
 1

Improving existing analysis pipeline to identify and analyze cancer
driver genes using multi-omics data

Quang-Huy Nguyen1.2 and Duc-Hau Le1,3,*
1Department of Computational Biomedicine, Vingroup Big Data Institute, Hanoi, Vietnam.
2Faculty of Pharmacy, Dainam University, Hanoi, Vietnam.
3School of Computer Science and Engineering, Thuyloi University, Hanoi, Vietnam.

Supplementary Information

User manual

admin
Cross-Out

admin
Inserted Text
College of Engineering and Computer Science, VinUniversity

 2

Table	of	Contents	

1. Introduction .. 3	

2. Dataset ... 3	
3. Identification of driver genes using OncodriveFML and OncodriveCLUSTL (Fig.1,
Stage 1; Step 1) ... 4	
3.1. Identification of driver genes using OncodriveFML ... 4	

3.2. Identification of driver genes using OncodriveCLUSTL .. 5	
4. Enrichment Analysis using g:Profiler (Fig.1, Stage 2; Step 2) .. 6	

5. Individual gene-clinical feature association analysis (Fig.1, Stage 2; Step 3)................. 7	
5.1. Association between individual driver genes and survival rate 7	

5.2. Identify which driver genes are significantly correlated with other clinical features 8	
6. Co-expressed module-clinical feature association analysis using WGCNA (Fig.1,
Stage 2; Step 4) ... 9	
6.1. Weighted co-expression driver gene network construction. 10	

6.2. Detect associations of functional modules to clinical features, identification of
significant genes and hub genes in each of those modules. .. 13	

7. Patient stratification (Fig.1, Stage 2; Step 5) ... 16	
7.1. Pre-processing clinical data & CNVs data ... 16	

7.2. Patient stratification by the identified driver genes ... 17	
7.3. Comparision between the identified patient groups .. 20	

8. References ... 25	

 	

 3

1.	Introduction	
The cumulative of genes carrying mutations is vital for the establishment and development of
cancer. However, this line of driver gene exploring research has selected and used types of
tools and models of analysis unsystematically and discretely. Also, the previous studies may
have neglected low-frequency drivers and seldom predicted subgroup specificities of identified
driver genes. In this document, we propose an improved driver gene identification and analysis
pipeline integrating state-of-the-art tools to solve the above challenges (Fig.S1).

Figure S1. Improved analysis pipeline for identification and analysis of driver genes. The scheme
comprises two stages: identification and analysis, in which the former uses the OncodriveFML and
OncodriveCLUSTL to identify driver genes with somatic mutation data as input, and the latter performs
the four most widely focused analyses to deal with those driver genes. Abbreviation: CNV, Copy
number variations.

Here, we use the METABRIC breast cancer (BRCA) dataset 1 as an example to demonstrate
the use of our work to (Stage 1) identify and (Stage 2) analyze the driver genes.

2.	Dataset	
The breast cancer data are downloaded from the cBioPortal for Cancer Genomics
(http://www.cbioportal.org) 2. It contains METABRIC breast cancer cohort assembled from
2,509 primary breast cancer patients with 548 matched normals in the United Kingdom and
Canada 3. The gene expression microarray data are generated using the Illumina Human v3
microarray for 1,904 samples, while the CNVs data are measured on the Affymetrix SNP 6.0
platform for 2,173 samples, and 17,272 somatic mutations of 173 genes for 2,369 samples are
detected on the Illumina HiSeq 2,000 platform.

OncodriveFML &

OncodriveCLUSTL

Enrichment Analysis Using

g:Profiler

Somatic Mutation

Significantly enriched

biological terms & pathways

Identified Driver Genes

Identified Driver Genes

Enrichment Gene-Clinical Feature
Association

Gene Module-Clinical
Feature Association Patient Stratification

Association Analysis Tools

(e.g., survival analysis, correlation)

Significant

gene-clinical feature

associations

The Expression Profile Of

Identified Driver Genes

and Clinical Data

Gene module Identification Tool

(i.e., hierarchical clustering)

Gene module-clinical feature

Association Analysis Tools using

WGCNA

Significant

gene module-clinical feature

associations

The Expression Profile Of

Identified Driver Genes

and Clinical Data

Patient group Identification Tool

(i.e., hierarchical clustering)

Association Analysis Tools Between

The Patient Groups

(e.g., survival analysis, correlation)

Patient groups

with significant difference

in clinical features

The CNV Profile Of

Identified Driver Genes

and Clinical Data

Stage 1.IDENTIFICATION

Step 1

Stage 2.ANALYSIS
Step 2 Step 3 Step 4 Step 5

 4

Each data type is a tabular file with a header that must contain, at least, the following columns:

File Data

type
Format (Data fields)

data_mutations_extended.
txt

Mutatio
n

- For OncodriveFML:
http://bbglab.irbbarcelona.org/oncodrivefml/faq#qfi
lesformat
- For OncodriveCLUSTL:
http://bbglab.irbbarcelona.org/oncodriveclustl/faq#
qmutfileformat

data_mRNA_median_Zsc
ores.txt

Gene
expressi
on

- Hugo_Symbol: gene names
- The remaining columns are BRCA patients

data_CNA.txt Copy
number
aberrati
on

- Hugo_Symbol: gene names
- The remaining columns are BRCA patients

data_clinical_patient.txt Clinical
feature
(traits)

1. PATIENT_ID
2.LYMPH_NODES_EXAMINED_POSITIVE:
Number of positive lymph nodes
3. stage: Tumor stages
5. NPI: Nottingham prognostic index
6. OS_MONTHS: Follow-up months
7. OS_STATUS: BRCA patients’ status

Table 1. The description of data used in the study. The format of all data types used in the
study.

3.	Identification	of	driver	genes	using	OncodriveFML	and	
OncodriveCLUSTL	(Fig.1,	Stage	1;	Step	1)	
Identification of driver genes in BRCA is implemented using the two tools OncodriveCLUSTL
1.1 4 and OncodriveFML 1.0 5. They are available as a friendly web-based application at
http://bbglab.irbbarcelona.org/oncodriveclustl/analysis and
http://bbglab.irbbarcelona.org/oncodrivefml/analysis#, respectively. Both of them require a
specific format data that can refer to the heading ?FAQ at each below the corresponding
website. In general, the requirement is simple, and the somatic mutation data from popular
omics data sources (e.g., METABRIC and TCGA) meets it at the origin format; therefore,
directly upload the file data_mutations_extended.txt to each tool.

3.1.	Identification	of	driver	genes	using	OncodriveFML	

The parameters of the OncodriveFML tool are set to default values with the exception of the
sequencing parameter (targeted sequencing) and the scoring system CADD v1.3 6 (the latest
version at the time of this writing).

 5

Figure S2. OncodriveFML result. List of driver genes is predicted by OncodriveFML from the
analysis data. A comprehensive list of driver genes can be found from the downloaded tsv file, <day
of the file created>_input-oncodrivefml.tsv. Red gene names indicate driver genes with Q-value <
0.1 (Benjamini-Hochberg procedure), and green gene names indicate driver genes with Q-value < 0.25.
X and Y-axis mean negative log10-transformation of P-value.

3.2.	Identification	of	driver	genes	using	OncodriveCLUSTL	

The parameters of the OncodriveCLUSTL tool are set to default values with the exception of
the selection of ‘concatenate’ option.

 6

Figure S3. OncodriveCLUSTL result. List of driver genes is predicted by OncodriveCLUSTL. A
comprehensive list of driver genes can be found from the downloaded compressed zip file, <day of the
file created>_compressed_file.zip. Gene names predicted to be driver genes if Q-value < 0.01
(Benjamini-Hochberg procedure). Names in bold denote genes annotated in the Cancer Gene Census
(CGC) database.

As a result, collectively combining two sets of driver genes from the above figures, a total of
35 unique driver genes are detected by the two tools (Supplementary File 2, Table S1). Through
the validation process, 31 bona fide driver genes are reserved for downstream analyses.

4.	Enrichment	Analysis	using	g:Profiler	(Fig.1,	Stage	2;	Step	2)	

The study identifies significantly enriched GO biological processes and KEGG pathways using
g:Profiler to characterize the functional enrichment of all driver genes. Specific procedures are
shown as follows:
Firstly, users can open the g:Profiler website at https://biit.cs.ut.ee/gprofiler/gost. Input is the
31 identified driver genes (Supplementary File 2, Table S1). In ‘Data sources’ tab, we only
choose ‘GO biological process’ option under the sub-tab ‘Gene Ontology’ and ‘KEGG’ option
under the sub-tab ‘biological pathways’. The remaining options are excluded or kept as they
are (i.e., default). Finally, click ‘Run query’ to get the results. A full list of enriched GO terms
and pathways can be downloaded by clicking the button ‘CSV’ in the ‘Detailed Results’ tab.
The downloaded result is a csv file, gProfiler_<organism>_<day of the file created>_<time
of day of the file created>__intersections.csv.

As a result, g:Profiler yields 483 significantly enriched biological processes
(Supplementary File 2, Table S4) and 71 significantly enriched KEGG pathways
(Supplementary File 2, Table S5).

 7

Because g:Profiler is an up-to-date gene enrichment analysis tool, the results can not be
reproduced if using in a different version. The version of g:Profiler in this work is
e100_eg47_p14_7733820. Users can find the older versions from
https://biit.cs.ut.ee/gprofiler/archives/.

5.	Individual	gene-clinical	feature	association	analysis	(Fig.1,	Stage	2;	
Step	3)	
Firstly, we must setup and load some essential libraries and data objects. Then, we pre-process
gene expression data & clinical data. Specifically, we only retain 1,904 BRCA patients having
both clinical and gene expression data for the 31 identified driver genes.

#Pre-processing gene expression data & clinical data
source("1.Clinical-preprocess.R")

5.1.	Association	between	individual	driver	genes	and	survival	rate	
For step 3 (Fig. S1, stage 2), source the R.script (2.Clinical-SA.R) that contains:
• Prepare the data by creating event vector for median expression data, in which values
above the median are assigned as up-regulated (= “up”), and values below the median are
assigned as down-regulated (= “down”). This can be done using the function apply().
• The function ‘geneSA’ (https://github.com/huynguyen250896/geneSA) implements a
log-rank test in univariate Cox regression analysis with a proportional hazards model to
associate the expression of each driver gene with the overall survival of the patients
automatically and separately. The function will report hazard ratios (column ‘HR’), 95%
confidence intervals (column ‘confidence_intervals’), P-values, and Q-values of each driver
gene.

#library
if(!require(devtools)) install.packages("devtools")
devtools::install_github("huynguyen250896/geneSA")
library(geneSA)
if(!require(rlist)) install.packages("https://cran.r-
project.org/src/contrib/Archive/rlist/rlist_0.4.tar.gz", repos =
NULL); library(rlist)

#check what driver genes are significantly correlated with survival
rate
source("2.Clinical-SA.R")

Table 2 shows nine driver genes significantly correlated with survival rate.

Gene HR (95% CI) P-value Q-value
AKT1 1.30 (1.15-1.46) 1.48´10-05 2.29´10-04

KMT2C 1.24 (1.10-1.40) 3.47´10-04 2.69´10-03
KRAS 1.20 (1.07-1.35) 2.30´10-03 1.19´10-02
PTEN 0.85 (0.76-0.96) 7.92´10-03 2.73´10-02
TBX3 0.84 (0.75-0.95) 4.91´10-03 1.90´10-02

PIK3R1 0.84 (0.75-0.95) 4.37´10-03 1.93´10-02
MAP3K1 0.82 (0.73-0.93) 1.23´10-03 7.61´10-03
SMAD4 0.78 (0.69-0.88) 4.85´10-05 5.01´10-04
MAP2K4 0.76 (0.67-0.85) 4.57´10-06 1.42´10-05

 8

Table 2. Association between the expression of driver genes and the overall survival of BRCA
patients. Three genes including AKT1, KMT2C, and KRAS with above-median expression level and six
genes including PIK3R1, PTEN, SMAD4, MAP3K1, MAP2K4 and TBX3 with below-median expression
level significantly associated with a shortened lifespan. HR is a measure that helps determine whether
either of two expression levels of each driver gene will result in an increased (i.e., HR > 1) or decreased
(i.e., HR < 1) probability of experiencing the defined event (i.e., death), at any time (below-median
expression level is the reference). P-value is computed by the Cox proportional hazard method to test
the statistical difference of the given results. Q-value is computed following the Benjamini-Hochberg
procedure. HR: hazard ratio. 95% CI: 95% confidence interval.

Below are the results gained from the KMplot database:

Figure S4. Kaplan-Mayer survival curves in the KMplot dataset. Five driver genes are predicted by
the KMplot databse, including MAP2K4, PIK3R1, KRAS, MAP3K1, and TBX3.

5.2.	Identify	which	driver	genes	are	significantly	correlated	with	other	clinical	features	
We identify which driver genes are significantly correlated with other clinical features,
including numbers of lymph nodes, the Nottingham prognostic index, and the pathologic
stages. Specifically, ‘computeC’ (https://github.com/huynguyen250896/computeC) computes
the correlation coefficients between individual drivers and clinical features based on
Spearman’s rank correlation (default value). The function will report correlation coefficients
(column ‘CC’), P-values, and Q-values of each driver gene with each clinical feature of interest.

#library
devtools::install_github("huynguyen250896/computeC")
library(computeC) #compute the correlation

#check what driver genes are significantly correlated with three other
clinical features
source("3.Clinical-corr.R")

0 50 100 150 200 250 300

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

MAP2K4 (203266_s_at)

Time (months)

Pr
ob

ab
ilit

y

Number at risk
702 508 181 44 8 2 0low
700 575 296 85 13 1 0high

HR = 0.7 (0.56 − 0.86)
logrank P = 9e−04

Expression
low
high

0 50 100 150 200 250 300

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

PIK3R1 (212239_at)

Time (months)

Pr
ob

ab
ilit

y

Number at risk
701 519 231 84 16 2 0low
701 564 246 45 5 1 0high

HR = 0.75 (0.6 − 0.93)
logrank P = 0.0075

Expression
low
high

0 50 100 150

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

MAP3K1 (225927_at)

Time (months)

P
ro

ba
bi

lit
y

Number at risk
313 196 67 10low
313 258 114 15high

HR = 0.5 (0.36 − 0.69)
logrank P = 1.5e−05

Expression
low
high

0 50 100 150

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

TBX3 (225544_at)

Time (months)

Pr
ob

ab
ilit

y

Number at risk
314 191 66 11low
312 263 115 14high

HR = 0.58 (0.42 − 0.8)
logrank P = 0.00067

Expression
low
high

0 50 100 150 200 250 300
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

KRAS (204010_s_at)

Time (months)

P
ro

ba
bi

lit
y

Number at risk
702 550 255 81 11 1 0low
700 533 222 48 10 2 0high

HR = 0.74 (0.6 − 0.92)
logrank P = 0.0066

Expression
low
high

 9

Table 3. Association between the expression of driver genes and the other clinical features.
ARID1A, RUNX1, GATA3, TBX3, NF1, MAP2K4, PTEN, SMAD4, MAP3K1 and SF3B1 significantly
associated with all of the three clinical features. The column ‘CC’ (i.e., correlation coefficient denoted
by r) measures the degree of association between the two variables: each driver gene versus each clinical
feature. It takes on values ranging between -1 and +1. When r = 0, there is no relationship between the
two variables. When r closer to 1, there is an increasingly strong positive (uphill) relationship between
the two variables, otherwise is an increasingly strong negative (downhill) relationship between the two
variables. CC: correlation coefficient.

6.	Co-expressed	module-clinical	feature	association	analysis	using	
WGCNA	(Fig.1,	Stage	2;	Step	4)	

We first install all the required packages before the analysis and set up a basic setting following
the WGCNA’s recommendation.

#library
install.packages(c("dynamicTreeCut","flashClust","Hmisc","WGCNA"))
 if(!requireNamespace("BiocManager", quietly = TRUE))
install.packages("BiocManager")

BiocManager::install("preprocessCore")
library("dynamicTreeCut"). # Module identification
library("flashClust") # Fast implementation of hierarchical
clustering
library("Hmisc") #perform variables clustering
library("WGCNA") #WGCNA tool
library(purrr) #data processing
library(cluster) # compute agglomerative coefficient

The following setting is important, do not omit.
options(stringsAsFactors = FALSE);
enableWGCNAThreads()# Allowing parallel execution

Gene
Number of lymph nodes Nottingham prognostic index Cancer Stage

CC P-value Q-value CC P-value Q-value CC P-value Q-value
ARID1A -0.06 0.01 0.02 -0.13 1.31´10-8 3.20´10-8 -0.10 1.13´10-4 4.73´10-4
RUNX1 -0.14 1.65´10-9 3.63´10-8 -0.25 2.20´10-16 2.42´10-15 -0.11 2.97´10-5 3.12´10-4
GATA3 -0.01 1.27´10-5 9.31´10-5 -0.28 2.20´10-16 4.84´10-15 -0.12 3.83´10-5 2.68´10-4
TBX3 -0.10 9.10´10-6 1.00´10-4 -0.18 1.44´10-15 6.31´10-15 -0.12 6.12´10-5 3.21´10-4
NF1 -0.09 5.77´10-5 3.17´10-4 -0.08 2.23´10-4 3.07´10-4 -0.07 6.36´10-3 0.02

MAP2K4 -0.08 4.61´10-4 1.69´10-3 -0.22 2.20´10-16 1.21´10-15 -0.07 6.99´10-3 0.02
PTEN -0.08 6.02´10-4 1.89´10-3 -0.23 2.20´10-16 1.61´10-15 -0.11 2.93´10-5 6.15´10-4

SMAD4 -0.06 0.01 0.03 -0.10 1.79´10-5 3.29´10-5 -0.08 1.48´10-3 3.89´10-3
MAP3K1 -0.06 0.01 0.03 -0.16 6.35´10-13 2.00´10-12 -0.09 7.16´10-4 2.15´10-3

SF3B1 0.09 7.83´10-5 1.02´10-3 0.07 1.78´10-3 3.31´10-3 0.10 8.48´10-5 1.19´10-3

 10

6.1.	Weighted	co-expression	driver	gene	network	construction.	

The function ‘pickSoftThreshold’ helps to find the optimal soft threshold tomake the co-
expression matrix of the identified drivers fit a scale-free topology model. The set of soft-
thresholding powers is default following the recommendation of WGCNA’s authors. As shown
in Fig.S5, the work recommends choosing a point at which R2 reaches the peak for the first
time (y-axis), as described in the paper 7. From that, we choose the soft-power b = 6.

#create clinical_exp1 for this step
clinical_exp1 = clinical_exp[,-c(3,5:6)] #remove OS_MONTHS,
OS_STATUS and status columns

Choose a set of soft-thresholding powers
powers = c(c(1:10), seq(from = 12, to=20,
by=2))#1,2,3,4,5,6,7,8,9,10,12,14,16,18,20
Call the network topology analysis function
sft = pickSoftThreshold(t(exp_dri_norm), powerVector = powers,
verbose = 5, networkType = "signed")
Plot the results:
sizeGrWindow(9, 5)
cex1 = 0.9;
Scale-free topology fit index as a function of the soft-
thresholding power
plot(sft$fitIndices[,1], -
sign(sft$fitIndices[,3])*sft$fitIndices[,2],
 xlab="Soft Threshold (power)",ylab="Scale Free
Topology Model Fit,signed R^2",type="n",
 main = paste("Scale independence"));
 text(sft$fitIndices[,1], -
sign(sft$fitIndices[,3])*sft$fitIndices[,2],
 labels=powers,cex=cex1,col="red");
this line corresponds to using an R^2 cut-off of h
abline(h=0.24,col="red")

5 10 15 20

−0
.2

0.
0

0.
1

0.
2

Scale independence

Soft Threshold (power)

Sc
al

e
Fr

ee
 T

op
ol

og
y

M
od

el
 F

it,
si

gn
ed

 R
^2

1
2

3

4

5

6

78
9
10 12 14 16 18 20

 11

Figure S5 | Analysis of network topology for various soft-thresholding powers. The graph shows
the scale-free fit index (y-axis) as a function of the soft-thresholding power b (x-axis).

We now calculate the adjacencies using the function ‘adjacency’ with identified soft-power b
= 6, then turn the adjacency to Topological Overlap Matrix (TOM) with the function
‘TOMsimilarity’ before calculating the corresponding dissimilarity:

Calculate the adjacencies
softPower = 6;
adjacency = adjacency(t(exp_dri_norm), power = softPower,
 type = "signed");

Turn adjacency into topological overlap
TOM = TOMsimilarity(adjacency, TOMType = "signed");
dissTOM = 1-TOM

The functions ‘pickSoftThreshold’, ‘adjacency’, and ‘TOMsimilarity’ use respectively the
arguments ‘networkType’, ‘type’, and ‘TOMType’ to allow the user to construct a signed or
unsigned network.

Next, detect the co-expressed modules and plot them:
(i) Creation of a gene tree
• Perform agglomerative hierarchical clustering using the ‘agnes’ function to get the
agglomerative coefficient. As a result, Ward’s method (i.e., ward.D2) is the best solution.
• The function ‘hclust’ creates a gene tree (Fig.S6 and the top side of Fig.S7) by
combining a dissimilarity matrix of all the drivers, calculated based on Pearson’s correlation,
with Ward’s method, finding the relationship between the driver genes.
(ii) Identification of co-expressed modules based on the gene tree.
• The function ‘cutreeDynamic’ for the dynamicTreeCut package distributes the
identified driver genes to each resulting module
(iii) The function ‘plotDendroAndColors’ visualizes the identified co-expressed modules
which are colored separately (Fig.S6).

methods to assess
m <- c("average", "single", "complete", "ward")
names(m) <- c("average", "single", "complete", "ward")

function to compute agglomerative coefficient
set.seed(2583)
ac <- function(x) {
 agnes(exp_dri_norm, method = x)$ac
}
map_dbl(m, ac) # Agglomerative coefficient of each agglomeration
method

#assign gene names from adjacency to dissTOM
rownames(dissTOM) = rownames(adjacency)
colnames(dissTOM) = colnames(adjacency)
Call the hierarchical clustering function
geneTree = hclust(as.dist(dissTOM), method = "ward.D2");
Plot the resulting clustering tree (dendrogram)
sizeGrWindow(12,9)

 12

plot(geneTree, xlab="", sub="", main = "Gene clustering on TOM-based
dissimilarity",cex.lab = 1,cex.axis = 1, cex.main = 1.2);

Figure S6 | Gene tree. Clustering dendrogram of genes, with dissimilarity based on topological
overlap, together with assigned module colors.

#We set the minimum module size at 10:
minModuleSize = 10;
Module identification using dynamic tree cut:
dynamicMods = cutreeDynamic(dendro = geneTree, distM = dissTOM,
 minClusterSize = minModuleSize);
table(dynamicMods)
dynamicMods
1 2
16 15

Argument ‘minClusterSize’ designates the minimum number of driver genes appearing in each
identified module. At best, according to prior studies, users should consider choosing 10 for
reproducibility. The other ones should be left at default.

Convert numeric lables into colors
moduleColors = labels2colors(moduleColors)
Plot the dendrogram and colors underneath
sizeGrWindow(5,6)
plotDendroAndColors(geneTree, moduleColors, "Module Colors",
 dendroLabels = FALSE, hang = 0.03,
 addGuide = TRUE, guideHang = 0.05,
 main = "Gene dendrogram and module colors")

NF
1

GP
S2

M
EN

1
ER

BB
2

AK
T1

KM
T2
C

BA
P1

FO
XO

3
RU

NX
1

TB
X3

ER
BB

3
GA

TA
3 PT

EN
PI
K3
R1

M
AP

3K
1

PI
K3
CA

ZF
P3
6L
1

CD
KN

1B
CD

KN
2A

SM
AD

4
CB

FB
BR

CA
2

KR
AS

CD
H1

AG
TR

2
AR

ID
1A

SF
3B
1

RB
1 TP
53

NC
OR

1
M
AP

2K
40.
8

1.
0

1.
2

Gene clustering on TOM−based dissimilarity
He

igh
t

 13

Figure S7 | Gene dendrogram and module colors. Clustering dendrogram of genes, with dissimilarity
based on the topological overlap, together with assigned module colors.

6.2.	Detect	associations	of	functional	modules	to	clinical	features,	identification	of	significant	
genes	and	hub	genes	in	each	of	those	modules.	

The function ‘labeledHeatmap’ further analyzes and visualizes the associations between the
identified modules and clinical features. The resulting color-coded table is shown in Fig. S8.	

#Define numbers of genes and samples
nGenes = ncol(t(exp_dri_norm));
nSamples = nrow(t(exp_dri_norm));
Recalculate MEs with color labels
MEs0 = moduleEigengenes(t(exp_dri_norm), moduleColors)$eigengenes
MEs = orderMEs(MEs0)
moduleTraitCor = cor(MEs, clinical_exp1, use = "p");
moduleTraitPvalue = corPvalueStudent(moduleTraitCor, nSamples);

sizeGrWindow(20,6)
Will display correlations and their p-values
textMatrix = paste(signif(moduleTraitCor, 2), "\n(",
 signif(moduleTraitPvalue, 1), ")", sep = "");
dim(textMatrix) = dim(moduleTraitCor)
par(mar = c(6, 8.5, 3, 3));

Display the correlation values within a heatmap plot
labeledHeatmap(Matrix = moduleTraitCor,
 xLabels = names(clinical_exp1),
 yLabels = names(MEs),
 ySymbols = names(MEs),

0.
8

0.
9

1.
0

1.
1

1.
2

Gene dendrogram and module colors

as.dist(dissTOM)

He
ig

ht

Module Colors

 14

 colorLabels = FALSE,
 colors = blueWhiteRed(50),
 textMatrix = textMatrix,
 setStdMargins = FALSE,
 cex.text = 0.8,
 zlim = c(-1,1),
 main = paste("Module-clinical feature relationships"))

Figure S8 | Co-expressed module–feature associations. Each row corresponds to a module, column
to a clinical feature. Each cell contains the correlation coefficient and its corresponding p-value.
Abbreviation: lymph, numbers of lymph nodes, npi, Nottingham prognostic index, stage, tumor stages.

We discover significant genes (i.e., high Gene significance and high Module membership,
Fig.S9) in a single module having a significant association with clinical features (the blue
module is an example, the others can be done similarly)

####blue
names (colors) of the modules
Define variable stage containing the stage column of exp_dri_norm
stage = as.data.frame(clinical_exp1$stage);
names(stage) = "stage"
names (colors) of the modules
modNames = substring(names(MEs), 3)
geneModuleMembership = as.data.frame(cor(t(exp_dri_norm), MEs, use =
"p"));
MMPvalue=as.data.frame(corPvalueStudent(as.matrix(geneModuleMembersh
ip), nSamples));
names(geneModuleMembership) = paste("MM", modNames, sep="");
names(MMPvalue) = paste("p.MM", modNames, sep="");
geneTraitSignificance=as.data.frame(cor(t(exp_dri_norm), stage, use
= "p"));
GSPvalue=as.data.frame(corPvalueStudent(as.matrix(geneTraitSignifica
nce), nSamples));
names(geneTraitSignificance) = paste("GS.", names(stage), sep="");
names(GSPvalue) = paste("p.GS.", names(stage), sep="");

Module−clinical feature relationships

−1

−0.5

0

0.5

1

lym
ph np

i
sta
ge

MEblue

MEturquoise

−0.09
(8e−05)

−0.25
(2e−28)

−0.09
(8e−05)

−0.024
(0.3)

−0.064
(0.005)

−0.023
(0.3)

 15

#Intramodular analysis: identifying genes with high GS and MM
module = "blue"
column = match(module, modNames);
moduleGenes = moduleColors==module;
sizeGrWindow(7, 7);
par(mfrow = c(1,1));
x <- abs(geneModuleMembership[moduleGenes, column])
y <- abs(geneTraitSignificance[moduleGenes, 1])
limit <- range(c(x,y))
r <- round(cor(x,y),2)
plot(x,

 y,

 ylim =range(0.00,0.25), xlim =range(0.1,0.7),

 xlab =paste("Module Membership in", module, "module"),

 ylab ="Gene significance for stage", col = module)

fit <-lm(y~x)
pintra= round(summary(fit)$coefficients[,4][[2]],2) #p-value
abline(fit, col='orange')
legend('topleft', col = "orange", lty = 1, box.lty =
1,legend='regression line', cex= 0.8)
mtext(paste('correlation = ', r, ",", "P-value = ", pintra))
title(paste("Module membership vs. gene significance\n"))
text(y~x,labels=rownames(exp_dri_norm)[moduleColors=="blue"],data=ex
p_dri_norm, cex=0.8, font=4, pos = 3) #add label

0.1 0.2 0.3 0.4 0.5 0.6 0.7

0.
00

0.
10

0.
20

Module Membership in blue module

G
en

e
si

gn
ifi

ca
nc

e
fo

r s
ta

ge regression line

correlation = 0.53 , P−value = 0.04

Module membership vs. gene significance

PIK3R1

KMT2CBAP1
ERBB2

MAP3K1

ERBB3

PTEN

GPS2

GATA3

AKT1
FOXO3

MEN1

NF1

TBX3 RUNX1

 16

Figure S9 | Module membership and gene significance. A correlation of the blue module to the tumor
stages with all genes in it.

Alternatively, the function verboseScatterplot provided in the package WGCNA can
generate the similar result in Fig.S9 in a more easier way, but users can not draw a regression
line (orange) and add gene names next to the corresponding blue circles:

#Alternatively
verboseScatterplot(abs(geneModuleMembership[moduleGenes, column]),

 abs(geneTraitSignificance[moduleGenes, 1]),

 xlab = paste("Module Membership in",
module,"module"),

 ylab = "Gene significance for npi",

 main = paste("Module membership vs. gene
significance\n"),

 cex.main = 1.2, cex.lab = 1.2, cex.axis = 1.2,
col = module)

These below scripts help detect significant genes (high Gene significance and high Module
membership) and the top 5 hub genes in each module (the blue module is an example, the
others can be done similarly), respectively.

#identifying genes with high GS and MM

intra_modular_analysis=data.frame(abs(geneModuleMembership[moduleGen
es, column]),abs(geneTraitSignificance[moduleGenes, 1]))
rownames(intra_modular_analysis)=colnames(t(exp_dri_norm))[moduleCol
ors=="blue"] #only the blue module
View(intra_modular_analysis)

#high intramodular connectivity ~ high kwithin => hub genes (kwithin:
connectivity of the each driver gene in the turquoise module to all
other genes in the turquoise)
connectivity=intramodularConnectivity(adjacency, moduleColors)
connectivity=connectivity[colnames(t(exp_dri_norm))[moduleColors=="t
urquoise"],] #only the turquoise module
order.kWithin = order(connectivity$kWithin, decreasing = TRUE)
connectivity = connectivity[order.kWithin,] #order rows following
kWithin
connectivity = connectivity[1:5,] #top 5 genes that have a high
connectivity to other genes in the turquoise module
View(connectivity)

7.	Patient	stratification	(Fig.1,	Stage	2;	Step	5)	

7.1.	Pre-processing	clinical	data	&	CNVs	data	
Source the R.script (1.CNA-preprocess.R) to process the two datasets: CNV data and clinical
data.

 17

#Load data objects and Data Preprocessing
source("1.CNA-preprocess.R")

7.2.	Patient	stratification	by	the	identified	driver	genes	
Source the R.script (2.CNA-hclut.R) to do this task that contains:
• As the same way described at the section 6.1, we find the best agglomeration method
(i.e., Ward’s method) using the function ‘agnes’ and realize that Ward’s method outperforms
the others again.
• The function ‘hclust’ generates a dendrogram tree of the patients by combining a
dissimilarity matrix of all the patients, computed based on Euclidean distance by the function
‘dist’, with Ward’s method, finding the relationship between all the patients.
• The function ‘clValid’ performs the Dunn’s index (Fig.S11) and the average Silhouette
width (Fig.S12) to determine how many patient groups are best. Collectively, Fig.S10-S12
imply that two groups are the best solution.
• The functions ‘cutree’ with ‘agnes’ distributes all the patients to each of two groups
• The function ‘Heatmap’ for the package ComplexHeatmap plots the result of patient
stratification as a heatmap plot (Fig.S13).

#Patient stratification
source("2.CNA-hclut.R")

Figure S10 | Optimal group number detection. Two optimal groups were determined by the
connectivity. The connectivity computes the degree of connectedness of a given group partitioning.
The connectivity shows the connectedness of a given cluster partitioning and has a value between 0
and infinity. The user should choose a point reaching the most minimized value (y-axis).

1

1
1

1
1 1

1
1 1 1 1 1

1 1

50
0

10
00

15
00

Internal validation

Number of Clusters

C
on

ne
ct

iv
ity

2 3 4 5 6 7 8 9 11 13 15

1 hierarchical

 18

Figure S11 | Optimal group number detection. Two optimal groups were also determined by the
Dunn’s index. The Dunn’s index (y-axis) has a value between zero (poorly clustered observations)
and infinity (well clustered observations), and the place where the black line of Dunn’s index plot
peaks at, which implies that that group number is optimal.

Figure S12. Optimal group number detection. Three optimal groups were determined by the
Silhouette width. The average Silhouette has a value between -1 (poorly clustered observations) and 1
(well clustered observations), and the place where the black line of the Silhouette plot peaks at, which
implies that that group number is optimal.

Collectively, Fig.S10-S12 show that the two number of groups is the best solution.

Then, we cut the discovered tree of patients above based on the optimal number of groups and
visualize the result using a heatmap plot.

agnes() with cutree() cuts the dendrogram into 2 groups
hc_a <- agnes(t(cna_dri), method = "ward")

1

1 1 1 1 1 1 1 1 1 1 1 1 1

0.
10

0.
11

0.
12

0.
13

Internal validation

Number of Clusters

D
un

n

2 3 4 5 6 7 8 9 11 13 15

1 hierarchical

1 1

1
1

1 1
1 1 1 1 1 1 1 1

−0
.1

0
0.

00
0.

10

Internal validation

Number of Clusters

Si
lh

ou
et

te

2 3 4 5 6 7 8 9 11 13 15

1 hierarchical

 19

sub_grp= cutree(as.hclust(hc_a), k = 2)

Number of members in each cluster
table(sub_grp)
sub_grp
1 2
993 1180

To show two groups on the top of the heatmap plot (Fig.S13), we must specify which patients
belong to which identified groups.

> ## make a named vector from the vector
> info =as.data.frame(sub_grp)
> info$patient = rownames(info)
> info <-info[order(info$sub_grp),]
> info = dplyr::select(info,-patient)
> colnames(info) <- c('groups')
> info$groups = as.character(info$groups)
> cna_dri = cna_dri[,rownames(info)] #change the order of
> column/patients of cna data following the variable 'info'

> ## Heatmap annotation
> library(circlize)
> ha <- columnAnnotation(df = info, col = list(groups = c("1" =
"black", "2" = "green")))

And finally, we visualize the result as the heatmap plot (Fig.S13)

> #visualization using heatmap plot
> Heatmap(cna_freq, name = "CNA scale",
+ show_row_names = TRUE, show_column_names = FALSE,
+ row_dend_reorder = TRUE, column_dend_reorder = TRUE,
+ clustering_distance_rows = "euclidean",
+ clustering_distance_columns = "euclidean",
+ clustering_method_rows = "ward.D2",
+ clustering_method_columns = "ward.D2",
+ top_annotation = ha
+)

 20

Figure S13. Differences in CNVs events between the identified groups. Clustering of BRCA patients
based on the 31 driver genes. Two distinct groups are found (black and green). For CNA scale, Dark
red, red, grey, blue and dark blue represent high-level amplification, amplification, copy-neutral,
deletion and high-level deletion, respectively.

7.3.	Comparision	between	the	identified	patient	groups	

We further perform the difference in the clinical features (i.e., survival rate, number of positive
lymph nodes, Nottingham prognostic index, and cancer stage) between the two identified
groups. Firstly, we must define the time and status of patients based on the clinical data.

#change the order of column/patients of clinical data following the
variable 'info'
cli = c_clinical; rownames(cli) = c_clinical$PATIENT_ID
grp=sub_grp; grp=as.data.frame(grp)
cli_surv =cli[rownames(grp),]
cli_surv = na_if(cli_surv,"") #transform "" (missing space) into NA
value
survData<-cbind(cli_survOS_MONTHS, cli_survOS_STATUS=="DECEASED")

#create survData
rownames(survData)<- rownames(cli_surv)
colnames(survData)<-c("time", "status")
survData <- as.data.frame(survData) #coxph and survfit require input
as data frame

Then, we now fit a Cox proportional hazards regression model and compute an estimate of a
survival curve using ‘coxph’ and ‘survfit’, respectively. The function ‘ggsurvplot’ for the
package survminer illustrates the Kaplan-Meier survival curves (Fig.S14).

ERBB2
PIK3CA
GATA3
RUNX1
KMT2C
ERBB3
TBX3
SF3B1
MEN1
KRAS
CDKN1B
FOXO3
MAP3K1
PIK3R1
AKT1
ZFP36L1
NF1
AGTR2
SMAD4
PTEN
BAP1
ARID1A
CDKN2A
BRCA2
RB1
NCOR1
GPS2
TP53
MAP2K4
CBFB
CDH1

groups

CNA scale

−2
−1
0
1
2

groups
1
2

 21

coxFit1 <- coxph(
 Surv(time, status) ~ as.factor(sub_grp),
 data = survData,
 ties = "exact")
pcox=round(summary(coxFit1)$logtest[3],8); pcox #p-value = 1.498e-05

mfit <- survfit(Surv(time, status == 1) ~ as.factor(sub_grp), data =
survData)

#visualization of survival rate between two groups
ggsurvplot(mfit, size=1,
 linetype = "strata",
risk.table = FALSE, fun ="pct", risk.table.col = "strata", break.x.by
= 50,
 xlab = "Time in months",
 legend = "bottom",
 legend.title = "Group", legend.labs = c("Group 1","Group
2"),
conf.int = TRUE, pval = paste("P-value",pcox,sep=" = "), xlim =
c(0,200), palette = c("black", "green"))

Figure S14. Difference in patient survival rates between the two groups.

Finally, we observe the differences between the two groups concerning the other clinical
features.

library(dplyr)
library(ggplot2)
devtools::install_github("kassambara/ggpubr")

++++++++++ +++++ + +++

+++

P−value = 1.498e−050

25

50

75

100

0 50 100 150 200
Time in months

Su
rv

iva
l p

ro
ba

bi
lit

y
(%

)

Group + +Group 1 Group 2

 22

library("ggpubr")
library(ggsci)

#prepare data
a = info
cli_feature = c_clinical;
rownames(cli_feature) = cli_feature$PATIENT_ID;
cli_feature = cli_feature[rownames(info),]
a$lymph=cli_feature$LYMPH_NODES_EXAMINED_POSITIVE
a$npi=cli_feature$NPI
a$stage=cli_feature$stage

#comparison
install.packages("table1"); library(table1)
install.packages("compareGroups"); library("compareGroups")
#define specifically type of data
a$lymph = as.numeric(a$lymph); a$npi = as.numeric(a$npi)
a$stage = as.character(a$stage)
#start to perform comparisons
des=compareGroups::createTable(compareGroups::compareGroups(groups ~
., data = a, method = NA))
#save the results as xls file
compareGroups::export2xls(des, file = "tableSTAT.xlsx",
header.labels = c(p.overall = "p-value"))

For the number of positive lymph node (Fig.S15):

 set.seed(216)
#lymph nodes
p=ggboxplot(a, x = "groups", y = "lymph",
 color = "groups", palette = c("black", "green"),
 ylab = "Number of positive lymph nodes", xlab = "Groups",
 title = "Wilcoxon, P-value = 0.031") + border("black")
ggpar(p,legend="right",legend.title = "Groups")

Figure S15. Difference in lymph between the two groups.

0

10

20

30

40

1 2
Groups

Nu
m

be
r o

f p
os

itiv
e

lym
ph

 n
od

es

Groups
1
2

Wilcoxon, P−value = 0.031

 23

For the Nottingham prognostic index (Fig.S16)

#NPI
p1=ggboxplot(a, x = "groups", y = "npi",
 color = "groups", palette = c("black", "green"),
 ylab = "Nottingham prognostic index", xlab = "Groups",
 title = "Wilcoxon, P-value < 0.001") + border("black")
ggpar(p1,legend="right",legend.title = "Groups")

Figure S16. Difference in npi between the two groups.

And finally, for the tumor stage (Fig.S17)

 #stage
a_st = a %>% group_by(groups, stage) %>% summarise(patient.num = n())
Create a column "patient.num" which is number of patients in each
combination of group and stage
a_st$Groups=as.character(a_st$groups)
a_st$stage=as.character(a_st$stage)
a_st=na.omit(a_st)
#stage
a_st = a %>% group_by(groups, stage) %>% summarise(patient.num =
n()) ## Create a column "patient.num" which is number of patients in
each combination of group and stage
a_st$Groups=as.character(a_st$groups)
a_st$stage=as.character(a_st$stage)
a_st=na.omit(a_st)
p2=ggplot(a_st, aes(x = Groups, y = patient.num, fill = stage)) +
#stacked barplot
 geom_bar(position = "fill", stat = "identity") +
theme(panel.background = element_blank()) +
 ggtitle("Chisq, P-value = 0.016") +
 scale_y_continuous(labels = scales::percent_format())

2

4

6

1 2
Groups

No
ttin

gh
am

 p
ro

gn
os

tic
 in

de
x

Groups
1
2

Wilcoxon, P−value < 0.001

 24

p2 + xlab("Groups") + ylab("Percent of patients")

Figure S17. Difference in tumor stage between the two groups. Abbreviation: Chisq, Pearson’s χ2 test

	
 	

0%

25%

50%

75%

100%

1 2
Groups

Pe
rc

en
t o

f p
at

ie
nt

s stage
0

1

2

3

4

Chisq, P−value = 0.016

 25

8.	References	

1	 Cancer	 Genome	 Atlas	 Research,	 N.	 et	 al.	 The	 Cancer	 Genome	 Atlas	 Pan-Cancer	

analysis	project.	Nature	genetics	45,	1113-1120,	doi:10.1038/ng.2764	(2013).	
2	 Cerami,	E.	 et	al.	The	cBio	Cancer	Genomics	Portal:	An	Open	Platform	for	Exploring	

Multidimensional	 Cancer	 Genomics	 Data.	 Cancer	 Discovery	 2,	 401-404,	
doi:10.1158/2159-8290.cd-12-0095	(2012).	

3	 Pereira,	B.	et	al.	The	somatic	mutation	profiles	of	2,433	breast	cancers	refine	their	
genomic	 and	 transcriptomic	 landscapes.	 Nature	 Communications	 7,	 11479,	
doi:10.1038/ncomms11479	(2016).	

4	 Arnedo-Pac,	 C.,	 Mularoni,	 L.,	 Muiños,	 F.,	 Gonzalez-Perez,	 A.	 &	 Lopez-Bigas,	 N.	
OncodriveCLUSTL:	 a	 sequence-based	 clustering	 method	 to	 identify	 cancer	 drivers.	
Bioinformatics	35,	4788-4790,	doi:10.1093/bioinformatics/btz501	(2019).	

5	 Mularoni,	 L.,	 Sabarinathan,	 R.,	 Deu-Pons,	 J.,	 Gonzalez-Perez,	 A.	 &	 López-Bigas,	 N.	
OncodriveFML:	a	general	framework	to	identify	coding	and	non-coding	regions	with	
cancer	 driver	mutations.	Genome	Biology	17,	 128,	 doi:10.1186/s13059-016-0994-0	
(2016).	

6	 Kircher,	M.	 et	al.	A	 general	 framework	 for	estimating	 the	 relative	pathogenicity	of	
human	genetic	variants.	Nature	Genetics	46,	310-315,	doi:10.1038/ng.2892	(2014).	

7	 Li,	 J.	 et	al.	Application	of	Weighted	Gene	Co-expression	Network	Analysis	 for	Data	
from	Paired	Design.	Scientific	Reports	8,	622,	doi:10.1038/s41598-017-18705-z	(2018).	

