatial methods depend upon the selection of the spatial weight 

matrix. We performed a small simulation study with MSI data. And, we included our 

conclusion and recommendation in the discussion section, page 17. 

c) In our study, we don’t have ground-truth labeling. Therefore it was not possible to 

completely validate the identify clusters. The validation of identified clusters was 

performed with H&E stained images shown in Additional File 5 where the necrosis 

tissue present in the optical image shows similarity with clusters in the A2780-1A9 

and HCT116 data.  

d) In our study, we discarded peaks with less than 20% coverage area, assuming that 

they represent the noisy peaks and could influence our clustering algorithm. The 

decision of discarding those peaks was based on multiple trials. For the removal of 

peaks, we tried a threshold of 10%, 20%, and 30%. With a threshold of 10%, we 

missed some noisy peaks and with 30% we excluded a few extra peaks in our data. 

Therefore, a threshold of 20% seems a reasonable choice. Moreover, this step of 

peak removal was performed on each tumor MSI data separately. Therefore, unless 

particular peaks were present as noise in all datasets, we do not expect them to be 

completely removed from our input data for the clustering.  

 

The range of different clusters size derived across all tumor models is shown in Table 

1 below. In our MSI data, we have identified the clusters of size smaller than 20% of 

total tumor tissue area which means after removing a fraction of peaks (which we 

assume noise-related) we are still able to find spatially relevant smaller clusters.  

 

Table 1. Range of different clusters size in two tumor MSI data. 

  Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 

A2780 Minimum 
size 

212 624 40 224 153 

 Maximum 
size 

3429 2959 1691 1270 3078 

HCT116 Minimum 
size 

337 734 558 208 186 

 Maximum 
size 

833 1674 1297 682 605 

 

 

Question 2.3 Given the dose of the drug administered, how much exposure within the tumor 

is expected based on pharmacology, and how might this affect the output? It would also help 

to provide more explanation of Figure S1 in Additional File 7. In it, the concentration (units 

undefined) of the drug in each cluster appears to be very similar, across both cell lines and 

treatment arms; however, the comparison between the clusters and the LISA maps appears 

to suggest differently. Also, interpretation of the LISA maps of drug exposure in Figure 3 and 

the data in Table 1 in terms of histology is briefly in the Discussion, but it would be helpful to 

expand on this.  

Answer: For drug MSI data generation, the solid tumors were explanted from mice 6 hours 

after drug treatment. Therefore we do not expect dramatic changes in tissue architecture 

due to the drug compound. Moreover, all tumor models have received drug treatment, so if 

any metabolic change occurs, we expect it to be consistent across all tumor MSI data.  

Additional File 7, Figure 1, shows the average amount of drug in each cluster-type under two 

treatment conditions. The drug average value in each cluster is further normalized with the 



sum of the average drug in a particular treatment condition. Note, this second step is 

performed simply to show the drug concentration in the range of 0-1. Apart from that the 

average drug concentration profile from steps 1 and 2 is similar.  
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./A2780_PTX #371 3 6526 5791 6613 5841 6728 5885 4890

Number of pixels with non-zero value per MSI data
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X203.845 X204.145 X204.86 X205.155 X205.815 X206.01 X206.25 X207.04 X208.97

3032 3302 3295 2420 2399 2687 3157 3676 2990

3891 4219 4043 3493 3010 3392 4090 4760 4079

4906 5260 5038 4592 3937 4935 5255 5311 3747

1819 2244 1864 2113 1016 2180 2235 2271 1527

1471 1997 1891 1579 0 1909 1982 2050 1338

3076 3388 3392 3376 574 3092 3386 3394 3257

3935 4425 4458 4235 1279 3370 4405 4460 4451

5374 5409 5571 3957 4596 5122 5501 5594 3980

2535 2571 2582 2487 2230 2545 2565 2588 2186

1619 1798 1788 1776 824 1760 1810 1819 1311

1340 1729 1707 1721 317 1692 1736 1739 1197

3081 3271 3248 3250 2015 3233 3274 3278 2196

3081 3220 3219 2950 1058 3100 3206 3246 1832

1990 2394 1803 2113 630 2344 2424 2470 1340

5454 4467 5535 2587 4387 5313 4916 6051 4597

1778 2796 2578 2640 0 2657 2820 2836 2159

6713 8813 9375 6447 3378 3930 8861 9625 9377

2251 10501 10167 9477 0 1844 10163 10618 10368

7577 9741 10207 5832 7037 2712 10167 10812 8769

4555 4236 4019 2648 3167 2417 4660 5302 3212

2230 3158 2464 2952 0 1744 3202 3319 1906

2451 3562 2971 3274 807 2109 3619 3798 3066

5427 4639 5448 1602 4536 4865 4918 5734 4835

2865 3254 2992 1741 2217 2003 3358 3621 1755

3037 3411 3146 1806 2105 2087 3596 3954 1708

1587 2203 1650 1874 530 1087 2363 2588 1748

1415 3578 2102 3570 0 1605 3719 3890 909

5649 6887 6175 6713 1708 4591 7160 7581 5028

4014 5002 4679 3437 0 3567 5071 5560 1771

5838 6084 5875 4459 4254 5573 6056 6717 4855



X209.2 X209.9 X210.195 X210.995 X211.17 X211.955 X212.765 X212.97 X213.165

3398 2021 3426 1786 2663 3673 3562 3102 2296

4330 1980 4476 2097 3887 4687 3545 3847 3300

5295 0 5305 1091 5010 5308 936 5046 4448

2258 0 2266 0 2190 2266 0 2063 1903

2022 0 2028 216 1862 2033 90 1471 1421

3349 3380 3372 644 3364 3392 836 3356 3369

3857 4448 3423 947 4209 4449 849 4443 4305

5568 4836 5575 0 3552 5571 0 5542 3755

2582 2011 2586 382 2532 2587 1763 2550 2370

1814 938 1819 0 1801 1819 508 1757 1731

1739 839 1739 374 1732 1737 823 1644 1693

3278 1373 3278 0 3267 3278 592 3180 3214

3241 1181 3245 602 3078 3243 838 3211 2907

2470 0 2470 0 2314 2466 0 1718 2003

5678 0 5890 1291 3416 5847 0 5070 2190

2834 0 2835 900 2760 2833 0 2010 2562

7891 9026 7389 1861 6523 9486 3620 9114 6952

8295 10410 6648 0 9876 10610 0 10174 10051

10513 7926 10633 0 5658 10653 3447 10446 7035

5115 0 5213 0 3301 5251 1716 3646 2358

3323 0 3344 0 3120 3355 586 2018 2843

3717 652 3781 933 3507 3813 390 2810 3085

5613 3077 5691 1617 2347 5692 5410 5445 1066

3577 1050 3608 0 2452 3612 2703 3315 1683

3885 661 3926 0 2652 3935 3129 3393 1617

2536 0 2599 0 2180 2604 710 1599 1794

3874 497 3917 0 3634 3904 905 1711 3412

7446 1835 7599 1239 7001 7601 1155 4913 6379

5413 979 5527 0 3832 5507 1874 4294 2847

6544 3026 6634 0 5173 6650 2366 5735 4179



X214.895 X215.89 X216.17 X217.8 X218.165 X219.115 X220.015 X220.185 X220.86

3730 3302 1680 1671 1135 1067 2679 1035 2775

4802 4026 2117 1977 2139 1755 2927 1982 3243

5309 5218 2557 2135 1305 0 4304 1508 4583

2271 2221 1499 261 867 332 2090 742 1170

2050 1926 1039 0 467 296 1613 415 383

3394 3388 3338 1262 2760 2405 3216 2944 2889

4460 4438 4369 1583 701 0 3985 962 4355

5594 5565 4350 2466 0 0 5035 0 5438

2586 2570 1922 1724 874 1023 2479 860 2433

1820 1802 1422 649 942 818 1696 985 1135

1739 1728 1518 529 1130 909 1621 1197 777

3278 3266 3079 631 1851 787 3214 1549 2251

3246 3230 2943 938 787 0 3117 761 2537

2470 2356 1081 0 677 308 1877 643 842

6065 5676 1383 3193 0 0 4301 0 4902

2836 2598 2091 702 1404 677 2543 1234 477

9616 8694 6541 1891 2436 2030 4014 2433 8394

10605 9108 10019 0 5626 5228 4976 4188 8054

10813 9725 6364 0 0 0 2238 0 9894

5384 4187 0 0 0 0 893 0 3622

3325 2173 1235 0 1674 822 1660 1220 575

3769 2655 1713 0 1694 837 2277 1195 1005

5732 5338 0 2252 0 0 3941 0 5175

3615 3117 0 0 0 0 1946 0 3016

3961 3226 808 0 0 0 2027 0 2885

2635 1555 590 0 661 316 0 694 863

3883 1943 2039 0 2286 1098 1170 1976 0

7583 4798 3343 0 3802 2347 2908 3161 1423

5546 4158 1639 0 0 0 1649 0 2534

6700 5703 1681 1727 0 950 3121 0 4804



X221.195 X221.875 X222.015 X222.215 X222.89 X223.025 X223.17 X223.89 X224.195

3516 3445 1389 2532 3505 3061 2096 2136 3580

4555 4387 1483 3769 4540 3698 3439 2907 4696

5164 5301 1044 4834 5308 5118 4479 3125 5309

2265 2239 800 2177 2266 2204 1980 412 2270

2031 1989 358 1819 2036 1884 1621 0 2051

3385 3375 0 3349 3394 3171 3218 1658 3394

4446 4454 931 4099 4460 4417 2333 2597 4456

5509 5574 2267 3730 5594 5466 1796 3618 5594

2576 2573 1252 2381 2586 2544 2102 1690 2588

1817 1811 667 1787 1820 1763 1736 270 1820

1737 1734 496 1720 1739 1648 1716 0 1739

3277 3267 1208 3262 3273 3156 3174 536 3278

3240 3242 1175 2952 3246 3169 2682 523 3246

2327 2462 293 2246 2469 2243 1995 428 2470

4530 5996 1538 3640 6068 5231 2619 3955 6060

2821 2779 455 2758 2836 2344 2639 0 2833

9347 9271 0 7009 9558 8973 2255 6889 9629

10567 10210 0 9178 10533 9369 5493 4508 10623

10473 10762 0 6931 10802 10190 2991 6162 10814

5045 5175 0 3380 5436 4473 2367 3190 5397

3291 3127 0 3114 3320 2502 2911 0 3384

3759 3420 0 3502 3758 2777 3157 559 3862

5511 5665 0 2276 5725 5329 0 4535 5736

3566 3558 0 2125 3603 3279 1221 1401 3624

3865 3901 0 2369 3949 3486 1406 1387 3964

2510 2411 0 2223 2653 1863 1934 552 2666

3838 3535 0 3630 3878 2559 3414 0 3941

7439 6773 0 6896 7521 5058 6429 0 7643

5451 5271 0 3709 5508 4278 2342 0 5585

6486 6275 1185 4462 6536 5462 3092 3599 6714



X224.92 X225.15 X225.87 X226.195 X226.98 X227.12 X227.32 X227.845 X228.165

2902 3150 3610 3272 2107 3045 3562 1267 1033

3211 4391 4536 4329 2225 4114 4547 1343 1516

4336 5276 5294 5280 1977 5224 5308 891 743

1828 2265 2270 2257 565 2218 2264 280 0

833 2047 2042 2004 0 1943 2020 0 182

3387 3392 3394 3380 2042 3359 3361 2819 2702

4460 4459 4460 4268 3582 3523 4434 3654 2176

5579 5543 5594 5361 4776 4248 5535 3869 0

2357 2587 2588 2581 1611 2555 2586 1228 669

1330 1819 1820 1816 532 797 1820 415 539

1344 1739 1739 1736 771 1733 1739 462 795

2899 3277 3278 3276 1197 779 3278 825 787

3097 3218 3246 3233 1836 3183 3246 862 627

639 2463 2435 2458 0 2400 2470 0 0

3607 5834 5919 4911 1380 4009 6040 0 0

624 2832 2805 2828 0 2788 2830 0 757

9333 9229 9628 8095 5391 5933 9585 6014 3793

10242 10527 10618 10183 1907 8699 10586 3971 7169

10582 9816 10810 9208 4745 6158 10776 3189 0

1889 4901 5161 4653 0 4046 5363 0 0

1008 3282 3150 3282 0 3190 3323 0 481

1940 3714 3661 3706 745 3541 3766 0 590

5315 5223 5735 4788 2559 3665 5672 0 0

3174 3462 3613 3437 530 3020 3610 0 0

2990 3740 3949 3653 832 3207 3937 0 0

1074 2443 2562 2483 0 2309 2607 0 0

1368 3808 3795 3851 0 3707 3884 0 936

2422 7311 7390 7415 0 7160 7500 0 1200

3744 5141 5524 5272 0 4744 5498 0 0

5456 6020 6676 6313 2647 0 6655 970 0



X228.985 X229.89 X230.19 X230.93 X231.965 X236.025 X236.2 X237.155 X238.145

2930 2201 1453 3567 1994 1911 980 587 2858

3374 2583 1975 4437 2203 2521 2180 1538 3978

5047 3472 2203 5301 2253 3796 1734 1014 5230

2143 1506 732 2260 712 1728 785 605 2229

1604 782 374 2025 420 774 449 210 1946

3295 3198 3287 3384 1204 2923 2109 0 3357

4400 4339 4083 4451 776 3676 0 0 3593

5458 5289 2278 5588 2066 3880 0 0 4711

2532 2294 1758 2584 1600 2187 832 0 2549

1750 1349 1394 1814 875 1362 985 734 1810

1660 1195 1475 1736 796 1229 1098 882 1735

3186 2563 2677 3270 1334 2677 1454 1011 3268

3178 2583 2395 3240 1360 2375 748 0 3188

1917 735 420 2458 479 773 544 463 2411

4845 2856 0 5954 2070 2374 0 0 4153

2100 1238 1434 2778 765 1464 1364 701 2769

7968 8643 4641 9301 2601 8144 0 0 6710

7111 9450 8346 10238 0 9181 1783 0 8310

9065 9350 3509 10719 1973 8384 0 0 7238

2970 849 0 4981 0 841 0 0 3953

1668 831 1112 2941 402 1189 1398 577 3184

2244 1509 1306 3297 851 1743 1212 548 3553

4661 3629 0 5646 2839 2977 0 0 3528

2570 1539 0 3557 709 1762 0 0 3021

2394 1365 0 3823 662 1225 0 0 3101

882 462 0 2299 274 813 915 317 2316

1250 906 1980 3212 0 1508 2023 1201 3717

2600 2435 3275 6441 1377 2873 3118 1261 7184

3013 1667 0 5230 631 1407 0 0 4425

5097 4039 0 6458 3259 3611 0 0 5499



X238.83 X239.075 X239.185 X240.155 X241.1 X241.915 X242.135 X242.97 X243.19

3676 535 0 2383 3632 3709 3290 1271 2129

4759 1928 0 3689 4732 4785 4170 1924 2226

5311 0 1162 4970 5311 5311 5292 1939 1872

2271 478 854 2141 2271 2271 2245 501 1492

2051 1129 0 1743 2051 2050 2004 0 894

3394 410 0 3283 3394 3394 3274 2668 2554

4460 0 0 1527 4460 4460 4201 4340 675

5594 0 0 2458 5594 5594 5548 4967 1220

2588 0 815 2347 2588 2588 2568 1482 1490

1820 347 1400 1794 1820 1820 1801 730 1259

1739 954 1274 1728 1739 1739 1734 672 1167

3278 0 1934 3252 3278 3277 3265 1469 2332

3246 1139 0 2962 3246 3246 3228 1801 1479

2470 274 550 2293 2470 2470 2455 0 1135

6072 0 0 2855 6073 6066 5851 1941 1925

2836 1521 747 2692 2836 2836 2812 605 1639

9646 0 0 3259 9646 9632 9495 6458 3882

10624 0 0 5724 10629 10615 10526 4437 5849

10818 0 0 3644 10820 10812 10765 2853 3695

5560 0 0 2629 5561 5323 5032 0 0

3411 0 935 3120 3419 3307 3196 0 1641

3894 1038 0 3224 3901 3755 3598 0 1276

5741 0 0 1334 5741 5732 5599 0 1012

3639 626 0 1812 3639 3619 3549 0 869

3988 0 0 1683 3988 3948 3810 0 880

2731 923 0 2090 2734 2619 2454 0 935

3969 1087 1478 3603 3977 3846 3692 0 2421

7746 0 1154 6700 7749 7502 7021 0 3220

5609 1823 0 3096 5608 5538 5336 0 1393

6771 0 0 4472 6776 6703 6305 0 2253



X243.885 X245.95 X247.955 X251.935 X252.21 X252.925 X253.255 X254.305 X254.85

1858 0 2637 3509 1980 1506 3656 2992 3564

1446 0 3021 4370 3245 1121 4705 3753 4509

0 0 2833 5308 4483 0 5309 4835 5288

517 0 2028 2258 1908 0 2271 1862 2218

0 0 1279 2036 1231 0 2046 1324 1938

3376 2152 3137 3393 2823 0 3392 3168 3265

4451 4078 2779 4460 0 2030 4460 4194 4412

5493 4601 5169 5507 1450 2625 5594 5321 5587

1899 453 2488 2563 1652 0 2588 2473 2587

935 297 1734 1810 1675 0 1820 1771 1815

881 278 1644 1718 1659 0 1739 1694 1721

2295 0 3112 3275 3109 0 3278 3228 3271

2588 0 2758 3244 2495 0 3246 3187 3228

0 0 1169 2435 1795 0 2470 1482 2430

0 0 2763 5579 1892 0 6073 3646 5971

0 0 1815 2795 2435 0 2836 2085 2300

8303 3481 4768 8795 0 4572 9646 9224 9468

8506 2348 3946 9993 2231 0 10624 9999 8952

7245 7896 5546 10075 0 4791 10817 10441 10753

0 0 1115 4334 1769 0 5539 4584 5214

0 0 1843 2892 2736 0 3414 3058 2985

0 0 2305 3187 2476 0 3884 3242 3066

1319 0 4421 4992 0 1292 5741 5027 5712

683 0 2428 3222 980 0 3639 3400 3570

0 0 2258 3165 810 0 3985 3595 3884

0 0 801 1773 1817 0 2725 2200 2383

0 0 2015 3048 3405 0 3964 3505 3308

0 0 3729 5537 5565 0 7713 5907 6604

1420 0 2799 4582 1632 0 5601 4554 5314

2484 0 5236 5786 2664 1346 6747 5017 6482



X255.035 X255.27 X255.505 X255.68 X255.995 X256.145 X256.35 X257.835 X258.005

3149 3678 1176 0 0 686 3570 2615 1341

3888 4828 1013 0 0 1045 4704 3442 1323

5249 5311 0 0 0 0 5309 2448 1372

2241 2271 0 0 0 0 2271 365 459

1987 2051 0 0 0 0 2049 0 0

3335 3394 0 0 0 1356 3394 0 0

4433 4460 1550 973 1938 755 4460 0 0

5568 5594 2572 0 2146 0 5594 1480 2378

2514 2588 0 0 0 0 2588 1974 400

1749 1820 0 0 0 0 1820 1009 219

1698 1739 0 0 0 350 1739 389 0

3228 3278 0 0 0 583 3278 1762 856

3240 3246 0 0 0 0 3246 0 761

2331 2470 0 0 0 0 2470 1393 0

5556 6073 0 0 0 0 6064 4761 1091

2697 2836 0 0 0 0 2836 0 0

9336 9646 5638 3921 3971 2118 9644 0 0

10238 10629 4175 2557 2448 3417 10625 0 0

10633 10820 5303 2488 3806 0 10816 2216 0

4580 5568 0 0 0 0 5509 4507 0

2658 3424 0 0 0 0 3393 756 0

3240 3901 0 0 0 0 3863 0 0

5422 5741 0 0 0 0 5741 5242 0

3417 3639 0 0 0 0 3637 1943 0

3739 3991 0 0 0 0 3980 1898 0

2267 2739 0 0 0 0 2722 1059 0

3174 3979 0 0 0 0 3960 0 0

5235 7756 0 0 0 0 7708 3143 0

4729 5609 0 0 0 0 5584 1319 0

5454 6776 0 0 0 0 6744 5663 0



X258.865 X259.115 X260.905 X262.025 X264.04 X264.9 X266.235 X267.235 X268.035

2220 3606 3039 945 1328 1818 1358 0 0

2908 4714 3446 1198 807 1695 2686 0 0

1525 5309 5090 0 1783 3681 3443 1678 0

0 2271 2060 675 1715 720 1371 604 0

0 2050 892 745 991 0 864 0 357

0 3394 3312 0 1451 758 2101 0 0

0 4460 4454 4449 1708 3408 0 0 3352

1068 5594 5565 5198 4104 5116 0 0 0

1630 2588 2297 0 1870 1155 1010 641 0

438 1819 1223 0 1530 0 1392 1087 0

0 1739 1057 0 1497 0 1416 1139 0

0 3278 2602 0 2654 605 2592 1597 0

0 3246 3007 0 1802 1363 1589 593 0

0 2470 1227 414 666 0 1200 668 0

2564 6065 5479 1452 1631 2015 0 0 0

0 2836 1118 1423 1569 0 1826 586 2323

0 9612 9399 0 0 6460 0 0 0

0 10607 10225 0 0 3584 0 0 0

2681 10807 10720 9850 0 8325 0 0 2066

2919 5381 4430 0 0 853 0 0 0

0 3372 1863 0 684 0 2086 631 0

0 3816 2696 0 991 0 1409 0 0

4899 5729 5563 0 0 3360 0 0 0

1261 3625 3506 0 0 1854 0 0 0

644 3969 3747 1731 0 1118 0 0 837

0 2645 2174 491 0 0 1256 0 0

0 3919 2637 0 0 0 2770 1564 825

0 7587 3898 0 0 0 3379 0 0

0 5555 4640 0 0 0 0 0 0

4622 6685 5685 0 1281 3053 1386 0 0



X269.385 X270.86 X276.075 X276.82 X278.94 X279.245 X279.875 X280.29 X281.06

0 1897 2020 3484 1688 3624 2392 3514 0

0 1659 2470 4334 1632 4744 2606 4523 0

1854 3121 2246 5305 3351 5311 2977 5308 0

618 1222 793 2262 407 2271 862 2268 0

0 813 304 2001 0 2051 0 2037 0

0 1287 973 3393 0 3394 1047 3388 0

0 3906 2846 4460 2746 4460 3156 4460 1677

0 5339 3831 5587 4832 5594 3953 5594 2345

0 1169 1002 2580 678 2588 1451 2588 0

534 750 0 1814 0 1820 848 1820 0

542 1239 0 1727 0 1739 715 1739 0

0 993 810 3266 0 3278 863 3276 0

0 2459 1474 3245 887 3246 1007 3246 0

453 404 339 2464 0 2470 0 2470 0

0 1841 0 6033 2148 6073 1355 6066 0

0 1344 0 2803 0 2836 0 2836 0

0 7392 4221 9495 6200 9646 8341 9641 5802

0 2601 0 10398 3200 10629 7524 10627 3298

0 7993 5516 10775 7598 10820 9827 10818 5457

0 0 2044 5099 0 5568 1782 5480 0

0 0 680 2858 0 3424 812 3395 0

0 2248 921 3268 0 3901 633 3829 0

0 1042 2398 5644 3235 5741 3950 5740 0

0 0 1223 3546 1442 3639 2706 3628 0

0 1379 1014 3834 929 3991 2361 3982 0

0 346 0 2330 0 2739 1052 2713 0

0 0 0 3242 0 3979 1089 3951 0

0 0 0 5872 0 7756 0 7681 0

0 0 0 5109 0 5609 1982 5583 0

0 2165 2651 6022 2806 6776 3362 6733 0



X281.3 X281.54 X281.69 X281.785 X281.9 X282.075 X282.4 X282.8 X283.3

3647 3071 2851 2064 3314 3162 3607 2660 3627

4791 3771 3351 2262 4292 3899 4716 3034 4779

5311 5267 5151 4760 5307 5252 5311 4992 5311

2271 2224 1941 1912 2260 2236 2271 1869 2271

2051 1878 1441 1103 2008 1917 2051 451 2051

3394 3174 2960 2351 3349 3323 3394 3119 3394

4456 4382 4313 2271 4440 4436 4460 4405 4460

5594 5364 5220 5115 5553 5555 5594 5537 5594

2588 2478 2053 1892 2564 2232 2588 2434 2588

1820 1741 1435 1285 1807 1640 1820 1496 1820

1739 1677 1411 1276 1720 1631 1739 1271 1739

3278 3236 2927 2797 3269 3189 3278 2562 3278

3246 3175 3027 2820 3245 3191 3246 2830 3246

2470 2448 2013 1938 2467 2359 2470 1164 2470

6073 5813 4808 3633 6046 5289 6073 4904 6073

2836 2729 2154 1411 2833 2587 2836 1103 2836

9646 9368 9135 5028 9513 9457 9646 9416 9646

10629 10243 9867 3925 10484 10439 10629 10191 10629

10820 10635 10293 9916 10767 10656 10820 10723 10820

5568 4228 2431 1618 5233 4263 5565 2974 5568

3424 2834 1617 1101 3210 2772 3424 1039 3424

3900 2889 2150 1031 3600 3050 3901 1458 3901

5741 4824 3480 2000 5559 5306 5741 5462 5741

3639 3337 2925 2548 3557 3444 3639 3470 3639

3991 3523 2929 2429 3866 3628 3991 3517 3991

2739 2178 1697 1188 2491 2259 2738 2131 2739

3979 3411 2067 1736 3708 3280 3977 2261 3979

7756 5432 1660 0 7023 5122 7754 2576 7756

5609 4902 4036 3361 5358 4908 5609 4065 5609

6776 5640 4006 3628 6275 5454 6776 5302 6776



X283.57 X283.86 X284.335 X284.86 X294.815 X297.96 X298.91 X300.9 X302.835

0 1974 3487 0 1080 1672 2967 3097 1496

0 1628 4526 0 982 1933 3525 3864 1901

0 1841 5307 1027 1868 3428 5273 5277 1941

0 339 2271 0 0 1630 2201 2212 0

0 0 2046 0 0 396 1415 1878 0

0 0 3388 716 0 0 3381 3372 0

828 3784 4460 3243 0 0 4459 4456 0

1208 4805 5594 4728 2478 3614 5588 5574 3015

0 0 2588 0 0 1008 2563 2539 537

0 0 1820 0 0 717 1801 1779 0

0 0 1739 0 0 461 1687 1663 0

0 0 3275 0 0 1871 3173 3172 0

0 0 3246 0 0 1638 3221 3218 0

0 0 2470 0 0 657 2014 2390 0

0 0 6067 0 1272 2866 5883 5876 2456

0 0 2836 0 0 405 1981 2379 0

5265 8504 9639 6905 2386 3044 9482 9302 2926

3961 7474 10627 5413 0 0 10351 10098 0

5750 9622 10816 7843 3748 5310 10773 10701 4748

0 0 5513 0 0 0 4606 4849 1737

0 0 3409 0 0 0 2232 2480 0

0 0 3865 0 0 0 2723 2794 0

0 0 5736 0 941 2102 5616 5548 3128

0 1085 3620 0 0 1294 3530 3478 767

0 1108 3971 0 0 1000 3788 3693 0

0 0 2718 0 0 0 2285 2143 0

0 0 3964 0 0 0 2964 2777 0

0 0 7689 0 0 0 4246 4627 0

0 0 5579 0 0 0 4907 4736 0

0 2428 6727 0 1357 3263 5689 5456 2754



X303.04 X303.275 X304.285 X305.41 X306.13 X306.33 X307.385 X308.295 X309.32

1374 3558 3263 3499 3086 2972 3472 2685 3470

1290 4516 4192 4498 3661 3443 4471 2894 4511

1009 5307 5272 5307 5087 5255 5307 5060 5310

374 2269 2242 2269 2250 2192 2268 1909 2268

0 2042 1997 2037 1987 1907 2033 1383 2030

0 3390 3369 3392 3284 3160 3388 1395 3367

0 4460 4459 4460 4303 4378 4458 3887 4448

2848 5594 5587 5594 5405 5436 5594 4908 5590

0 2588 2569 2581 2558 2262 2578 1547 2563

0 1820 1811 1816 1786 1645 1812 1137 1792

0 1739 1731 1735 1711 1619 1721 1009 1719

0 3276 3253 3278 3269 3234 3274 2415 3276

504 3246 3226 3246 3238 3195 3246 2641 3246

0 2470 2389 2470 2410 2431 2470 2279 2470

0 6069 5807 6071 4967 5841 6069 5305 6067

0 2836 2688 2836 2793 2714 2836 2316 2836

2486 9646 9598 9640 5420 9331 9625 8824 9592

0 10629 10530 10622 8817 9877 10620 8738 10595

5443 10819 10798 10814 7957 10444 10814 9730 10792

0 5510 5066 5489 2342 3546 5487 1496 5447

0 3404 3204 3401 2845 2315 3398 965 3373

0 3852 3459 3832 3202 2220 3824 739 3816

2116 5738 5613 5736 3762 4804 5732 3559 5691

940 3632 3562 3621 3151 3276 3619 2728 3611

745 3984 3886 3980 3315 3434 3959 2555 3959

0 2722 2537 2709 1420 2024 2708 1658 2676

0 3964 3683 3933 3017 3052 3914 2026 3900

0 7695 6479 7635 5160 4009 7588 1125 7557

0 5591 5203 5560 4711 4604 5545 3778 5545

2133 6746 5802 6702 4752 4965 6665 4226 6678



X310.495 X314.815 X316.915 X318.91 X321.035 X327.395 X328.105 X329.3 X331.315

1960 3014 1663 3124 0 2357 1579 1067 3298

2150 3609 1854 4100 0 2647 541 906 4230

5094 5292 4126 5299 2303 2169 0 0 5287

1744 2233 1217 2228 652 994 0 0 2253

1212 1881 0 1985 0 468 0 0 2011

1284 3375 1678 3357 0 1778 2025 1295 3379

3206 4457 4142 4443 0 2297 2278 2507 4460

4316 5564 5349 5573 2600 3141 2825 3032 5594

1439 2569 1396 2556 0 1005 0 1101 2576

1104 1798 377 1798 0 1107 0 845 1816

1007 1719 241 1697 0 927 0 718 1736

2512 3223 1185 3250 719 1713 0 1214 3269

2550 3229 1938 3231 926 1536 0 1470 3242

2278 2371 539 2451 473 352 0 0 2457

5325 5917 3428 5961 1292 0 0 0 5938

2373 2501 0 2603 0 0 0 0 2813

6059 9322 7942 9079 0 8677 7715 5311 9596

5442 9983 5799 9595 0 7676 9453 3162 10528

7359 10569 9060 10716 0 9601 9134 4137 10801

0 3685 1315 5077 0 1258 0 0 5147

0 1909 0 2848 0 1232 0 0 3258

0 2263 0 3121 0 1002 0 0 3551

0 4900 3734 5586 0 3169 1151 1490 5696

1319 3132 2100 3480 0 2561 1203 1210 3597

1419 3065 1392 3765 0 2488 0 1041 3919

913 1079 0 2291 0 1425 0 0 2523

1062 1672 0 3203 0 1881 0 0 3768

0 1945 0 6072 0 0 0 0 6785

2745 4036 0 4982 0 1835 0 0 5153

3497 5070 3592 5707 0 3079 1141 0 5811



X332.35 X333.105 X333.405 X335.29 X335.41 X337.475 X344.125 X346.16 X356.86

1126 2145 1180 0 2013 0 3210 2214 2961

1092 2499 1305 0 2434 0 3040 1884 3778

0 3357 0 0 4111 1133 4554 3874 5290

0 1833 803 0 1631 0 2186 1955 2206

0 934 0 0 878 0 1787 1339 1920

1299 0 1596 0 1932 0 3286 2700 3326

2629 2009 3131 0 3383 0 4432 4065 4444

2622 4818 4145 0 4458 2425 5420 3654 5564

0 971 0 853 1345 0 2308 1937 2560

0 992 0 909 956 0 1729 1443 1787

0 986 0 488 904 0 1657 1424 1702

0 2549 2144 512 2631 0 3256 2840 3229

0 2690 2148 0 2695 700 3220 2879 3223

0 966 0 0 1404 0 2065 1501 2421

0 0 0 0 3156 0 3319 1493 5845

0 498 0 0 1150 0 2141 1961 2344

5749 3204 6109 0 6986 0 8116 4147 8917

3740 0 3902 0 6733 0 9225 6741 9146

4891 7406 6420 0 8229 2870 9608 2752 10608

0 0 0 0 2326 0 0 0 4634

0 1094 0 0 1446 0 1604 1792 2342

0 631 0 0 1374 0 1649 1812 2494

1269 939 1252 0 2362 0 2813 0 5366

1004 2084 1225 0 1998 0 2433 1824 3306

0 1835 986 0 2228 0 2357 1831 3347

0 938 0 0 1450 0 0 0 1768

0 1307 0 0 1935 0 1234 1239 2215

0 0 0 0 2231 0 0 0 3787

0 1580 0 0 3059 0 3453 1799 4335

0 2571 0 0 3757 0 4402 0 5397



X359.025 X361.35 X375.325 X378.88 X379.29 X391.29 X394.825 X403.355 X405.31

0 756 0 0 0 2255 0 1121 154

0 1317 0 0 0 3170 0 1022 234

0 1463 3163 0 1960 4437 3514 4902 1972

0 1137 816 0 0 2044 798 1353 0

0 0 0 0 0 1092 0 443 0

0 0 0 0 0 0 1594 0 0

2910 0 1413 2962 0 0 3999 2470 0

3589 0 3661 4540 0 1669 5191 4132 0

0 1470 0 0 0 1571 770 1054 0

0 1655 432 0 702 1727 0 1113 644

0 854 437 0 651 1487 0 1080 622

0 2686 966 0 0 2943 666 1550 0

0 0 1464 0 0 2211 1486 1756 0

0 396 354 0 0 1561 0 1404 0

0 4142 0 0 1564 3382 1801 2643 0

0 1002 446 0 1156 1996 0 1609 1128

6118 0 2456 7863 0 0 7075 5721 0

3494 0 0 6403 0 0 4526 4147 0

5507 0 3404 9131 0 2955 7407 6925 0

0 0 0 0 0 2007 0 0 0

0 0 0 0 0 2243 0 0 0

0 0 0 0 0 1841 0 0 0

0 2429 0 1942 0 1375 0 0 0

0 913 0 1064 0 1926 0 0 0

0 0 0 0 0 1631 0 0 0

0 0 0 0 0 1680 0 465 0

0 0 0 0 0 2407 0 0 0

0 0 0 0 0 1579 0 0 0

0 0 0 0 0 1278 0 0 0

0 2963 0 2023 0 3296 2061 0 0



X415.35 X416.76 X417.34 X418.395 X419.39 X436.335 X437.33 X439.36 X441.345

0 0 2682 1979 3017 3016 0 0 2163

0 0 3660 1372 4059 3516 1062 0 2896

1813 0 5227 3900 5283 5125 1286 1815 5228

0 0 2198 1004 2241 2200 0 0 2133

0 0 1764 0 1996 1807 0 0 1446

0 0 1480 1295 2934 3244 0 0 743

0 772 3244 3955 4209 4415 0 0 1079

0 0 5178 5217 5533 5566 0 0 5112

813 0 2265 1619 2530 2360 640 726 2386

716 0 1790 1439 1820 1704 703 659 1734

577 0 1702 1239 1733 1676 586 576 1540

0 0 3240 2604 3264 3231 599 0 3202

0 0 3118 2611 3236 3197 0 0 3084

0 0 2346 659 2465 2207 0 0 2311

0 0 5426 1971 5921 4244 0 0 5438

0 0 2635 886 2802 2174 0 0 2271

0 6619 7083 8426 9019 9209 0 0 3287

0 4357 5946 6884 8595 9320 0 0 0

0 4971 8838 9190 10222 10423 0 0 7418

0 0 3261 0 4375 2931 0 0 3052

0 0 2653 0 3076 2492 0 0 1518

0 0 2517 0 3298 2218 0 0 965

0 0 3289 0 4768 4738 0 0 4546

0 0 3081 1454 3459 3378 0 0 3068

0 0 2758 1326 3530 3353 0 0 2311

0 0 2118 0 2441 1806 0 0 1482

0 0 3108 0 3663 2845 0 0 1580

0 0 3463 0 6069 1980 0 0 1592

0 0 2892 0 4414 4468 0 0 2707

0 0 4304 2365 5055 4936 0 0 4601



X446.375 X462.345 X464.37 X480.345

0 1922 2597 1196

0 1935 2417 2177

2048 2725 5159 909

0 1520 2124 642

0 443 1663 0

0 0 2366 0

1279 2834 3948 0

3031 4815 5433 0

0 1372 2016 0

0 1139 1512 0

0 1001 1463 0

0 2650 3136 0

0 2548 3123 0

0 501 2344 0

0 0 4811 0

0 0 2317 0

3546 4979 8051 0

0 2615 6285 0

4180 7371 9583 0

0 0 0 0

0 0 630 693

0 0 0 0

0 0 1881 0

0 1405 2354 0

0 1457 2021 0

0 0 1005 0

0 0 1262 499

0 0 0 0

0 0 3449 0

0 2400 4262 0



X199.935 X200.155 X200.975 X201.92 X203 X203.775 X204.055 X204.795

Ctrl 3196 0 3206 3207 3203 747 2719 2572

./AVA 587 1 2853 613 2865 2869 2867 696 2503 2416

./AVA 587 2 2525 560 2579 2579 2575 0 1606 1709

./AVA 587 3 2204 1069 2231 2233 2229 653 1902 1671

./AVA 593 1 3846 723 3924 3925 3912 0 1957 2102

./AVA 593 2 4561 0 4619 4625 4613 0 2404 2659

./AVA 594 1 3716 1264 3732 3734 3734 0 2623 2154

./AVA 594 2 3439 1297 3469 3470 3466 0 2348 2100

./AVA 594 3 3488 895 3531 3536 3533 0 1446 1656

./PTX 576 1 4174 1406 4429 4453 4407 2488 2840 2785

./PTX 576 2 2242 271 2334 2337 2328 504 1469 955

./PTX 576 3 3002 943 3105 3105 3094 1610 2099 2029

./PTX 577 1 4033 1049 4068 4075 4065 1237 3069 3258

./PTX 577 2 4491 0 4578 4584 4580 766 2124 2361

./PTX 577 3 4681 0 4744 4747 4741 1725 2464 2829

./PTX 586 1 2872 612 3019 3023 3008 1553 2341 2466

./PTX 586 2 3036 609 3093 3096 3091 1709 2273 2530

./PTX 586 3 3095 906 3193 3196 3189 2022 2458 2577



X205.145 X205.81 X205.99 X206.17 X206.955 X207.12 X207.835 X208.155 X208.955

0 1717 0 1153 824 2608 1811 3184 1628

497 1618 474 1395 2808 2697 1763 2851 1536

0 616 0 1000 2236 2236 695 2563 728

627 853 0 1559 2077 2092 898 2220 693

0 1293 0 1043 2181 3042 0 3909 1102

0 2288 0 1249 3812 3798 0 4617 1657

1125 2130 0 1717 3637 3420 1293 3728 1811

1084 1698 0 1776 3183 3169 1118 3457 1632

0 1510 0 1176 3115 2577 805 3536 973

0 2616 0 2191 3505 3255 1674 4331 1314

371 525 0 461 1477 1547 474 2315 472

572 2070 0 1647 2322 2673 771 3063 654

0 1880 0 1759 3565 3533 1132 4064 1434

0 1856 0 1079 3911 3162 0 4572 734

0 2890 0 1028 4282 3090 0 4711 903

0 1782 521 1202 2695 2477 1376 2963 1654

0 1795 386 1243 2280 2669 1158 3074 1217

0 2268 342 1674 2703 2845 1409 3179 1136



X209.15 X209.98 X210.15 X211.185 X212.13 X212.69 X212.95 X214.125 X214.725

2937 768 2905 0 2570 2037 1128 3199 3193

2759 1496 2815 740 2713 1205 1850 2850 2861

2361 794 2442 666 2133 707 965 2553 2575

2177 809 2208 1122 2181 944 711 2226 2077

3735 923 3769 908 3262 1199 1305 3886 3906

4389 1726 4371 1058 3732 2021 2068 4611 4579

3575 2197 3566 1303 3241 2615 2802 3725 3722

3320 1876 3376 1379 3160 1484 2240 3454 3456

3148 1570 3211 989 2765 2642 1629 3518 3475

4209 1674 4256 1463 4107 2963 905 4144 4363

2049 730 2112 451 1670 1472 483 2256 2314

3001 995 2967 1243 2849 1452 665 2969 2527

3938 2027 3974 1132 3632 2433 1946 4017 4051

4031 1412 4097 0 3229 1700 1545 4508 4545

4400 1576 4401 0 3729 2280 1148 4607 4679

2866 2115 2865 741 2507 2306 1655 2900 3006

2966 2137 2994 663 2722 2304 1457 3001 3058

3101 2240 3127 1090 2976 2279 1446 3067 3079



X215.125 X216.045 X216.955 X219.835 X220.965 X221.9 X222.165 X222.745 X223.1

0 1310 3158 1699 2935 3169 0 3201 2692

0 1685 2837 2060 2721 2824 445 2863 2668

0 630 2554 1222 2172 2541 586 2579 1673

1594 535 2212 1057 1992 2209 814 2228 2052

0 852 3885 902 3453 3906 757 3923 2821

953 1554 4601 1669 4379 4615 1101 4627 4115

856 1899 3712 2366 3488 3712 1278 3728 3470

846 1682 3447 2118 3297 3452 1332 3460 3203

1365 1295 3515 1351 3161 3530 932 3536 3019

822 1584 4254 1916 4107 4040 1281 4440 3753

273 479 2280 881 1883 2238 0 2336 1588

2232 941 3057 1334 2930 3046 899 3104 2476

650 1384 4052 2043 3715 4032 816 4074 3306

849 1140 4552 1843 4010 4555 0 4582 3387

688 1371 4712 1899 4509 4673 0 4749 3689

0 1730 2948 2010 2932 2399 631 3020 2652

364 1448 3062 1759 2976 3011 581 3095 2620

1007 1731 3151 2034 3129 3092 982 3197 2850



X223.855 X224.135 X224.865 X225.095 X225.98 X226.16 X227.1 X227.3 X231.105

2720 3207 2187 2694 3198 2302 1883 2945 1807

2461 2860 2323 2757 2864 2456 2025 2822 2796

1715 2578 1438 2443 2548 1936 1612 2561 2157

1566 2232 1459 2171 2226 2104 505 2226 2029

2955 3917 1962 3201 3920 2900 2661 3913 3323

4083 4625 2887 3941 4626 3546 2632 4618 4167

2906 3733 3131 3462 3733 3224 2955 3719 3653

2795 3467 2886 3238 3469 3106 2800 3447 3355

2773 3534 2184 2803 3528 2636 1648 3531 3267

3824 4413 2786 3758 4357 3720 2791 4351 2986

1625 2333 1030 1564 2308 1389 705 2296 1639

2820 3092 1947 2504 3020 2544 603 3057 2624

3360 4074 2920 3658 4074 3325 2762 4056 2245

3800 4580 2552 3829 4585 2914 1743 4558 3935

4359 4739 3005 3736 4738 2967 1205 4697 4133

2703 3023 2390 2533 2988 2143 1688 2970 2355

2780 3087 2387 2573 3087 2332 1648 3058 2226

2946 3189 2631 2751 3189 2708 1735 3156 2602



X232.975 X235.97 X236.905 X237.74 X238.095 X238.815 X239.135 X239.73 X240.135

3190 0 3184 3191 1249 3207 2887 3192 0

2856 768 2854 2848 1716 2869 2635 2849 844

2569 575 2572 2571 1438 2581 2406 2577 657

2223 524 2224 2226 1674 2233 2080 2226 1025

3903 0 3910 3921 2048 3930 3754 3920 1142

4607 1368 4623 4621 2959 4627 3873 4623 1842

3723 1963 3729 3725 2743 3732 3652 3723 2091

3456 1757 3459 3462 2686 3475 3353 3464 1872

3532 1581 3533 3536 2333 3536 3417 3534 1544

4357 1778 4344 4393 3145 4478 3530 4423 1619

2317 0 2317 2320 646 2341 1678 2327 0

3086 1162 3095 3101 2071 3106 971 3102 1150

4064 1181 4065 4074 2384 4075 3479 4072 1047

4570 854 4573 4575 2230 4587 4161 4581 1240

4741 937 4725 4733 2112 4750 4060 4746 769

2996 1525 2987 3007 1729 3030 2672 3012 666

3082 1319 3084 3093 1731 3097 2588 3089 607

3175 1648 3177 3180 2300 3197 2798 3185 1163



X240.735 X241.11 X241.97 X242.155 X243.12 X243.86 X248.1 X252.055 X253.315

3189 3208 3208 3108 1186 1820 800 1710 3205

2868 2869 2862 2757 1103 2062 901 2100 2869

2578 2581 2559 2149 589 1133 0 1571 2581

2233 2231 2219 2194 961 941 0 1583 2230

3921 3929 3921 3619 917 1487 0 1392 3927

4621 4627 4627 4551 1878 2489 894 2496 4627

3734 3734 3717 3605 2274 2399 1366 2904 3733

3465 3475 3440 3302 2052 1942 1024 2633 3470

3534 3536 3531 3448 1111 1175 0 2064 3536

4441 4478 4209 3739 716 0 0 2235 4480

2325 2341 2266 2171 0 227 0 0 2341

3102 3104 2951 2692 572 0 0 1655 3106

4068 4075 4054 3866 1062 1928 0 1861 4074

4580 4587 4559 4378 784 2060 0 1976 4587

4746 4752 4680 4471 402 1188 0 1528 4750

3018 3030 2871 2631 635 956 513 1250 3028

3091 3096 3026 2732 419 820 0 1088 3094

3190 3197 3026 2731 839 983 0 1775 3196



X254.02 X254.375 X254.78 X255.09 X255.38 X255.78 X256.385 X256.785 X257.15

0 2765 3191 0 3208 3199 3201 3202 656

0 2739 2868 1409 2863 2868 2869 2869 0

0 2514 2576 1190 2578 2578 2581 2581 0

0 2157 2231 1314 2232 2233 2232 2233 0

0 3892 3920 1854 3930 3926 3929 3930 0

1075 4607 4620 0 4627 4627 4627 4627 1013

1395 3661 3733 2890 3729 3734 3731 3734 1234

873 3405 3466 2728 3475 3469 3473 3472 1009

1000 3503 3531 0 3535 3536 3536 3536 644

0 4179 4435 825 4479 4467 4476 4474 0

0 2212 2333 856 2341 2337 2340 2341 0

317 3013 3104 501 3106 3106 3106 3106 625

0 4013 4069 1297 4069 4073 4075 4075 725

0 4532 4577 0 4586 4584 4587 4586 0

0 4617 4745 0 4751 4744 4752 4752 0

454 2933 3019 1430 3030 3020 3030 3030 0

311 2988 3095 412 3095 3097 3097 3097 0

527 3112 3191 440 3196 3197 3197 3194 0



X257.875 X258.72 X259.125 X259.87 X260.245 X260.92 X262.025 X264.925 X266.28

3188 3137 3198 3024 1069 2655 2377 0 0

2852 2800 2840 1216 1697 2668 1406 0 0

2560 2177 2577 2270 371 2170 902 0 0

2223 2116 2219 1181 1052 1629 765 0 0

3895 3711 3917 3650 0 3567 2064 0 0

4601 4511 4623 4430 0 4481 3574 0 1038

3724 3610 3717 1051 2473 3695 2112 859 926

3446 3283 3451 2939 761 3390 1808 544 820

3530 3453 3535 2976 0 3461 1971 585 728

4393 4286 4293 3485 0 3912 2152 0 0

2306 2245 2309 0 1352 1774 304 0 0

3097 3069 3005 1290 1156 2810 975 0 0

4061 3964 4062 3539 0 3863 1371 0 0

4558 4453 4567 4142 0 4437 2149 0 0

4724 4690 4711 4050 0 4491 2261 0 0

2995 2976 2976 2311 0 2886 1296 373 0

3090 3060 3048 2423 0 2959 1204 0 0

3186 3168 3126 2419 0 3038 1280 0 0



X267.155 X270.995 X276.915 X278.71 X279.34 X279.58 X279.78 X280.04 X280.345

0 922 2996 1234 3207 0 1901 1467 3201

0 515 2779 1321 2869 0 1526 1189 2855

0 355 2451 558 2579 0 2394 652 2581

0 261 2117 0 2233 0 0 1978 2229

0 580 3823 1070 3928 777 3708 678 3928

990 580 4561 3138 4627 1785 0 4438 4627

656 1301 3653 2524 3732 1208 2031 2684 3722

784 1060 3313 2208 3474 948 1931 2226 3465

728 694 3441 2303 3535 911 0 3400 3536

0 0 3623 1908 4479 0 950 2801 4461

0 0 1948 0 2341 0 299 1064 2333

0 0 2802 1128 3105 631 0 2780 3101

0 690 3706 1252 4074 0 2390 1543 4075

0 0 4403 1986 4585 0 0 4135 4581

0 0 4436 2130 4749 0 0 3902 4746

0 617 2455 2108 3026 0 2558 372 3027

0 589 2579 1536 3097 0 0 1740 3097

0 528 2658 2105 3195 0 0 2283 3195



X280.59 X281.05 X281.315 X281.575 X281.865 X282.1 X282.4 X282.8 X283.105

0 2123 3208 2642 3104 2914 3207 2855 0

0 2187 2865 2496 2802 2713 2869 2821 0

0 2262 2570 2314 2570 2522 2581 2556 1367

0 1879 2228 2025 2198 2128 2233 2167 277

0 3464 3926 3830 3906 3854 3930 3890 1451

1121 4332 4622 4618 4619 4601 4625 4616 1913

1129 3509 3728 3614 3710 3703 3734 3713 1541

819 3154 3470 3314 3439 3422 3473 3441 2190

878 3369 3526 3468 3523 3481 3536 3531 1450

0 3547 4470 3207 4236 3742 4478 4278 498

0 716 2337 1378 2275 1501 2341 1976 0

0 1983 3106 2426 3029 2487 3104 3051 0

0 2783 4065 3616 4050 3854 4075 3982 538

0 4107 4579 4360 4559 4411 4587 4532 0

0 3936 4743 4141 4679 4436 4752 4692 0

0 2258 3010 2119 2956 2715 3029 2977 334

0 1857 3093 2276 3033 2641 3097 3056 0

0 2237 3195 2410 3127 2710 3196 3151 0



X283.365 X283.62 X283.97 X284.37 X284.82 X285.125 X288.13 X289.145 X290.16

3208 0 3154 3200 0 0 1795 3208 3201

2868 0 2686 2862 578 1186 1339 2869 2843

2578 526 2551 2581 329 1375 1374 2581 2559

2233 292 2149 2230 0 1020 1300 2233 2224

3929 1223 3889 3927 495 2521 1759 3926 3913

4626 2792 4625 4627 1984 3149 2547 4627 4621

3733 1937 3656 3724 2244 1802 2375 3734 3728

3475 1381 3396 3466 1769 1815 2400 3475 3460

3536 1859 3524 3536 1631 1603 1641 3536 3507

4480 0 4124 4461 0 2606 1429 4474 4189

2341 0 2224 2336 0 653 0 2340 2264

3106 0 2987 3095 512 1937 0 3103 2773

4075 0 3943 4074 0 2060 1026 4075 4051

4587 0 4536 4585 1155 2800 1638 4587 4536

4752 0 4603 4752 757 2581 1163 4751 4627

3030 0 2761 3030 392 1220 0 3029 2913

3097 0 2808 3095 366 1299 493 3097 2984

3197 0 2924 3195 746 1593 1096 3197 3064



X294.995 X298.06 X298.75 X299.15 X300.12 X300.83 X302.975 X303.34 X304.335

0 750 2742 3198 1719 3052 3111 3201 3188

0 1001 2785 2853 1251 2835 2715 2850 2824

0 0 2232 2579 810 2474 2228 2581 2575

0 0 1713 2228 657 2120 1844 2227 2201

0 0 3720 3918 1747 3828 3656 3928 3915

817 2889 4592 4625 3612 4586 4516 4626 4624

765 2715 3706 3720 2473 3707 3592 3722 3708

571 1875 3417 3457 2003 3413 3276 3468 3453

483 1409 3521 3533 2039 3510 3414 3535 3535

0 0 3880 4368 1275 3884 3872 4455 4197

0 0 1929 2313 0 2044 2020 2337 2261

0 0 2891 3050 1178 2887 2933 3099 3021

0 0 3914 4072 869 3968 3818 4075 4045

0 949 4499 4580 1675 4508 4317 4585 4567

0 588 4569 4736 893 4562 4403 4746 4679

0 591 2858 3003 587 2791 2773 3028 2942

0 0 2908 3079 486 2892 2881 3094 3027

0 0 2970 3167 657 2939 2963 3195 3095



X305.365 X305.96 X306.31 X307.365 X309.4 X310.42 X311.3 X314.76 X315.15

3184 2759 1086 3136 2942 0 0 1783 3187

2841 2199 604 2837 2836 783 427 2137 2852

2580 2082 698 2570 2569 0 456 1263 2579

2212 1823 499 2209 2218 555 491 676 2222

3924 3132 1628 3921 3907 1245 1014 2123 3921

4625 3972 3119 4623 4618 3463 2212 3957 4627

3715 2884 2199 3713 3715 2477 2227 2944 3719

3448 2633 1759 3447 3444 1686 1847 2448 3457

3535 2304 1813 3535 3525 2191 1954 2237 3536

4330 2368 0 4338 4369 0 0 0 4381

2301 588 0 2309 2305 0 0 0 2320

3048 1577 653 3027 3034 0 0 1002 3048

4063 2902 923 4050 4031 0 0 1664 4068

4572 3550 1497 4566 4570 1486 0 2985 4572

4705 3077 475 4716 4713 442 0 2043 4730

2991 1369 0 2983 2992 0 0 819 3011

3066 1497 0 3052 3064 0 0 711 3076

3154 1791 0 3150 3166 0 0 1027 3179



X316.115 X316.82 X318.765 X320.025 X327.1 X328.19 X329.15 X331.38 X333.13

0 1098 3150 1249 3163 2545 2554 3166 2442

0 1297 2838 683 2750 1814 1576 2773 2206

0 368 2562 0 2514 1668 1628 2554 2018

0 0 2198 0 2121 1247 1014 2120 1574

0 870 3895 499 3839 2784 2620 3813 3448

1225 3292 4614 1983 4589 4094 3766 4576 4486

845 2587 3713 1052 3687 3117 2549 3694 3457

803 2040 3453 902 3380 2668 1920 3424 2930

732 1987 3524 1002 3497 2729 2082 3507 3240

0 1183 4198 1518 3709 1834 2071 3773 2103

0 0 2273 356 1770 740 569 1990 322

0 914 3037 1301 2795 1697 1888 2869 1830

0 755 4042 678 3878 2485 1714 3775 2440

0 1726 4549 930 4429 3080 2237 4308 3187

0 1778 4697 1782 4480 2099 1425 4144 2282

0 1303 2946 1460 2628 1529 1132 2573 1423

0 888 3017 1006 2622 1540 1237 2651 1320

0 1513 3132 1688 2741 1590 1360 2715 1626



X335.295 X336.675 X337.31 X340.76 X343.095 X344.145 X346.055 X355.13 X356.93

0 2498 0 0 0 2655 1542 0 2845

1788 2464 0 0 0 1830 1462 0 2716

679 1255 0 0 0 1687 1321 0 2225

0 962 0 0 0 1428 1340 0 1735

0 2506 666 0 0 2381 2321 0 3611

2899 4248 2212 1030 1850 3409 2853 1399 4537

2593 3137 2179 1552 2211 2402 2342 1522 3655

1415 2892 1533 1233 1568 2134 2206 1071 3275

1426 2984 1808 1420 1835 1892 1737 1499 3425

0 3646 0 0 0 1289 0 0 3420

0 1536 0 0 0 0 0 0 1418

1276 2746 0 0 0 984 899 0 2648

1921 3183 0 0 0 1981 1506 0 3491

1822 3514 0 0 0 2606 1852 0 4256

701 4070 0 0 0 2005 616 0 4202

1089 2787 0 1124 0 768 0 0 2461

755 2755 0 759 0 703 0 0 2499

1025 2957 0 1070 0 911 0 0 2623



X357.23 X359.285 X361.33 X375.245 X377.4 X378.8 X379.185 X391.28 X393.28

0 0 712 2426 0 0 0 2694 0

0 545 2256 2562 0 0 0 2612 632

0 0 1721 2491 0 0 0 2455 0

0 0 529 2102 491 0 0 2030 0

0 0 853 3714 0 0 0 3778 0

1259 1232 3487 4545 2035 1464 1697 4554 1826

1475 978 3070 3682 1648 1735 1672 3679 1756

964 0 2213 3400 902 1041 1685 3380 1645

1252 812 1969 3453 1531 1288 1893 3497 1826

0 0 681 3202 0 0 1083 3464 870

0 0 358 757 0 0 0 1200 0

0 783 1773 2411 0 0 1147 2680 1087

0 0 2646 3193 0 0 0 3670 0

0 0 2854 4013 0 0 1518 4344 1393

0 0 1801 3548 0 0 1021 4116 871

0 0 1936 2096 0 0 962 2429 733

0 441 1522 2127 0 0 1014 2380 837

0 698 2019 2450 0 0 1398 2657 1154



X399.11 X405.21 X415.2 X417.195 X418.39 X419.295 X420.33 X435.33 X436.295

0 0 0 2387 2455 3078 0 0 3059

0 0 1004 2649 2501 2832 433 0 2801

0 0 598 2489 2264 2573 0 0 2557

0 0 0 1963 1915 2194 0 0 2191

0 998 853 3552 3630 3900 749 0 3906

1143 1716 2083 4506 4586 4620 2324 1301 4621

1167 1469 2454 3698 3657 3716 2014 1207 3708

765 1581 2214 3402 3200 3445 1413 972 3438

991 1849 1907 3500 3454 3534 1816 1109 3529

0 0 815 3699 2501 4184 0 0 3829

0 0 0 1034 596 2189 0 0 2072

0 0 945 2913 2414 3025 0 0 2727

0 0 874 3575 2924 4024 0 0 3932

0 0 1477 4320 3990 4548 0 0 4521

0 0 919 4017 3381 4646 0 0 4572

0 0 1047 2704 1812 2938 0 0 2683

0 612 994 2558 1791 2994 0 0 2779

0 870 1285 2915 2035 3124 0 0 2795



X437.205 X439.125 X441.215 X462.31 X464.31 X478.34 X480.34 X481.34 X483.34

2349 0 1529 2544 1416 0 2032 0 0

2294 655 2523 2030 1945 0 1419 0 599

2233 0 1683 1933 1991 0 1317 0 0

1635 0 1048 1259 595 0 791 0 0

3514 0 2350 3390 2841 0 1931 0 0

4504 1762 4233 4493 4297 1771 3633 1259 1898

3647 1917 3632 3344 2905 1528 2784 1307 1402

3236 1549 3297 2848 2765 1227 2323 908 788

3369 1656 3227 3179 3007 980 2229 1290 1182

1971 0 2516 2144 0 0 1165 0 0

0 0 444 0 0 0 0 0 0

1756 890 2061 1136 0 0 885 0 472

2394 0 2562 2724 0 0 1257 0 0

3529 1191 3600 3738 1661 0 2099 0 0

2668 737 3373 2970 609 0 1262 0 0

1301 777 2431 1377 0 0 0 0 650

1165 691 2112 1282 0 0 0 0 525

1604 1163 2536 1629 0 0 0 0 703


