
 1 

Improving existing analysis pipeline to identify and analyze cancer 
driver genes using multi-omics data 
 
Quang-Huy Nguyen1.2  and Duc-Hau Le1,3,* 
1Department of Computational Biomedicine, Vingroup Big Data Institute, Hanoi, Vietnam. 
2Faculty of Pharmacy, Dainam University, Hanoi, Vietnam. 
3School of Computer Science and Engineering, Thuyloi University, Hanoi, Vietnam. 

 
 
 
 

Supplementary Information 

User manual 
  

admin
Cross-Out

admin
Inserted Text
College of Engineering and Computer Science, VinUniversity



 2 

 

Table	of	Contents	

1. Introduction .......................................................................................................................... 3	

2. Dataset ................................................................................................................................... 3	
3. Identification of driver genes using OncodriveFML and OncodriveCLUSTL (Fig.1, 
Stage 1; Step 1) ......................................................................................................................... 4	
3.1. Identification of driver genes using OncodriveFML ..................................................... 4	

3.2. Identification of driver genes using OncodriveCLUSTL .............................................. 5	
4. Enrichment Analysis using g:Profiler (Fig.1, Stage 2; Step 2) ........................................ 6	

5. Individual gene-clinical feature association analysis (Fig.1, Stage 2; Step 3)................. 7	
5.1. Association between individual driver genes and survival rate ................................... 7	

5.2. Identify which driver genes are significantly correlated with other clinical features 8	
6. Co-expressed module-clinical feature association analysis using WGCNA (Fig.1, 
Stage 2; Step 4) ......................................................................................................................... 9	
6.1. Weighted co-expression driver gene network construction. ....................................... 10	

6.2. Detect associations of functional modules to clinical features, identification of 
significant genes and hub genes in each of those modules. ................................................ 13	

7. Patient stratification (Fig.1, Stage 2; Step 5) ................................................................... 16	
7.1. Pre-processing clinical data & CNVs data ................................................................... 16	

7.2. Patient stratification by the identified driver genes ..................................................... 17	
7.3. Comparision between the identified patient groups .................................................... 20	

8. References ........................................................................................................................... 25	
 
 
 
 
 	



 3 

1.	Introduction	
The cumulative of genes carrying mutations is vital for the establishment and development of 
cancer. However, this line of driver gene exploring research has selected and used types of 
tools and models of analysis unsystematically and discretely. Also, the previous studies may 
have neglected low-frequency drivers and seldom predicted subgroup specificities of identified 
driver genes. In this document, we propose an improved driver gene identification and analysis 
pipeline integrating state-of-the-art tools to solve the above challenges (Fig.S1).  
 

 
Figure S1. Improved analysis pipeline for identification and analysis of driver genes. The scheme 
comprises two stages: identification and analysis, in which the former uses the OncodriveFML and 
OncodriveCLUSTL to identify driver genes with somatic mutation data as input, and the latter performs 
the four most widely focused analyses to deal with those driver genes. Abbreviation: CNV, Copy 
number variations. 
 
Here, we use the METABRIC breast cancer (BRCA) dataset 1 as an example to demonstrate 
the use of our work to (Stage 1) identify and (Stage 2) analyze the driver genes. 
 

2.	Dataset	
The breast cancer data are downloaded from the cBioPortal for Cancer Genomics 
(http://www.cbioportal.org) 2. It contains METABRIC breast cancer cohort assembled from 
2,509 primary breast cancer patients with 548 matched normals in the United Kingdom and 
Canada 3. The gene expression microarray data are generated using the Illumina Human v3 
microarray for 1,904 samples, while the CNVs data are measured on the Affymetrix SNP 6.0 
platform for 2,173 samples, and 17,272 somatic mutations of 173 genes for 2,369 samples are 
detected on the Illumina HiSeq 2,000 platform. 
 

OncodriveFML &

OncodriveCLUSTL

Enrichment Analysis Using 

g:Profiler

Somatic Mutation

Significantly enriched 

biological terms & pathways

Identified Driver Genes

Identified Driver Genes

Enrichment Gene-Clinical Feature
Association

Gene Module-Clinical
Feature Association Patient Stratification

Association Analysis Tools

(e.g., survival analysis, correlation)

Significant 

gene-clinical feature 

associations

The Expression Profile Of 

Identified Driver Genes  

and Clinical Data

Gene module Identification Tool

(i.e., hierarchical clustering)

Gene module-clinical feature

Association Analysis Tools using

WGCNA

Significant 

gene module-clinical feature 

associations

The Expression Profile Of 

Identified Driver Genes  

and Clinical Data

Patient group Identification Tool

(i.e., hierarchical clustering)

Association Analysis Tools Between

The Patient Groups

(e.g., survival analysis, correlation)

Patient groups 

with significant difference 

in clinical features 

The CNV Profile Of 

Identified Driver Genes 

and Clinical Data

Stage 1.IDENTIFICATION

Step 1

Stage 2.ANALYSIS
Step 2 Step 3 Step 4 Step 5



 4 

Each data type is a tabular file with a header that must contain, at least, the following columns: 
 
File Data 

type 
Format (Data fields) 

data_mutations_extended.
txt 

Mutatio
n 

- For OncodriveFML: 
http://bbglab.irbbarcelona.org/oncodrivefml/faq#qfi
lesformat 
- For OncodriveCLUSTL: 
http://bbglab.irbbarcelona.org/oncodriveclustl/faq#
qmutfileformat 

data_mRNA_median_Zsc
ores.txt 

Gene 
expressi
on 

- Hugo_Symbol: gene names 
- The remaining columns are BRCA patients 

data_CNA.txt Copy 
number 
aberrati
on 

- Hugo_Symbol: gene names 
- The remaining columns are BRCA patients 

data_clinical_patient.txt Clinical 
feature 
(traits) 

1. PATIENT_ID 
2.LYMPH_NODES_EXAMINED_POSITIVE: 
Number of positive lymph nodes 
3. stage: Tumor stages 
5. NPI: Nottingham prognostic index 
6. OS_MONTHS: Follow-up months 
7. OS_STATUS: BRCA patients’ status 

Table 1. The description of data used in the study. The format of all data types used in the 
study. 

3.	Identification	of	driver	genes	using	OncodriveFML	and	
OncodriveCLUSTL	(Fig.1,	Stage	1;	Step	1)	
Identification of driver genes in BRCA is implemented using the two tools OncodriveCLUSTL 
1.1 4 and OncodriveFML 1.0 5. They are available as a friendly web-based application at 
http://bbglab.irbbarcelona.org/oncodriveclustl/analysis and 
http://bbglab.irbbarcelona.org/oncodrivefml/analysis#, respectively. Both of them require a 
specific format data that can refer to the heading ?FAQ at each below the corresponding 
website. In general, the requirement is simple, and the somatic mutation data from popular 
omics data sources (e.g., METABRIC and TCGA) meets it at the origin format; therefore, 
directly upload the file data_mutations_extended.txt to each tool. 

3.1.	Identification	of	driver	genes	using	OncodriveFML	
 
The parameters of the OncodriveFML tool are set to default values with the exception of the 
sequencing parameter (targeted sequencing) and the scoring system CADD v1.3 6 (the latest 
version at the time of this writing). 
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Figure S2. OncodriveFML result. List of driver genes is predicted by OncodriveFML from the 
analysis data. A comprehensive list of driver genes can be found from the downloaded tsv file, <day 
of the file created>_input-oncodrivefml.tsv. Red gene names indicate driver genes with Q-value < 
0.1 (Benjamini-Hochberg procedure), and green gene names indicate driver genes with Q-value < 0.25. 
X and Y-axis mean negative log10-transformation of P-value. 
 

3.2.	Identification	of	driver	genes	using	OncodriveCLUSTL	
 
The parameters of the OncodriveCLUSTL tool are set to default values with the exception of 
the selection of ‘concatenate’ option. 
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Figure S3. OncodriveCLUSTL result. List of driver genes is predicted by OncodriveCLUSTL. A 
comprehensive list of driver genes can be found from the downloaded compressed zip file, <day of the 
file created>_compressed_file.zip. Gene names predicted to be driver genes if Q-value < 0.01 
(Benjamini-Hochberg procedure). Names in bold denote genes annotated in the Cancer Gene Census 
(CGC) database. 
 
As a result, collectively combining two sets of driver genes from the above figures, a total of 
35 unique driver genes are detected by the two tools (Supplementary File 2, Table S1). Through 
the validation process, 31 bona fide driver genes are reserved for downstream analyses. 

4.	Enrichment	Analysis	using	g:Profiler	(Fig.1,	Stage	2;	Step	2)	
 
The study identifies significantly enriched GO biological processes and KEGG pathways using 
g:Profiler to characterize the functional enrichment of all driver genes. Specific procedures are 
shown as follows: 
Firstly, users can open the g:Profiler website at https://biit.cs.ut.ee/gprofiler/gost. Input is the 
31 identified driver genes (Supplementary File 2, Table S1). In ‘Data sources’ tab, we only 
choose ‘GO biological process’ option under the sub-tab ‘Gene Ontology’ and ‘KEGG’ option 
under the sub-tab ‘biological pathways’. The remaining options are excluded or kept as they 
are (i.e., default). Finally, click ‘Run query’ to get the results. A full list of enriched GO terms 
and pathways can be downloaded by clicking the button ‘CSV’ in the ‘Detailed Results’ tab. 
The downloaded result is a csv file, gProfiler_<organism>_<day of the file created>_<time 
of day of the file created>__intersections.csv. 

As a result, g:Profiler yields 483 significantly enriched biological processes 
(Supplementary File 2, Table S4) and 71 significantly enriched KEGG pathways 
(Supplementary File 2, Table S5). 
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Because g:Profiler is an up-to-date gene enrichment analysis tool, the results can not be 
reproduced if using in a different version. The version of g:Profiler in this work is 
e100_eg47_p14_7733820. Users can find the older versions from 
https://biit.cs.ut.ee/gprofiler/archives/. 

5.	Individual	gene-clinical	feature	association	analysis	(Fig.1,	Stage	2;	
Step	3)	
Firstly, we must setup and load some essential libraries and data objects. Then, we pre-process 
gene expression data & clinical data. Specifically, we only retain 1,904 BRCA patients having 
both clinical and gene expression data for the 31 identified driver genes. 
 
#Pre-processing gene expression data & clinical data 
source("1.Clinical-preprocess.R") 

5.1.	Association	between	individual	driver	genes	and	survival	rate	
For step 3 (Fig. S1, stage 2), source the R.script (2.Clinical-SA.R) that contains: 
• Prepare the data by creating event vector for median expression data, in which values 
above the median are assigned as up-regulated (= “up”), and values below the median are 
assigned as down-regulated (= “down”). This can be done using the function apply().  
• The function ‘geneSA’ (https://github.com/huynguyen250896/geneSA) implements a 
log-rank test in univariate Cox regression analysis with a proportional hazards model to 
associate the expression of each driver gene with the overall survival of the patients 
automatically and separately. The function will report hazard ratios (column ‘HR’), 95% 
confidence intervals (column ‘confidence_intervals’), P-values, and Q-values of each driver 
gene. 
 
#library 
if(!require(devtools)) install.packages("devtools") 
devtools::install_github("huynguyen250896/geneSA") 
library(geneSA) 
if(!require(rlist)) install.packages("https://cran.r-
project.org/src/contrib/Archive/rlist/rlist_0.4.tar.gz", repos = 
NULL); library(rlist) 
  
#check what driver genes are significantly correlated with survival 
rate 
source("2.Clinical-SA.R") 
 
Table 2 shows nine driver genes significantly correlated with survival rate. 
 

Gene HR (95% CI) P-value Q-value 
AKT1 1.30 (1.15-1.46) 1.48´10-05 2.29´10-04 

KMT2C 1.24 (1.10-1.40) 3.47´10-04 2.69´10-03 
KRAS 1.20 (1.07-1.35) 2.30´10-03 1.19´10-02 
PTEN 0.85 (0.76-0.96) 7.92´10-03 2.73´10-02 
TBX3 0.84 (0.75-0.95) 4.91´10-03 1.90´10-02 

PIK3R1 0.84 (0.75-0.95) 4.37´10-03 1.93´10-02 
MAP3K1 0.82 (0.73-0.93) 1.23´10-03 7.61´10-03 
SMAD4 0.78 (0.69-0.88) 4.85´10-05 5.01´10-04 
MAP2K4 0.76 (0.67-0.85) 4.57´10-06 1.42´10-05 
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Table 2. Association between the expression of driver genes and the overall survival of BRCA 
patients. Three genes including AKT1, KMT2C, and KRAS with above-median expression level and six 
genes including PIK3R1, PTEN, SMAD4, MAP3K1, MAP2K4 and TBX3 with below-median expression 
level significantly associated with a shortened lifespan.  HR is a measure that helps determine whether 
either of two expression levels of each driver gene will result in an increased (i.e., HR > 1) or decreased 
(i.e., HR < 1) probability of experiencing the defined event (i.e., death), at any time (below-median 
expression level is the reference). P-value is computed by the Cox proportional hazard method to test 
the statistical difference of the given results. Q-value is computed following the Benjamini-Hochberg 
procedure. HR: hazard ratio. 95% CI: 95% confidence interval. 

Below are the results gained from the KMplot database: 

 

Figure S4. Kaplan-Mayer survival curves in the KMplot dataset. Five driver genes are predicted by 
the KMplot databse, including MAP2K4, PIK3R1, KRAS, MAP3K1, and TBX3. 

5.2.	Identify	which	driver	genes	are	significantly	correlated	with	other	clinical	features	
We identify which driver genes are significantly correlated with other clinical features, 
including numbers of lymph nodes, the Nottingham prognostic index, and the pathologic 
stages. Specifically, ‘computeC’ (https://github.com/huynguyen250896/computeC) computes 
the correlation coefficients between individual drivers and clinical features based on 
Spearman’s rank correlation (default value). The function will report correlation coefficients 
(column ‘CC’), P-values, and Q-values of each driver gene with each clinical feature of interest. 
 
#library 
devtools::install_github("huynguyen250896/computeC") 
library(computeC) #compute the correlation 

 
#check what driver genes are significantly correlated with three other 
clinical features 
source("3.Clinical-corr.R") 
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Table 3. Association between the expression of driver genes and the other clinical features. 
ARID1A, RUNX1, GATA3, TBX3, NF1, MAP2K4, PTEN, SMAD4, MAP3K1 and SF3B1 significantly 
associated with all of the three clinical features. The column ‘CC’ (i.e., correlation coefficient denoted 
by r) measures the degree of association between the two variables: each driver gene versus each clinical 
feature. It takes on values ranging between -1 and +1. When r = 0, there is no relationship between the 
two variables. When r closer to 1, there is an increasingly strong positive (uphill) relationship between 
the two variables, otherwise is an increasingly strong negative (downhill) relationship between the two 
variables. CC: correlation coefficient. 

6.	Co-expressed	module-clinical	feature	association	analysis	using	
WGCNA	(Fig.1,	Stage	2;	Step	4)	
 
We first install all the required packages before the analysis and set up a basic setting following 
the WGCNA’s recommendation. 
 
#library 
install.packages(c("dynamicTreeCut","flashClust","Hmisc","WGCNA")) 
 if(!requireNamespace("BiocManager", quietly = TRUE)) 
install.packages("BiocManager") 
 
BiocManager::install("preprocessCore") 
library("dynamicTreeCut").  # Module identification 
library("flashClust") # Fast implementation of hierarchical 
clustering 
library("Hmisc")  #perform variables clustering 
library("WGCNA")   #WGCNA tool 
library(purrr)     #data processing 
library(cluster)    # compute agglomerative coefficient 
 
# The following setting is important, do not omit. 
options(stringsAsFactors = FALSE);    
enableWGCNAThreads()# Allowing parallel execution 

Gene 
Number of lymph nodes Nottingham prognostic index Cancer Stage 

CC P-value Q-value CC P-value Q-value CC P-value Q-value 
ARID1A -0.06 0.01 0.02 -0.13 1.31´10-8 3.20´10-8 -0.10 1.13´10-4 4.73´10-4 
RUNX1 -0.14 1.65´10-9 3.63´10-8 -0.25 2.20´10-16 2.42´10-15 -0.11 2.97´10-5 3.12´10-4 
GATA3 -0.01 1.27´10-5 9.31´10-5 -0.28 2.20´10-16 4.84´10-15 -0.12 3.83´10-5 2.68´10-4 
TBX3 -0.10 9.10´10-6 1.00´10-4 -0.18 1.44´10-15 6.31´10-15 -0.12 6.12´10-5 3.21´10-4 
NF1 -0.09 5.77´10-5 3.17´10-4 -0.08 2.23´10-4 3.07´10-4 -0.07 6.36´10-3 0.02 

MAP2K4 -0.08 4.61´10-4 1.69´10-3 -0.22 2.20´10-16 1.21´10-15 -0.07 6.99´10-3 0.02 
PTEN -0.08 6.02´10-4 1.89´10-3 -0.23 2.20´10-16 1.61´10-15 -0.11 2.93´10-5 6.15´10-4 

SMAD4 -0.06 0.01 0.03 -0.10 1.79´10-5 3.29´10-5 -0.08 1.48´10-3 3.89´10-3 
MAP3K1 -0.06 0.01 0.03 -0.16 6.35´10-13 2.00´10-12 -0.09 7.16´10-4 2.15´10-3 

SF3B1 0.09 7.83´10-5 1.02´10-3 0.07 1.78´10-3 3.31´10-3 0.10 8.48´10-5 1.19´10-3 
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6.1.	Weighted	co-expression	driver	gene	network	construction.	

The function ‘pickSoftThreshold’ helps to find the optimal soft threshold tomake the co-
expression matrix of the identified drivers fit a scale-free topology model. The set of soft-
thresholding powers is default following the recommendation of WGCNA’s authors. As shown 
in Fig.S5, the work recommends choosing a point at which R2 reaches the peak for the first 
time (y-axis), as described in the paper 7. From that, we choose the soft-power b = 6. 
 
#create  clinical_exp1 for this step 
clinical_exp1 = clinical_exp[,-c(3,5:6)] #remove OS_MONTHS, 
OS_STATUS and status columns 
  
# Choose a set of soft-thresholding powers 
powers = c(c(1:10), seq(from = 12, to=20, 
by=2))#1,2,3,4,5,6,7,8,9,10,12,14,16,18,20 
# Call the network topology analysis function 
sft = pickSoftThreshold(t(exp_dri_norm), powerVector = powers, 
verbose = 5, networkType = "signed") 
# Plot the results: 
sizeGrWindow(9, 5) 
cex1 = 0.9; 
# Scale-free topology fit index as a function of the soft-
thresholding power 
plot(sft$fitIndices[,1], -
sign(sft$fitIndices[,3])*sft$fitIndices[,2], 
        xlab="Soft Threshold (power)",ylab="Scale Free 
Topology Model Fit,signed R^2",type="n", 
        main = paste("Scale independence")); 
  text(sft$fitIndices[,1], -
sign(sft$fitIndices[,3])*sft$fitIndices[,2], 
        labels=powers,cex=cex1,col="red"); 
# this line corresponds to using an R^2 cut-off of h 
abline(h=0.24,col="red") 
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Figure S5 | Analysis of network topology for various soft-thresholding powers. The graph shows 
the scale-free fit index (y-axis) as a function of the soft-thresholding power b (x-axis). 

We now calculate the adjacencies using the function ‘adjacency’ with identified soft-power b 
= 6, then turn the adjacency to Topological Overlap Matrix (TOM) with the function 
‘TOMsimilarity’ before calculating the corresponding dissimilarity:  

# Calculate the adjacencies 
softPower = 6; 
adjacency = adjacency(t(exp_dri_norm), power = softPower, 
                      type = "signed"); 
 
# Turn adjacency into topological overlap 
TOM = TOMsimilarity(adjacency, TOMType = "signed"); 
dissTOM = 1-TOM 
 
The  functions ‘pickSoftThreshold’, ‘adjacency’, and ‘TOMsimilarity’ use respectively the 
arguments ‘networkType’, ‘type’, and ‘TOMType’ to allow the user to construct a signed or 
unsigned network. 
 
Next, detect the co-expressed modules and plot them: 
(i) Creation of a gene tree 
• Perform agglomerative hierarchical clustering using the ‘agnes’ function to get the 
agglomerative coefficient. As a result, Ward’s method (i.e., ward.D2) is the best solution. 
• The function ‘hclust’ creates a gene tree (Fig.S6 and the top side of Fig.S7) by 
combining a dissimilarity matrix of all the drivers, calculated based on Pearson’s correlation, 
with Ward’s method, finding the relationship between the driver genes. 
(ii) Identification of co-expressed modules based on the gene tree. 
• The function ‘cutreeDynamic’ for the dynamicTreeCut package distributes the 
identified driver genes to each resulting module 
(iii) The function ‘plotDendroAndColors’ visualizes the identified co-expressed modules 
which are colored separately (Fig.S6). 
 
# methods to assess 
m <- c( "average", "single", "complete", "ward") 
names(m) <- c( "average", "single", "complete", "ward") 
 
# function to compute agglomerative coefficient 
set.seed(2583) 
ac <- function(x) { 
  agnes(exp_dri_norm, method = x)$ac 
} 
map_dbl(m, ac) # Agglomerative coefficient of each agglomeration 
method 

#assign gene names from adjacency to dissTOM 
rownames(dissTOM) = rownames(adjacency)  
colnames(dissTOM) = colnames(adjacency)  
# Call the hierarchical clustering function 
geneTree = hclust(as.dist(dissTOM), method = "ward.D2"); 
# Plot the resulting clustering tree (dendrogram) 
sizeGrWindow(12,9) 
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plot(geneTree, xlab="", sub="", main = "Gene clustering on TOM-based 
dissimilarity",cex.lab = 1,cex.axis = 1, cex.main = 1.2); 
 

 
Figure S6 | Gene tree. Clustering dendrogram of genes, with dissimilarity based on topological 
overlap, together with assigned module colors.  

#We set the minimum module size at 10: 
minModuleSize = 10; 
# Module identification using dynamic tree cut: 
dynamicMods = cutreeDynamic(dendro = geneTree, distM = dissTOM, 
                            minClusterSize = minModuleSize); 
table(dynamicMods) 
# dynamicMods 
# 1  2  
# 16 15 
 
Argument ‘minClusterSize’ designates the minimum number of driver genes appearing in each 
identified module. At best, according to prior studies, users should consider choosing 10 for 
reproducibility. The other ones should be left at default. 
  
# Convert numeric lables into colors 
moduleColors  = labels2colors(moduleColors ) 
# Plot the dendrogram and colors underneath 
sizeGrWindow(5,6) 
plotDendroAndColors(geneTree, moduleColors, "Module Colors", 
                    dendroLabels = FALSE, hang = 0.03, 
                    addGuide = TRUE, guideHang = 0.05, 
                    main = "Gene dendrogram and module colors") 
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Figure S7 | Gene dendrogram and module colors. Clustering dendrogram of genes, with dissimilarity 
based on the topological overlap, together with assigned module colors.  

6.2.	Detect	associations	of	functional	modules	to	clinical	features,	identification	of	significant	
genes	and	hub	genes	in	each	of	those	modules.	

The function ‘labeledHeatmap’ further analyzes and visualizes the associations between the 
identified modules and clinical features. The resulting color-coded table is shown in Fig. S8.	
 
#Define numbers of genes and samples 
nGenes = ncol(t(exp_dri_norm)); 
nSamples = nrow(t(exp_dri_norm)); 
# Recalculate MEs with color labels 
MEs0 = moduleEigengenes(t(exp_dri_norm), moduleColors)$eigengenes 
MEs = orderMEs(MEs0) 
moduleTraitCor = cor(MEs, clinical_exp1, use = "p"); 
moduleTraitPvalue = corPvalueStudent(moduleTraitCor, nSamples); 
 
sizeGrWindow(20,6) 
# Will display correlations and their p-values 
textMatrix = paste(signif(moduleTraitCor, 2), "\n(", 
                   signif(moduleTraitPvalue, 1), ")", sep = ""); 
dim(textMatrix) = dim(moduleTraitCor) 
par(mar = c(6, 8.5, 3, 3)); 
 
# Display the correlation values within a heatmap plot 
labeledHeatmap(Matrix = moduleTraitCor, 
               xLabels = names(clinical_exp1), 
               yLabels = names(MEs), 
               ySymbols = names(MEs), 
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               colorLabels = FALSE, 
               colors = blueWhiteRed(50), 
               textMatrix = textMatrix, 
               setStdMargins = FALSE, 
               cex.text = 0.8, 
               zlim = c(-1,1), 
               main = paste("Module-clinical feature relationships")) 
 

 

Figure S8 | Co-expressed module–feature associations. Each row corresponds to a module, column 
to a clinical feature. Each cell contains the correlation coefficient and its corresponding p-value. 
Abbreviation: lymph, numbers of lymph nodes, npi, Nottingham prognostic index, stage, tumor stages. 

We discover significant genes (i.e., high Gene significance and high Module membership, 
Fig.S9) in a single module having a significant association with clinical features (the blue 
module is an example, the others can be done similarly)  

####blue                                                                        
# names (colors) of the modules                                              
# Define variable stage containing the stage column of exp_dri_norm         
stage = as.data.frame(clinical_exp1$stage);                         
names(stage) = "stage"                                                    
# names (colors) of the modules                                          
modNames = substring(names(MEs), 3)                                 
geneModuleMembership = as.data.frame(cor(t(exp_dri_norm), MEs, use = 
"p"));                                                                 
MMPvalue=as.data.frame(corPvalueStudent(as.matrix(geneModuleMembersh
ip), nSamples));                                             
names(geneModuleMembership) = paste("MM", modNames, sep="");       
names(MMPvalue) = paste("p.MM", modNames, sep="");          
geneTraitSignificance=as.data.frame(cor(t(exp_dri_norm), stage, use 
= "p"));                                                                 
GSPvalue=as.data.frame(corPvalueStudent(as.matrix(geneTraitSignifica
nce), nSamples));                                          
names(geneTraitSignificance) = paste("GS.", names(stage), sep="");     
names(GSPvalue) = paste("p.GS.", names(stage), sep=""); 
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#Intramodular analysis: identifying genes with high GS and MM             
module = "blue"                                                          
column = match(module, modNames);                                   
moduleGenes = moduleColors==module;                             
sizeGrWindow(7, 7);                                                   
par(mfrow = c(1,1));                                                       
x <- abs(geneModuleMembership[moduleGenes, column])                           
y <- abs(geneTraitSignificance[moduleGenes, 1])                           
limit <- range(c(x,y))                                                                           
r <- round(cor(x,y),2)                                                        
plot(    x,  

         y,  

         ylim =range(0.00,0.25), xlim =range(0.1,0.7),  

         xlab =paste("Module Membership in", module, "module"),  

         ylab ="Gene significance for stage", col = module) 

fit <-lm(y~x)                                                           
pintra= round(summary(fit)$coefficients[,4][[2]],2) #p-value         
abline(fit, col='orange')                                        
legend('topleft', col = "orange", lty = 1, box.lty = 
1,legend='regression line', cex= 0.8)                                                      
mtext(paste('correlation = ', r, ",", "P-value = ", pintra))            
title(paste("Module membership vs. gene significance\n"))              
text(y~x,labels=rownames(exp_dri_norm)[moduleColors=="blue"],data=ex
p_dri_norm, cex=0.8, font=4, pos = 3) #add label 
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Figure S9 | Module membership and gene significance. A correlation of the blue module to the tumor 
stages with all genes in it. 

Alternatively, the function verboseScatterplot provided in the package WGCNA can 
generate the similar result in Fig.S9 in a more easier way, but users can not draw a regression 
line (orange) and add gene names next to the corresponding blue circles: 

#Alternatively                                                                   
verboseScatterplot(abs(geneModuleMembership[moduleGenes, column]), 

                   abs(geneTraitSignificance[moduleGenes, 1]), 

                   xlab = paste("Module Membership in", 
module,"module"), 

                   ylab = "Gene significance for npi", 

                   main = paste("Module membership vs. gene       
significance\n"), 

                   cex.main = 1.2, cex.lab = 1.2, cex.axis = 1.2, 
col = module) 

These below scripts help detect significant genes (high Gene significance and high Module 
membership) and the top 5 hub genes in each module (the blue module is an example, the 
others can be done similarly), respectively. 

#identifying genes with high GS and MM 

intra_modular_analysis=data.frame(abs(geneModuleMembership[moduleGen
es, column]),abs(geneTraitSignificance[moduleGenes, 1]))     
rownames(intra_modular_analysis)=colnames(t(exp_dri_norm))[moduleCol
ors=="blue"] #only the blue module                         
View(intra_modular_analysis) 

#high intramodular connectivity ~ high kwithin => hub genes (kwithin: 
connectivity of the each driver gene in the turquoise module to all 
other genes in the turquoise) 
connectivity=intramodularConnectivity(adjacency, moduleColors) 
connectivity=connectivity[colnames(t(exp_dri_norm))[moduleColors=="t
urquoise"],] #only the turquoise module 
order.kWithin = order(connectivity$kWithin, decreasing = TRUE) 
connectivity = connectivity[order.kWithin,] #order rows following 
kWithin 
connectivity = connectivity[1:5,] #top 5 genes that have a high 
connectivity to other genes in the turquoise module 
View(connectivity) 

7.	Patient	stratification	(Fig.1,	Stage	2;	Step	5)	

7.1.	Pre-processing	clinical	data	&	CNVs	data	
Source the R.script (1.CNA-preprocess.R) to process the two datasets: CNV data and clinical 
data. 
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#Load data objects and Data Preprocessing 
source("1.CNA-preprocess.R") 

7.2.	Patient	stratification	by	the	identified	driver	genes	
Source the R.script (2.CNA-hclut.R) to do this task that contains: 
• As the same way described at the section 6.1, we find the best agglomeration method 
(i.e., Ward’s method) using the function ‘agnes’ and realize that Ward’s method outperforms 
the others again. 
• The function ‘hclust’ generates a dendrogram tree of the patients by combining a 
dissimilarity matrix of all the patients, computed based on Euclidean distance by the function 
‘dist’, with Ward’s method, finding the relationship between all the patients. 
• The function ‘clValid’ performs the Dunn’s index (Fig.S11) and the average Silhouette 
width (Fig.S12) to determine how many patient groups are best. Collectively, Fig.S10-S12 
imply that two groups are the best solution. 
• The functions ‘cutree’ with ‘agnes’ distributes all the patients to each of two groups 
• The function ‘Heatmap’ for the package ComplexHeatmap plots the result of patient 
stratification as a heatmap plot (Fig.S13). 
 
 
#Patient stratification 
source("2.CNA-hclut.R") 

 

 

Figure S10 |  Optimal group number detection. Two optimal groups were determined by the 
connectivity. The connectivity computes the degree of connectedness of a given group partitioning. 
The connectivity shows the connectedness of a given cluster partitioning and has a value between 0 
and infinity. The user should choose a point reaching the most minimized value (y-axis).  
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Figure S11 |  Optimal group number detection. Two optimal groups were also determined by the 
Dunn’s index. The Dunn’s index (y-axis) has a value between zero (poorly clustered observations) 
and infinity (well clustered observations), and the place where the black line of Dunn’s index plot 
peaks at, which implies that that group number is optimal. 

 

 
 

Figure S12. Optimal group number detection. Three optimal groups were determined by the 
Silhouette width. The average Silhouette has a value between -1 (poorly clustered observations) and 1 
(well clustered observations), and the place where the black line of the Silhouette plot peaks at, which 
implies that that group number is optimal. 

Collectively, Fig.S10-S12 show that the two number of groups is the best solution. 
 
Then, we cut the discovered tree of patients above based on the optimal number of groups and 
visualize the result using a heatmap plot. 
 
# agnes() with cutree() cuts the dendrogram into 2 groups 
hc_a <- agnes(t(cna_dri), method = "ward") 
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sub_grp= cutree(as.hclust(hc_a), k = 2) 
 
# Number of members in each cluster 
table(sub_grp) 
# sub_grp 
# 1    2  
# 993 1180 
 
To show two groups on the top of the heatmap plot (Fig.S13), we must specify which patients 
belong to which identified groups. 
 
> ## make a named vector from the vector 
> info =as.data.frame(sub_grp) 
> info$patient = rownames(info) 
> info <-info[order(info$sub_grp),] 
> info = dplyr::select(info,-patient) 
> colnames(info) <- c('groups') 
> info$groups = as.character(info$groups) 
> cna_dri = cna_dri[,rownames(info)] #change the order of  
> column/patients of cna data following the variable 'info' 
 
> ## Heatmap annotation 
> library(circlize) 
> ha <- columnAnnotation(df = info, col = list(groups = c("1" = 
"black", "2" = "green"))) 
 
And finally, we visualize the result as the heatmap plot (Fig.S13) 
 
> #visualization using heatmap plot 
> Heatmap(cna_freq, name = "CNA scale",  
+         show_row_names = TRUE, show_column_names = FALSE,  
+         row_dend_reorder = TRUE, column_dend_reorder = TRUE, 
+         clustering_distance_rows = "euclidean", 
+         clustering_distance_columns = "euclidean", 
+         clustering_method_rows = "ward.D2", 
+         clustering_method_columns = "ward.D2", 
+         top_annotation = ha 
+ ) 
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Figure S13. Differences in CNVs events between the identified groups. Clustering of BRCA patients 
based on the 31 driver genes. Two distinct groups are found (black and green). For CNA scale, Dark 
red, red, grey, blue and dark blue represent high-level amplification, amplification, copy-neutral, 
deletion and high-level deletion, respectively. 

7.3.	Comparision	between	the	identified	patient	groups	

We further perform the difference in the clinical features (i.e., survival rate, number of positive 
lymph nodes, Nottingham prognostic index, and cancer stage) between the two identified 
groups. Firstly, we must define the time and status of patients based on the clinical data. 

#change the order of column/patients of clinical data following the 
variable 'info' 
cli = c_clinical; rownames(cli) = c_clinical$PATIENT_ID 
grp=sub_grp; grp=as.data.frame(grp) 
cli_surv =cli[rownames(grp),] 
cli_surv = na_if(cli_surv,"") #transform "" (missing space) into NA 
value  
survData<-cbind(cli_surv$OS_MONTHS, cli_surv$OS_STATUS=="DECEASED") 
 
#create survData 
rownames(survData)<- rownames(cli_surv) 
colnames(survData)<-c("time", "status") 
survData <- as.data.frame(survData) #coxph and survfit require input 
as data frame 
 
Then, we now fit a Cox proportional hazards regression model and compute an estimate of a 
survival curve using ‘coxph’ and ‘survfit’, respectively. The function ‘ggsurvplot’ for the 
package survminer illustrates the Kaplan-Meier survival curves (Fig.S14). 
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coxFit1 <- coxph( 
   Surv(time, status) ~ as.factor(sub_grp), 
   data = survData, 
   ties = "exact" ) 
pcox=round(summary(coxFit1)$logtest[3],8); pcox #p-value = 1.498e-05   
 
mfit <- survfit(Surv(time, status == 1) ~ as.factor(sub_grp), data = 
survData) 
 
#visualization of survival rate between two groups 
ggsurvplot(mfit, size=1, 
            linetype = "strata", 
risk.table = FALSE, fun ="pct", risk.table.col = "strata", break.x.by 
= 50, 
            xlab = "Time in months", 
            legend = "bottom", 
            legend.title = "Group", legend.labs = c("Group 1","Group 
2"), 
conf.int = TRUE, pval = paste("P-value",pcox,sep=" = " ), xlim = 
c(0,200), palette = c("black", "green")) 
 

 
 
Figure S14. Difference in patient survival rates between the two groups. 
 
 
Finally, we observe the differences between the two groups concerning the other clinical 
features. 
 
library(dplyr) 
library(ggplot2) 
devtools::install_github("kassambara/ggpubr") 

++++++++++ +++++ + +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

P−value = 1.498e−050

25

50

75

100

0 50 100 150 200
Time in months

Su
rv

iva
l p

ro
ba

bi
lit

y 
(%

)

Group + +Group 1 Group 2



 22 

library("ggpubr") 
library(ggsci) 
 
#prepare data 
a = info 
cli_feature = c_clinical;  
rownames(cli_feature) = cli_feature$PATIENT_ID;  
cli_feature = cli_feature[rownames(info),] 
a$lymph=cli_feature$LYMPH_NODES_EXAMINED_POSITIVE 
a$npi=cli_feature$NPI 
a$stage=cli_feature$stage 
 
#comparison 
install.packages("table1"); library(table1) 
install.packages("compareGroups"); library("compareGroups") 
#define specifically type of data 
a$lymph = as.numeric(a$lymph); a$npi = as.numeric(a$npi) 
a$stage = as.character(a$stage)  
#start to perform comparisons 
des=compareGroups::createTable(compareGroups::compareGroups(groups ~ 
., data = a, method = NA)) 
#save the results as xls file 
compareGroups::export2xls(des, file = "tableSTAT.xlsx", 
header.labels = c(p.overall = "p-value")) 
 
For the number of positive lymph node (Fig.S15): 
 
 set.seed(216) 
#lymph nodes 
p=ggboxplot(a, x = "groups", y = "lymph",  
          color = "groups", palette = c("black", "green"), 
          ylab = "Number of positive lymph nodes", xlab = "Groups", 
          title = "Wilcoxon, P-value = 0.031") + border("black") 
ggpar(p,legend="right",legend.title = "Groups") 

 
Figure S15. Difference in lymph between the two groups. 
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For the Nottingham prognostic index (Fig.S16) 
 
#NPI 
p1=ggboxplot(a, x = "groups", y = "npi",  
            color = "groups", palette = c("black", "green"), 
            ylab = "Nottingham prognostic index", xlab = "Groups", 
            title = "Wilcoxon, P-value < 0.001") + border("black") 
ggpar(p1,legend="right",legend.title = "Groups") 
 

 
Figure S16. Difference in npi between the two groups. 
 
And finally, for the tumor stage (Fig.S17) 
 
 #stage 
a_st = a %>% group_by(groups, stage) %>% summarise(patient.num = n()) 
## Create a column "patient.num" which is number of patients in each 
combination of group and stage 
a_st$Groups=as.character(a_st$groups) 
a_st$stage=as.character(a_st$stage) 
a_st=na.omit(a_st) 
#stage 
a_st = a %>% group_by(groups, stage) %>% summarise(patient.num = 
n()) ## Create a column "patient.num" which is number of patients in 
each combination of group and stage 
a_st$Groups=as.character(a_st$groups) 
a_st$stage=as.character(a_st$stage) 
a_st=na.omit(a_st) 
p2=ggplot(a_st, aes(x = Groups, y = patient.num, fill = stage)) +   
#stacked barplot 
  geom_bar(position = "fill", stat = "identity") + 
theme(panel.background = element_blank()) + 
  ggtitle("Chisq, P-value = 0.016") + 
  scale_y_continuous(labels = scales::percent_format()) 
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p2 + xlab("Groups") + ylab("Percent of patients")

 
Figure S17. Difference in tumor stage between the two groups. Abbreviation: Chisq, Pearson’s χ2 test 
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