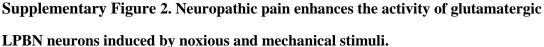
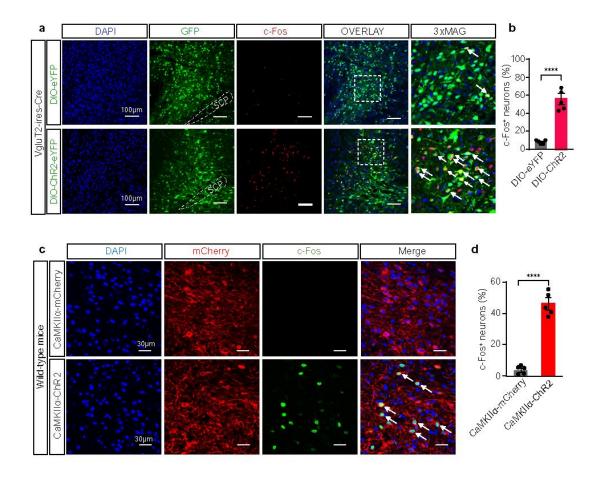
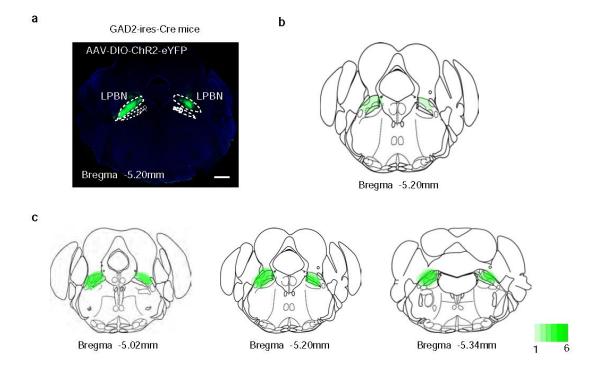

Parabrachial nucleus circuit governs neuropathic pain-like behavior

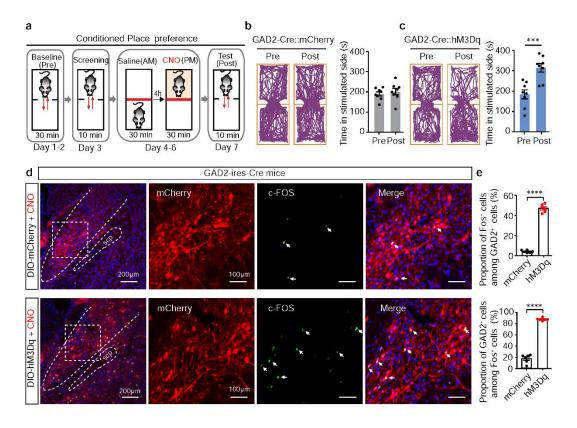

Sun et al.

Supplementary Figure 1. Neuropathic pain model induced by ligation of the common peroneal nerve (CPN)


(a) Schematic of the CPN model. (b) Experimental design and timeline of the behavioral experiment. (c) Quantification of the PWT in C57, GAD67-GFP, and VgluT2-ires-Cre mice with or without CPN ligation. Two-way ANOVA followed by Bonferroni's multiple comparisons test: Sham *vs* CPN, C57, *****P* <0.0001; GAD67-GFP, *****P* <0.0001; VgluT2-Cre, *****P* <0.0001; $F_{(2, 42)} = 2.965$; n = 8 mice per group. All data are presented as mean \pm s.e.m. and error bars represent s.e.m. Source data are provided as a Source Data file.

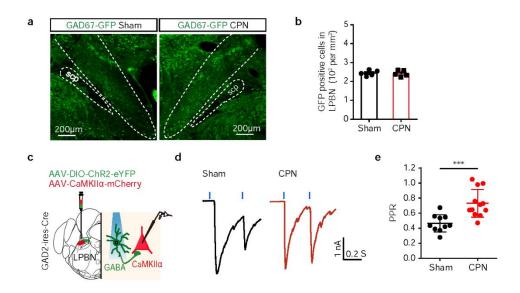

(a) Experimental timeline for imaging Ca²⁺ activity in VgluT2 LPBN neurons transfected with AAV-DIO-GCaMP7s. (b) Diagrams showing Ca²⁺ activity imaging in LPBN VgluT2 neurons using a head-mounted miniaturized microscope. (c) Representative image of LPBN neurons transfected with AAV-DIO-GCaMP7s in a Vglut2-ires-Cre mouse. Scale bar, 200 μ m. Inset, magnified view of rectangle in image; scale bar, 40 μ m. (d) Trial-average activity of VgluT2 neurons in response to indicated sensory stimuli before (pre-CPN) and after (post-CPN) CPN ligation. Active Ca²⁺ event traces are aligned to the time when the pinch (*n* = 56 neurons from 4 mice), von

Frey (0.4 g) (n = 56 neurons from 4 mice), or von Frey (1.0 g) (n = 47 neurons from 4 mice) stimuli are applied to the hindpaw (green arrowheads). Trial averages (10–15 trials/mouse) are sorted based on peak activity time. Arrowheads indicate onset of stimulation. (e) Average response to pinch, von Frey (vF 0.4 g) and von Frey (vF 1.0 g) stimuli before (blue) and after (red) CPN ligation. Number of neurons recorded is the same as in (d). (f, g) Peak $\Delta F/F$ (f) and area under the curve (AUC) per second (g) of GCaMP6m signals following pinch, vF 0.4 g and vF 1.0 g stimuli. Wilcoxon Signed Rank Test, (f), pinch (pre vs. post), ***P < 0.001; Z value = -3.506b; n = 56 neurons from 4 mice; vF 0.4 g (pre vs. post), ***P < 0.001; Z value = -4.201b; n = 56 neurons from 4 mice; vF 1.0 g (pre vs. post), **P = 0.0234; n = 47 neurons from 4 mice Z value = -2.201b (g), pinch (pre vs. post), **P = 0.002; Z value = -3.847b; n = 56 neurons from 4 mice; vF 0.4 g (pre vs. post), **P = 0.002; Z value = -3.141b; n = 56 neurons from 4 mice; vF 1.0 g (pre vs. post), *P = 0.043; Z value = -2.027b; n = 47 neurons from 4 mice. All data are presented as mean \pm s.e.m. and error bars represent s.e.m. Source data are provided as a Source Data file.


Supplementary Figure 3. Activation and inactivation of glutamatergic LPBN neurons and c-FOS expression levels in the LPBN

(a) Representative images showing light stimulation-induced c-Fos expression (red) in the LPBN transfected with DIO- eYFP (upper, green) and DIO-ChR2- eYFP (lower, green) in VgluT2-ires-Cre mice. 3xMAG, magnified view of the boxed areas in the overlay panels. Arrows indicate neurons co-labeled with c-FOS and ChR2- eYFP; blue, DAPI stain; scale bars, 100 μ m. (b) Proportion of neurons expressing eYFP or ChR2eYFP that co-label with c-Fos in the LPBN as in (a). Two-tailed unpaired t test, DIOeYFP *vs* DIO-ChR2, *****P* <0.0001, *t* = 9.161 d.f. = 8. (c) Representative images showing light stimulation-induced c-Fos expression (green) in the LPBN transfected with CaMKII α -mCherry (upper, red) or CaMKII α -ChR2-mCherry (lower, red) in C57BL/6J mice. Arrows indicate c-Fos expression in CaMKII α ⁺ neurons; scale bars, 30 μ m. (d) Proportion of neurons expressing CaMKII α -mCherry or CaMKII α -ChR2mCherry that co-labeled with c-Fos in the LPBN as in (c). Two-tailed unpaired t test, CaMKII α -mCherry *vs* CaMKII α -ChR2, ****P <0.0001, *t* = 13.73 d.f. = 6. All data are presented as mean \pm s.e.m. and error bars represent s.e.m. Source data are provided as a Source Data file.

Supplementary Figure 4. Virus infection areas in the LPBN of GAD2-ires-Cre mice.


(a) Representative image from a GAD2-ires-Cre mouse bilaterally injected with AAV-DIO-ChR2-eYFP virus in the LPBN. Scale bar, 1 mm. (b) Depiction of virus infection area according to the fluorescent image in (a). (c) Superimposed of virus infection areas at three different coronal levels from six GAD2-ires-Cre mice bilaterally injected with AAV-DIO-ChR2-eYFP virus $(1.25 \times 10^{12} \text{ genomic copies per ml}, 80 \text{ nl each side})$ in the LPBN. n = 6 mice.

Supplementary Figure 5. Pharmacogenetic activation of GABAergic LPBN neurons induces conditioned place preference (CPP) in CPN-ligated mice.

(a) Schematic of the experimental design for CPP after CPN ligation for 7 days in GAD2-ires-Cre mice. (**b**, **c**) Examples of tracking maps (left) and quantification of time spent in the preferred chamber (right) in the CPP before (Pre) and after (Post) injection of CNO (5 mg kg⁻¹ i.p.) into the LPBN of *GAD2-ires-Cre* mice transfected with DIO-mCherry (b) or DIO-hM3Dq-mCherry (c). Unpaired t test: P = 0.5473; t = 0.6167; d.f. = 14 (b); ***P = 0.0007; t = 4.325; d.f. = 14 (c). n = 8 mice per group. (d) Representative images showing c-Fos expression (green, arrows) and GABAergic neurons transfected with mCherry or hM3Dq-mCherry (red) in the LPBN of GAD2-ires-Cre mice. Scale bar, 200 µm for leftmost panels; 100 µm for other panels; blue, DAPI stain. (e) Proportions of c-Fos-positive cells among GAD2-mCherry-expressing neurons (upper) and GAD2-mCherry-positive neurons among c-Fos expressing cells (lower) 1 h after injection of CNO in GAD2-ires-Cre mice. Unpaired t test, (upper) ****P < 0.0001; t = 25.17; d.f. = 10; (lower) ****P < 0.0001; t = 15.3; d.f. = 10; n = 6

mice per group. All data are presented as mean \pm s.e.m. and error bars represent s.e.m. Source data are provided as a Source Data file.

Supplementary Figure 6. Effects of CPN-treatment on GABAergic LPBN neurons. (a) Representative images showing GAD67-GFP-expressing neurons in the LPBN from sham (left) and CPN-treated (right) GAD67-GFP mice. (b) Summarized density of GAD67-GFP-expressing neurons in the LPBN from sham and CPN-treated mice as in (a). (c) Schematic of patch-clamp recording in brain slices from GAD2-ires-Cre mice transfected with AAV-CaMKII α -mCherry and AAV-DIO-ChR2-eYFP virus in the LPBN. (d) Representative traces of evoked IPSPs in LPBN^{CaMKII α} neurons induced by paired pulses of light stimulation (473 nm, 5-ms pulses at an interval of 200 ms) of LPBN GABAergic neurons in Sham (left) and CPN treated (right) GAD2-ires-Cre mice. (e) Summarized paired-pulse ratio (PPR, calculated by dividing the amplitude of the second pulse by that of the first) as in (d). Two-sided unpaired t-test, *t* = 3.979, d.f. = 20, *** *P* = 0.0007. *n* = 10 neurons from 6 mice (Sham) and 12 neurons from 6 mice (CPN). All data are presented as mean ± s.e.m. and error bars represent s.e.m. Source data are provided as a Source Data file.

Fig	Comparison	Analysis	P value, F/T/W/U value	Ν
1c	c-Fos ⁺ neurons number	Two-way	Sham vs CPN:	8
	in the CaMKIIa vs	ANOVA	CaMKIIα, ****P <0.0001;	section
	GAD67 group with	followed by	GAD67, P >0.9999;	s from
	Sham operation or CPN	Bonferroni's	CaMKIIa vs GAD67:	5 mice
	ligation	multiple	Sham, P = 0.0647;	
		comparisons test	CPN, ****P<0.0001;	
			F (1, 8) = 364.9;	
1d	Proportions of	Two-way	Sham vs CPN:	5
	CaMKIIa-positive cells	ANOVA	Fos ⁺ /CaMKIIa, ****P	section
	and GAD67-GFP-	followed by	<0.0001; Fos ⁺ /Gad67, P =	s from
	positive cells co-	Bonferroni's	0.6574; Fos ⁺ /CaMKIIα vs	5 mice.
	expressed with c-Fos in	multiple	Fos ⁺ /Gad67:	
	the LPBN after Sham	comparisons test	Sham, P = 0.1660,	
	operation or CPN		CPN, ****P <0.0001;	
	ligation.		F (1, 16) = 93.72	
1k	Averaged peak $\Delta F/F$ of	Two-way	Sham vs CPN:	6
	GCaMP7s and eYFP	ANOVA	eYFP, P >0.9999;	mice
	group with Sham	followed by	GCaMP7s, ****P <0.0001;	per
	operation or CPN	Bonferroni's	eYFP vs GCaMP7s:	group
	ligation	multiple	Sham,*P = 0.0149;	
		comparisons test	CPN, ****P<0.0001;	
			F (1, 8) = 47.62	
1k	Averaged area under the	Two-way	Sham vs CPN:	6
	curve (AUC) per second	ANOVA	eYFP, P = 0.8165;	mice
	of GCaMP7s and eYFP	followed by	GCaMP7s, ****P<0.0001;	per
	group with Sham	Bonferroni's	eYFP vs GCaMP7s:	group
	operation or CPN	multiple	Sham, *P = 0.0185;	
	ligation	comparisons test	CPN, ****P <0.0001;	
			F (1, 8) = 23.65.	
1n	Averaged peak $\Delta F/F$ of	Two-way	Sham vs CPN :	6
	GCaMP7s and eYFP	ANOVA	eYFP, P >0.9999;	mice
	group with Sham	followed by	GCaMP7s, P >0.9999;	per
	operation or CPN	Bonferroni's	eYFP vs GCaMP7s:	group
	ligation	multiple	Sham, *P = 0.0164;	
		comparisons test	CPN, P = 0.0623;	
			F (1, 20) = 0.1893.	
1n	Averaged area under the	Two-way	Sham vs CPN:	6
	curve (AUC) per second	ANOVA	eYFP, P >0.9999;	mice
	of GCaMP7s and eYFP	followed by	GCaMP7s, P = 0.5367;	per
	group with Sham		eYFP vs GCaMP7s:	group

Supplementary Table 1. Statistical Data

	operation or CPN	Bonferroni's	Sham, *P = 0.0234;	
	ligation	multiple	CPN, P = 0.2663;	
		comparisons test	F (1, 20) = 0.7316.	
2d	Paw-withdraw	Two-way	DIO-eYFP, Sham vs CPN:	12
	thresholds of ChR2 and	ANOVA	Off, ****P<0.0001;	mice
	eYFP group with Sham	followed by	On, ****P <0.0001;	per
	operation or CPN	Bonferroni's	DIO-ChR2-eYFP, Sham vs	group
	ligation	multiple	CPN:	
		comparisons test	Off, ****P <0.0001;	
			On, P =0.1034;	
			DIO-ChR2-eYFP,Sham:	
			Off <i>vs</i> On, ****P <0.0001;	
			DIO-eYFP vs DIO-ChR2-	
			eYFP: Sham(On), ****P	
			<0.0001;	
			F (3, 44) = 23.77;	
2e	latency of the thermal	Two-way	DIO-eYFP, Off vs On,:	12
	paw-withdraw response	ANOVA	Sham, P = 0.0614;	mice
	of ChR2 and eYFP	followed by	CPN, P >0.9999;	per
	group with Sham	Bonferroni's	DIO-ChR2-eYFP, Off vs On:	group
	operation or CPN	multiple	Sham, ****P <0.0001;	
	ligation	comparisons test	CPN,P >0.9999;	
			CPN, DIO-eYFP vs DIO-	
			CHR2-eYFP:	
			Off, P >0.9999;	
			On, P >0.9999;	
			F (3, 44) = 109.6.	
2h	Time spent in the	One-way	Pre vs Light, P >0.9999;	6
	stimulated chamber in	ANOVA	Pre vs Post, $P = 0.4438$;	mice
	the RTPA test: pre vs	followed by	Light vs Post, $P = 0.9724$;	
	light vs post	Bonferroni's	F(2, 15) = 1.208;	
		multiple		
		comparisons test		
2j	Time spent in the	One-way	Pre vs Light, ****P <0.0001;	7
	stimulated chamber in	ANOVA	Pre <i>vs</i> Post, $***P = 0.0006$;	mice
	the RTPA test: pre vs	followed by	Light vs Post, ***P =	
	light vs post	Bonferroni's	0.0002;	
		multiple	F(2, 18) = 48.88;	
		comparisons test		
3b	PWT in mice injected	Two-way	CaMKIIα-mCherry vs	10
	with AAV-CaMKIIα-	ANOVA	CaMKIIα-ChR2:	
	ChR2-mCherry and	followed by	Pre, P = 0.9523;	

	AAV-CaMKIIα-	Bonferroni's	Light, ****P <0.0001;	mice
	mCherry group	multiple	Post, $P = 0.8294$;	per
		comparisons test	CaMKIIα-mCherry:	group
		-	Pre vs Light, $P = 0.9494$;	
			Pre <i>vs</i> Post, $P = 0.7062$;	
			Light vs Post, $P = 0.5162$;	
			CaMKIIα-ChR2:	
			Pre vs Light, ****P <0.0001;	
			Light vs Post, ****P	
			<0.0001;	
			Pre vs Post, $P = 0.5665$;	
			F (2, 11) = 36.83.	
3c	Thermal paw-	Two-way	CaMKIIα-mCherry:	10
	withdrawal latency in	ANOVA	Pre vs Light, P >0.9999;	mice
	mice injected with	followed by	Light <i>vs</i> Post, P >0.9999;	per
	AAV-CaMKIIα-ChR2-	Bonferroni's	Pre <i>vs</i> Post, $P = 0.8261$;	group
	mCherry and AAV-	multiple	CaMKIIα-ChR2:	
	CaMKIIa-mCherry	comparisons test	Pre vs Light, ****P<0.0001;	
	group		Light vs Post, ****P	
			<0.0001;	
			Pre vs Post, $P = 0.9360$;	
			CaMKIIα-mCherry vs	
			CaMKIIα-ChR2:	
			Pre, P >0.9999;	
			Light, ****P <0.0001;	
			Post, P = 0.9534;	
			F (2, 21) = 36.83;	
3d	Time spent in the	One-way	Pre <i>vs</i> Light, P >0.9999;	6
	stimulated chamber in	ANOVA	Pre <i>vs</i> Post, $P = 0.7691$;	mice
	the RTPA test: pre vs	followed by	Light <i>vs</i> Post, P >0.9999;	
	light vs post	Bonferroni's	F (2, 15) = 0.8074;	
		multiple		
		comparisons test		
3e	Time spent in the	One-way	Pre vs Light, ****P <0.0001;	6
	stimulated chamber in	ANOVA	Pre <i>vs</i> Post, $***P = 0.0006$;	mice
	the RTPA test: pre vs	followed by	Light <i>vs</i> Post, **P = 0.0013;	
	light vs post	Bonferroni's	F (2, 15) = 43.77;	
		multiple		
		comparisons test		
3h	Distance moved in the	Two-way	CaMKIIα-mCherry vs	5
	OFT: pre vs light vs post	ANOVA	CaMKIIa-ChR2:	
		followed by	Pre, P >0.9999;	

		Bonferroni's	Light, P >0.9999;	mice
		multiple	Post, $P = 0.7626$);	per
		comparisons test	F(2, 12) = 0.6693;	•
3h	Ratio of time spent in	Two-way	CaMKIIα-mCherry <i>vs</i>	group 5
511	the periphery and center	ANOVA	CaMKIIα-ChR2	mice
	in the OFT: pre vs light	followed by Bonferroni's	Pre, P >0.9999;	per
	vs post		Light, P >0.9999;	group
		multiple	Post, P >0.9999;	
41		comparisons test	F(2, 12) = 0.3369;	10
4b	Paw-withdraw	Two-way	mCherry vs eNpHR:	12
	thresholds of eNpHR	ANOVA	Off, P = 0.1361;	mice
	and mCherry group with	followed by	On, ****P <0.0001;	per
	Sham operation	Bonferroni's	Off vs On:	group
		multiple	mCherry, $P = 0.0763;$	
		comparisons test	eNpHR (Off vs On), *P =	
			0.0137;	
			F (3, 44) = 49.64;	
4b	Paw-withdraw	Two-way	mCherry vs eNpHR	12
	thresholds of eNpHR	ANOVA	Off, P = 0.2472;	mice
	and mCherry group with	followed by	On, ****P <0.0001;	per
	CPN ligation	Bonferroni's	Off vs On:	group
		multiple	mCherry, P > 0.9999;	
		comparisons test	eNpHR, ****P <0.0001;	
			F (3, 33) = 47.29;	
4c	Latency of the thermal	Two-way	mCherry vs eNpHR:	12
	paw-withdraw response	ANOVA	Off, P = 0.6455;	mice
	of eNpHR and mCherry	followed by	On, ****P <0.0001;	per
	group with Sham	Bonferroni's	Off vs On:	group
	operation	multiple	mCherry, $P = 0.0602;$	
		comparisons test	eNpHR, *P = 0.0107;	
		-	F (1, 22) = 18.17;	
4c	Latency of the thermal	Two-way	mCherry vs eNpHR:	12
	paw-withdraw response	ANOVA	Off, $P = 0.1496;$	mice
	of eNpHR and mCherry	followed by	On, ****P <0.0001;	per
	group with CPN ligation	Bonferroni's	Off vs On:	group
		multiple	mCherry, P= 0.8663;	Jer
		comparisons test	eNpHR , ****P <0.0001;	
			F(1, 22) = 96.64;	
4f	Time spent in the	One-way	Pre vs Light, $P = 0.9418;$	5
-1	stimulated chamber of	ANOVA	Pre vs Post, $P > 0.9999$;	mice
		followed by	Light vs Post, $P > 0.9999;$	mee
	mCherry group in the	Bonferroni's	Ū.	
		Domerrom S	F(2, 12) = 0.6869;	

	RTPP test: pre vs light	multiple		
	vs post	comparisons test		
4g	Time spent in the	One-way	Pre <i>vs</i> Light, **P = 0.0047;	5
-	stimulated chamber of	ANOVA	Pre <i>vs</i> Post, $*P = 0.0319$;	mice
	eNpHR group in the	followed by	Light vs Post, $P = 0.9531$;	
	RTPP test: pre <i>vs</i> light	Bonferroni's	F(2, 12) = 8.907;	
	vs post	multiple		
	-	comparisons test		
4j	Distance moved in the	Two-way	mCherry vs eNpHR:	5
Ū	OFT: pre vs light vs post	ANOVA	Pre, $P = 0.1055;$	mice
		followed by	Light, $P = 0.4452;$	per
		Bonferroni's	Post, $P = 0.2445$);	group
		multiple	mCherry:	0 1
		comparisons test	Pre <i>vs</i> Light, P > 0.9999;	
		-	Pre <i>vs</i> Post, $P = 0.7484$;	
			Light <i>vs</i> Post, P > 0.9999;	
			eNpHR:	
			Pre <i>vs</i> Light, P > 0.9999;	
			Pre <i>vs</i> Post, P > 0.9999;	
			Light vs Post, $P = 0.9286$;	
			F (2, 24) = 0.1895.	
4k	Ratio of time spent in	Two-way	mCherry vs eNpHR:	5
	the periphery and center	ANOVA	Pre, P > 0.9999;	mice
	in the OFT: pre vs light	followed by	Light, P > 0.9999;	per
	vs post	Bonferroni's	Post, $P = 0.7001$;	group
		multiple	mCherry:	
		comparisons test	Pre vs Light, $P = 0.6961$;	
			Pre <i>vs</i> Post, P > 0.9999;	
			Light vs Post, $P = 0.9471$;	
			eNpHR:	
			Pre <i>vs</i> Light, P > 0.9999;	
			Pre <i>vs</i> Post, $P = 0.7485$;	
			Light vs Post, $P = 0.8849$;	
			F (2, 24) = 1.099.	
41	Distance moved in the	Two-way	mCherry vs eNpHR:	5
	OFT: pre vs light vs post	ANOVA	Pre, P = 0.6075;	mice
		followed by	Light, P > 0.9999;	per
		Bonferroni's	Post, P = 0.8437;	group
		multiple	mCherry:	
		comparisons test	Pre vs Light, $P = 0.0520$;	
			Pre vs Post, $P = 0.5881$;	
			Light vs Post, $P = 0.6963$;	

			eNpHR:	
			Pre vs Light, $P > 0.9999$;	
			<u> </u>	
			Pre vs Post, $P = 0.8645$;	
			Light <i>vs</i> Post, $P > 0.9999$;	
4			F(2, 12) = 0.5950.	
4m	Ratio of time spent in	Two-way	mCherry vs eNpHR:	5
	the periphery and center	ANOVA	Pre, $P = 0.1582;$	mice
	in the OFT: pre vs light	followed by	Light, P > 0.9999;	per
	vs post	Bonferroni's	Post, P > 0.9999;	group
		multiple	F(2, 12) = 0.5402;	
		comparisons test	mCherry:	
			Pre <i>vs</i> Light, $P = > 0.9999$;	
			Pre <i>vs</i> Post, P > 0.9999;	
			Light <i>vs</i> Post, P > 0.9999;	
			eNpHR:	
			Pre <i>vs</i> Light, P > 0.9999;	
			Pre <i>vs</i> Post, $P = 0.7637$;	
			Light <i>vs</i> Post, P > 0.9999;	
			F (2, 24) = 0.6976.	
5b	Paw-withdraw	Two-way	eYFP vs eNpHR:	12
	thresholds of eNpHR	ANOVA	Off, P >0.9999;	mice
	and eYFP group with	followed by	On, ****P <0.0001;	per
	Sham operation	Bonferroni's	Off vs On:	group
		multiple	eYFP, P >0.9999;	
		comparisons test	eNpHR, ***P = 0.0005;	
5b	Paw-withdraw	Two-way	eYFP vs eNpHR:	12
	thresholds of eNpHR	ANOVA	Off, P >0.9999;	mice
	and eYFP group with	followed by	On, ****P <0.0001;	per
	CPN ligation	Bonferroni's	Off vs On:	group
		multiple	eYFP, P >0.9999;	
		comparisons test	eNpHR, ****P <0.0001;	
		-	F(3, 36) = 12.56;	
5c	Latency of the thermal	Two-way	eYFP vs eNpHR:	12
	paw-withdraw response	ANOVA	Off, P >0.9999;	mice
	of eNpHR and eYFP	followed by	On, ****P <0.0001;	per
	group with Sham	Bonferroni's	Off <i>vs</i> On:	group
	operation	multiple	eYFP, P = 0.0602;	6 °r
	· r · · · · · · · ·	comparisons test	eNpHR, ****P <0.0001;	
5c	Latency of the thermal	Two-way	eYFP vs eNpHR:	12
50	paw-withdraw response	ANOVA	Off, P >0.9999;	mice
	of eNpHR and eYFP	followed by	On, ****P <0.0001;	
	-	TOHOWED Dy		per
	group with CPN ligation		Off vs On:	group

		Bonferroni's	$_{0}$ VED D = 0.8662.	
			eYFP, $P = 0.8663$;	
		multiple	eNpHR, ****P <0.0001;	
-		comparisons test	F(3, 66) = 16.42;	
5e	Time spent in the	One-way	Pre vs Light, $P = 0.0672$;	6
	stimulated chamber of	ANOVA	Pre vs Post, $P = 0.6642$;	mice
	eYFP group in the	followed by	Light vs Post, $P = 0.6709$;	per
	RTPP test: pre vs light	Bonferroni's	F(2, 15) = 1.754;	group
	vs post	multiple		
		comparisons test		
5f	Time spent in the	One-way	Pre vs Light, ****P <0.0001;	6
	stimulated chamber of	ANOVA	Pre <i>vs</i> Post, $**P = 0.0032$;	mice
	eNpHR group in the	followed by	Light vs Post, $P = 0.1123$;	per
	RTPP test: pre vs light	Bonferroni's	F (2, 12) = 0.09877;	group
	vs post	multiple		
		comparisons test		
5h	Distance moved in the	Two-way	eYFP vs eNpHR:	6
	OFT: pre vs light vs post	ANOVA	Pre, P = 0.1215;	mice
		followed by	Light, P = 0.2092;	per
		Bonferroni's	Post, P = 0.8789;	group
		multiple	eYFP :	
		comparisons test	Pre vs Light, $P = 0.534$;	
			Pre <i>vs</i> Post, $P = 0.0887$;	
			Light vs Post, P >0.9999;	
			eNpHR:	
			Pre vs Light, $P = 0.8560$;	
			Pre <i>vs</i> Post, $P = 0.8108$;	
			Light <i>vs</i> Post, P >0.9999;	
			F (2, 15) = 0.3595.	
5i	Ratio of time spent in	Two-way	eYFP vs eNpHR:	6
	the periphery and center	ANOVA	Pre, $P = 0.4586;$	mice
	in the OFT: pre vs light	followed by	Light, $P = 0.5750;$	per
	<i>vs</i> post	Bonferroni's	Post, P >0.9999;	group
		multiple	eYFP:	- 1
		comparisons test	Pre <i>vs</i> Light, P >0.9999;	
			Pre <i>vs</i> Post, $P = 0.5398$;	
			Light vs Post, $P = 0.6181$;	
			eNpHR:	
			Pre <i>vs</i> Light, P >0.9999;	
			Pre vs Post, $P = 0.9148;$	
			Light <i>vs</i> Post, P >0.9999;	
			F(2, 15) = 1.436.	
			1 (2, 15) - 1.750.	

5j	Distance moved in the	Two-way	eYFP vs eNpHR:	6
	OFT: pre vs light vs post	ANOVA	Pre, $P = 0.1549;$	mice
		followed by	Light, $P = 0.0987;$	per
		Bonferroni's	Post, $P = 0.2054;$	group
		multiple	eYFP:	
		comparisons test	Pre vs Light, P >0.9999;	
			Pre <i>vs</i> Post, $P = 0.6249$;	
			Light vs Post, $P = 0.7763$;	
			eNpHR:	
			Pre vs Light, P >0.9999;	
			Pre vs Post, $P = 0.7828$;	
			Light <i>vs</i> Post, P >0.9999;	
			F (2, 15) = 0.03084.	
5k	Ratio of time spent in	Two-way	eYFP vs eNpHR:	6
	the periphery and center	ANOVA	Pre; Light; Post, P >0.9999;	mice
	in the OFT: pre vs light	followed by	eYFP:	per
	vs post	Bonferroni's	Pre vs Light, P >0.9999;	group
		multiple	Pre <i>vs</i> Post, P >0.9999;	
		comparisons test	Light <i>vs</i> Post, P >0.9999;	
			eNpHR:	
			Pre <i>vs</i> Light, P >0.9999;	
			Pre <i>vs</i> Post, P >0.9999;	
			Light <i>vs</i> Post, P >0.9999;	
			F (2, 15) = 0.1268.	
6b	PWT in vGAT-ChR2-	Two-way	Sham vs CPN:	8
	eYFP mice with Sham	ANOVA	Pre, ****P <0.0001;	mice
	operation or CPN	followed by	Light, ***P = 0.0003;	per
	ligation	Bonferroni's	Post, ****P <0.0001;	group
		multiple	CPN:	
		comparisons test	Pre vs Light, ****P <0.0001;	
			Light vs Post, ****P	
			<0.0001;	
			F (1, 8) = 470.5;	
6c	Thermal paw-	Two-way	Sham:	8
	withdrawal latency in	ANOVA	Pre vs Light, P >0.9999;	mice
	vGAT-ChR2-eYFP	followed by	Pre <i>vs</i> Post), P >0.9999;	per
	mice with Sham	Bonferroni's	Light <i>vs</i> Post, P >0.9999;	group
	operation or CPN	multiple	CPN:	
	ligation	comparisons test	Pre vs Light, ****P <0.0001;	
			Pre <i>vs</i> Post, P >0.9999;	
			Light vs Post, ****P	
			<0.0001;	

			Sham vs CPN:	
			Pre, ****P <0.0001;	
			Light, $P = 0.1903$,	
			Post, ****P <0.0001,	
6e	Time spent in the	One-way	Pre vs Light, $P = 0.0572$;	6
	stimulated chamber in	ANOVA	Pre <i>vs</i> Post, $P = 0.7494$;	mice
	the RTPP test: pre vs	followed by	Light vs Post, $P = 0.2047$;	per
	light vs post	Bonferroni's	F(2, 15) = 3.3792;	group
		multiple		
		comparisons test		
6g	Time spent in the	One-way	Pre <i>vs</i> Light, **P = 0.0013;	7
	stimulated chamber in	ANOVA	Pre <i>vs</i> Post, $*P = 0.0153$;	mice
	the RTPP test: pre vs	followed by	Light vs Post, $P = 0.4553$;	per
	light vs post	Bonferroni's	F (2, 15) = 10.49;	group
		multiple		
		comparisons test		
6i	Paw-withdraw	Two-way	Sham, Off vs On:	10
	thresholds of ChR2 and	ANOVA	eYFP, P >0.9999;	mice
	eYFP group with Sham	followed by	ChR2, P >0.9999;	per
	operation or CPN	Bonferroni's	Sham vs CPN, Off:	group
	ligation	multiple	eYFP, ****P <0.0001;	
		comparisons test	ChR2, ****P <0.0001;	
			Sham vs CPN ,On:	
			eYFP, ****P <0.0001;	
			Off vs On, CPN:	
			ChR2, ****P <0.0001;	
			F(3, 12) = 42.14;	
6j	Latency of the thermal	Two-way	Sham, Off vs On:	9
5	paw-withdraw response	ANOVA	eYFP, P = 0.9999,	mice
	of ChR2 and eYFP	followed by	ChR2, P = 0.9981;	per
	group with Sham	Bonferroni's	Sham vs CPN, Off:	group
	operation or CPN	multiple	eYFP, **P = 0.0022;	0 1
	ligation	comparisons test	ChR2, *P = 0.0128;	
		·····	Sham vs CPN, On:	
			eYFP, ***P = 0.0004;	
			eYFP vs ChR2, On:	
			CPN ,** $P = 0.0021;$	
			CPN, Off vs On:	
			ChR2, **P = 0.0014;	
			F(3, 15) = 5.809;	
61,	Time spant in the	One way	eYFP:	6
6k	Time spent in the	One-way		6
	stimulated chamber of	ANOVA	Pre vs Light, $P = 0.2122$;	

	ChR2 and eYFP group	followed by	Pre <i>vs</i> Post, $P = 0.5462$;	mice
	in the RTPP test: pre vs	Bonferroni's	Light vs Post, $P = 0.7658$;	per
	light vs post	multiple	F (2, 15) = 1.593;	group
		comparisons test	ChR2:	0 1
		1	Pre <i>vs</i> Light, $**P = 0.0068;$	
			Pre <i>vs</i> Post, $*P = 0.0485$;	
			Light vs Post, ns, $P = 0.5901$;	
			F(2, 15) = 6.951;	
61	Distance moved in the	Two-way	eYFP vs ChR2:	5
	OFT: pre vs light vs post	ANOVA	Pre, $P = 0.2524;$	mice
		followed by	Light, $P = 0.1670;$	per
		Bonferroni's	Post, $P = 0.083;$	group
		multiple	eYFP:	
		comparisons test	Pre <i>vs</i> Light, P > 0.9999;	
		-	Pre vs Post, P =0.4933;	
			Light <i>vs</i> Post, P > 0.9999;	
			ChR2:	
			Pre <i>vs</i> Light, P > 0.9999;	
			Pre <i>vs</i> Post, P > 0.9999;	
			Light <i>vs</i> Post, P > 0.9999;	
			F (2, 12) = 0.05689.	
61	Ratio of time spent in	Two-way	eYFP vs ChR2:	5
	the periphery and center	ANOVA	Pre; Light; Post, P > 0.9999;	mice
	in the OFT: pre vs light	followed by	eYFP:	per
	vs post	Bonferroni's	Pre <i>vs</i> Light, P > 0.9999;	group
		multiple	Pre <i>vs</i> Post, P > 0.9999;	
		comparisons test	Light <i>vs</i> Post, P > 0.9999;	
			ChR2:	
			Pre <i>vs</i> Light, P > 0.9999;	
			Pre <i>vs</i> Post, P > 0.9999;	
			Light <i>vs</i> Post, P > 0.9999;	
			F (2, 12) = 0.07768;	
бп	Time-course of the CPN	Two-way	mCherry vs hM3Dq CNO:	8
	ligation in PWT and the	ANOVA	Baseline, P = 0.9862;	mice
	effect of	followed by	day 3, P = 0.9994;	per
	pharmacogenetic	Bonferroni's	day 7, P = 0.9989;	group
	activation of	multiple	day 8, P = 0.0886;	
	GABAergic LPBN	comparisons test	day 9, *P = 0.0210;	
	neurons		day 10, ****P <0.0001;	
			day 11, ****P <0.0001;	
			mCherry vs hM3Dq CNO +	
			PTX:	

			Pre <i>vs</i> Light, P > 0.9999;	
			GtACR1:	
			Light <i>vs</i> Post, P > 0.9999;	
			Pre <i>vs</i> Post, $P = 0.7484$;	
		comparisons test	Pre <i>vs</i> Light, P > 0.9999;	
		multiple	eYFP:	- *
		Bonferroni's	Post, $P = 0.1740;$	group
		followed by	Light, P = 0.3569;	per
	OFT: pre vs light vs post	ANOVA	Pre, $P = 0.0610;$	mice
7f	Distance moved in the	Two-way	eYFP vs GtACR1:	5
			F (2, 18) = 16.35;	
			Light <i>vs</i> Post, *P = 0.0405;	
			Pre <i>vs</i> Post, $*P = 0.0178;$	
			Pre vs Light, ****P <0.0001;	
		comparisons test	GtACR1:	
	pre vs light vs post	multiple	F(2, 15) = 0.4445;	n = 7
	group in the RTPA test:	Bonferroni's	Light vs Post, $P = 0.6900$;	R1:
	GtACR1 and eYFP	followed by	Pre vs Post, $P = 0.7081;$	GtAC
	stimulated chamber of	ANOVA	Pre vs Light, $P = 0.9995$;	n = 6;
7e	Time spent in the	One-way	eYFP:	eYFP:
		comparisons test	F(1, 18) = 7.521;	
		comparisons test	GtACR1, ***P = 0.001;	
	5.00P	multiple	eYFP, P >0.9999;	Stoup
	group	Bonferroni's	Off vs On:	group
	of GtACR1 and eYFP	followed by	On, $^{**}P = 0.0075;$	per
	paw-withdraw response	ANOVA	Off, P >0.9999;	mice
7c	Latency of the thermal	Two-way	eYFP <i>vs</i> GtACR1:	10
		comparisons test	F(1, 18) = 22.26;	
		comparisons test	GtACR1, ****P <0.0001;	
		multiple	eYFP, P >0.9999;	group
	and eYFP group	followed by Bonferroni's	On, ****P <0.0001; Off <i>vs</i> On:	per
	thresholds of GtACR1	ANOVA followed by	Off, $P = 0.6941$;	mice
7b	Paw-withdraw	Two-way	eYFP vs GtACR1:	10
	D 111		F(6, 49) = 5.333;	10
			day 11 (PTX), P = 0.9512.	
			day 10, ****P <0.0001;	
			day 9, $*P = 0.0212;$	
			day 8, P = 0.2474;	
			day 7, P >0.9999;	
			day 3, P = 0.9872;	

the periphery and center in the OFT: pre vs light vs postANOVAPre, P = 0.7191;mfollowed byLight, P > 0.9999;pBonferroni'sPost, P = 0.7700;greenmultipleeYFP:comparisons testPre vs Light, P > 0.9999;Pre vs Post, P = 0.6744;Light vs Post, P = 0.6744;Light vs Post, P = 0.6744;Light vs Post, P > 0.9999;Pre vs Light, P > 0.9999;Pre vs Light, P > 0.9999;Pre vs Post, P = 0.6744;Light vs Post, P = 0.6744;Light vs Post, P = 0.9571;Pre vs Dost, P = 0.8193;Light vs Post, P = 0.9571;F (2, 24) = 1.619;7hc-Fos ⁺ neurons number in the GtACR1 vs eYFP groupunpaired t test****P <0.0001;t = 20.6; d.f. = 12;m	5 ice er oup
F (2, 24) = 0.1895;7fRatio of time spent in the periphery and center in the OFT: pre vs light vs postTwo-way ANOVA $eYFP vs GtACR1:$ Pre, P = 0.7191; Dilating the OFT: pre vs light followed by Bonferroni's multiple 	ice er
7fRatio of time spent in the periphery and center in the OFT: pre vs light vs postTwo-way 	ice er
the periphery and center in the OFT: pre vs light vs postANOVAPre, P = 0.7191;mfollowed byLight, P > 0.9999;pBonferroni'sPost, P = 0.7700;greenmultipleeYFP:comparisons testPre vs Light, P > 0.9999;Pre vs Post, P = 0.6744;Light vs Post, P = 0.6744;Light vs Post, P = 0.6744;Light vs Post, P > 0.9999;Pre vs Light, P > 0.9999;Pre vs Light, P > 0.9999;Pre vs Post, P = 0.6744;Light vs Post, P = 0.6744;Light vs Post, P = 0.9571;Pre vs Dost, P = 0.8193;Light vs Post, P = 0.9571;F (2, 24) = 1.619;7hc-Fos ⁺ neurons number in the GtACR1 vs eYFP 	ice er
in the OFT: pre vs light vs postfollowed by Bonferroni's multipleLight, $P > 0.9999$; 	er
vs postBonferroni's multiple comparisons testPost, P = 0.7700; eYFP: Pre vs Light, P > 0.9999; Pre vs Post, P = 0.6744; Light vs Post, P = 0.6744; Light vs Post, P = 0.6744; Light vs Post, P > 0.9999; GtACR1: Pre vs Light, P > 0.9999; Pre vs Post, P = 0.8193; Light vs Post, P = 0.8193; Light vs Post, P = 0.9571; F (2, 24) = 1.619;7hc-Fos ⁺ neurons number in the GtACR1 vs eYFP groupunpaired t test****P <0.0001; t = 20.6; d.f. = 12;m	
nultipleeYFP:multipleeYFP:comparisons testPre vs Light, P > 0.9999;Pre vs Post, P = 0.6744;Light vs Post, P > 0.9999;GtACR1:Pre vs Light, P > 0.9999;Pre vs Light, P > 0.9999;Pre vs Dost, P = 0.8193;Light vs Post, P = 0.8193;Light vs Post, P = 0.9571;F (2, 24) = 1.619;7hc-Fos ⁺ neurons numberin the GtACR1 vs eYFPgroupunpaired t test****P < 0.0001;	oup
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	
Pre vs Post, P = 0.6744; Light vs Post, P > 0.9999; GtACR1: Pre vs Light, P > 0.9999; GtACR1: Pre vs Post, P = 0.8193; Light vs Post, P = 0.8193; Light vs Post, P = 0.9571; F (2, 24) = 1.619; 7h c-Fos ⁺ neurons number in the GtACR1 vs eYFP group unpaired t test ****P <0.0001;	
Light vs Post, $P > 0.9999$; GtACR1: Pre vs Light, $P > 0.9999$; Pre vs Dost, $P = 0.8193$; Light vs Post, $P = 0.8193$; Light vs Post, $P = 0.9571$; F (2, 24) = 1.619;7hc-Fos ⁺ neurons number in the GtACR1 vs eYFP groupunpaired t test t = 20.6; d.f. = 12;	
$GtACR1:$ $GtACR1:$ $Pre vs Light, P > 0.9999;$ $Pre vs Post, P = 0.8193;$ $Light vs Post, P = 0.9571;$ $F(2, 24) = 1.619;$ $7h$ $c-Fos^+$ neurons number unpaired t test $in the GtACR1 vs eYFP$ $wrait eYFP$ $wrait eYFP$ $group$ $d.f. = 12;$ $pre vs Post eYFP$	
Pre vs Light, P > 0.9999; Pre vs Post, P = 0.8193; Light vs Post, P = 0.9571; F (2, 24) = 1.619; 7h c-Fos ⁺ neurons number in the GtACR1 vs eYFP group unpaired t test ****P <0.0001;	
Pre vs Post, P = 0.8193; Light vs Post, P = 0.9571; F (2, 24) = 1.619;7hc-Fos ⁺ neurons number in the GtACR1 vs eYFP groupunpaired t test****P <0.0001; t = 20.6; d.f. = 12;	
Light vs Post, P = 0.9571; F (2, 24) = 1.619;Light vs Post, P = 0.9571; F (2, 24) = 1.619;7hc-Fos ⁺ neurons number in the GtACR1 vs eYFP groupunpaired t test****P <0.0001; t = 20.6; d.f. = 12;	
Thc-Fos ⁺ neurons number in the GtACR1 vs eYFP groupunpaired t test****P <0.0001; t = 20.6; d.f. = 12;m	
7hc-Fos+ neurons number in the GtACR1 vs eYFP groupunpaired t test****P <0.0001; t = 20.6; d.f. = 12;m	
in the GtACR1 vs eYFP $t = 20.6;$ m group $d.f. = 12;$ p	
group d.f. = 12; p	6
	ice
	er
	oup
	6
	ice
group d.f. = 10; p	er
	oup
	6
	ice
express GAD2-eYFP or $d.f. = 10;$ p	er
CaMKIIa ⁺ cells gro	oup
	10
summarized changes in ANOVA $***P = 0.0001;$ neu	uron
spike frequency (Hz) of followed by average of -5 to -1 s vs 2, 3, s filled	rom
LPBN CaMKIIαBonferroni's4, 5, 6, 7, 8, and 9 s,3 m	nice
neurons induced by multiple ****P <0.0001;	
light stimulation of comparisons test average of -5 to -1 s vs 10 s,	
GABAergic LPBN $*P = 0.0462;$	
neurons average of -5 to -1 s vs 11,	
12, 13, 14, and 15 s,	
P >0.9999;	l
F(15, 144) = 37.57	
8k Averaged firing One-way Before vs During, ****P 1	
frequency of LPBN ANOVA <0.0001; Before vs After 0– net	10
CaMKIIα neurons followed by 5s, ****P <0.0001; Before	l0 uron

		Bonferroni's	<i>vs</i> After 5–10s, P >0.9999;	s from
		multiple	During vs After 0–5s,	3 mice
		comparisons test	P > 0.9999; During vs After	5 milee
		comparisons test	5–10s, ****P <0.0001; After	
			0-5s vs After 5–10s,	
			****P <0.0001;	
			,	
01		-	F(3, 196) = 128.6.	- ·
9b	Time-course of PWT	Two-way	hM3Dq-Saline vs hM3Dq-	5 mice
	changes	ANOVA	CNO:	per
		followed by	Baseline, 0, 1, P >0.9999;	group
		Bonferroni's	3, *P = 0.0153;	
		multiple	5, 7, 9, 11, 13, ****P	
		comparisons test	<0.0001;	
			21, **** P <0.0001;	
			30, ****P <0.0001;	
			F (1, 8) = 138.4;	
9e	Time spent in the	unpaired t test	mCherry:	8
	stimulated chamber in		P = 0.4865; t = 0.7296.	mice
	the CPA test		hM3Dq:	per
			***P = 0.0004; t = 5.277.	group
9g	Time-course of PWT	Two-way	DIO-eYFP + CaMKIIα-	8
	changes	ANOVA	mCherry CNO vs DIO-ChR2	mice
		followed by	+ CaMKIIα-hM3Dq CNO :	er group
		Bonferroni's	Baseline, $P = 0.9005$;	
		multiple	1, P = 0.9954,	
		comparisons test	3, *P = 0.0328;	
		-	5, 7, 9, 11, 13, 15, 17, ****P	
			<0.0001;	
			day 21 On, P = 0.3468;	
			day 21 Off, ****P <0.0001;	
9i	Time-course of PWT	Two-way	mCherry-CPN vs hM3Dq-	5
	changes	ANOVA	CPN: Baseline, $P > 0.9999$;	mice
	enanges	followed by	1, P > 0.9999;	per
		Bonferroni's	3, **P = 0.0063;	group
		multiple	5, **P = 0.0013;	Sroup
		comparisons test	7, 9, 11, 13, 15, 28, ****P	
			<0.0001;	
			hM3Dq-Sham vs hM3Dq-	
			CPN): Baseline, P > 0.9999;	
			1, 3,5, 7, 9, 11, 13, 15, 28,	
			P > 0.9999;	

9k	c-Fos-positive cells in	One-way	mCherry Sham vs mCherry	4
	the LPBN from	ANOVA	CPN, ****P <0.0001;	mice
	different groups	followed by	mCherry Sham vs hM3Dq	per
		Bonferroni's	Sham, P = 0.9235;	group
		multiple	mCherry Sham vs hM3Dq	
		comparisons test	CPN, P = 0.4521;	
			mCherry CPN vs hM3Dq	
			Sham, ****P <0.0001;	
			mCherry CPN vs hM3Dq	
			CPN, ****P < 0.0001;	
			hM3Dq Sham vs hM3Dq	
			CPN, P > 0.9999.	
			F (3, 12) = 42.66.	

Supplementary Table 2. Key Resources

REAGENT or RESOURCE	SOURCE	IDENTIFIER	
Primary Antibodies			
Guinea pig anti-c-Fos	SYSY	Cat# 226004	
Rabbit anti-c-Fos	SYSY	Cat# 226003	
Rabbit anti-CaMKIIα	Abcam	Cat# ab52476	
Mouse anti-Vgat	SYSY	Cat# 131011	
DsRed living colors	Takara	Cat# 632496	
Secondary Antibodies			
Donkey anti-Guinea pig Alexa Fluor	Jackson ImmunoResearch	Cat# 706-545-148	
488	Laboratories, Inc.		
Donkey anti-rabbit Cy3	Jackson ImmunoResearch	Cat# 711-165-152	
	Laboratories, Inc.		
Donkey anti-Guinea pig Cy3	Jackson ImmunoResearch	Cat# 706-165-148	
	Laboratories, Inc.		
Donkey anti-rabbit Alexa Fluor 488	Jackson ImmunoResearch	Cat# 711-545-152	
	Laboratories, Inc.		
Donkey anti-mouse Alexa Fluor 488	Invitrogen	Cat# A21202	
RNAscope in situ hybridization			
RNAscope Multiplex Fluorescent	Advanced Cell Diagnostics	Cat# 323100	
Reagent Kit v2			

RNAscope Probe-Mm-Gad1-C2	Advanced Cell Diagnostics	Cat# 400951
RNAscope Probe-Mm-Pvalb-C3	Advanced Cell Diagnostics	Cat# 421931
RNAscope Probe-Mm-Slc17a6-C3	Advanced Cell Diagnostics	Cat# 319171
RNAscope Probe-Mm-Cck-C1	Advanced Cell Diagnostics	Cat# 402271
RNAscope Probe-Mm-Sst-C1	Advanced Cell Diagnostics	Cat# 404631
RNAscope Negative control probe	Advanced Cell Diagnostics	Cat# 310043
dapB		
RNAscope Positive control probe	Advanced Cell Diagnostics	Cat# 313911
Mm-Ppib		
Virus Strains	I	
AAV2/9-CamKIIα-hChR2(H134R)-	Shanghai SunBio Biomedical	N/A
	Shanghai SunBio Biomedical technology Co.	N/A
AAV2/9-CamKIIα-hChR2(H134R)-		N/A N/A
AAV2/9-CamKIIα-hChR2(H134R)- mCherry	technology Co.	
AAV2/9-CamKIIα-hChR2(H134R)- mCherry	technology Co. Shanghai SunBio Biomedical	
AAV2/9-CamKIIα-hChR2(H134R)- mCherry AAV2/9-CamKIIα-mCherry	technology Co. Shanghai SunBio Biomedical technology Co.	N/A
AAV2/9-CamKIIα-hChR2(H134R)- mCherry AAV2/9-CamKIIα-mCherry	technology Co. Shanghai SunBio Biomedical technology Co. Shanghai Taitool Bioscience	N/A

AAV2/9-CamKIIα-eNpHR3.0-	Shanghai SunBio Biomedical	Cat# S0464-9	
mCherry	technology Co.		
AAV2/9-EF1α-DIO-eNpHR3.0-	Shanghai Taitool Bioscience	Cat# S0178-9	
eYFP	Co.		
AAV2/9-hSyn-DIO-hM3Dq-	Shanghai SunBio Biomedical	Cat# S0144-9-H20	
mCherry	technology Co.		
AAV2/9-CaMKIIα-hM3Dq-mCherry	Shanghai Taitool Bioscience	Cat# S0484-9	
	Co.		
AAV2/8-EF1α-DIO-mCherry	Shanghai SunBio Biomedical	N/A	
	technology Co		
AAV9-EF1α-DIO-hGtACR1-P2A-	Shanghai Taitool Bioscience	Cat# S0311-8	
eYFP-WPRE	Co.		
AAV-CAG-DIO-TVA-eGFP	BrainVTA Wuhan	Cat# AAV-903	
AAV-CAG-DIO-RG	BrainVTA Wuhan	Cat# AAV-902	
RV-EnvA-DsRed	BrainVTA Wuhan	Cat# RV-306	
AAV2/9-hSyn-DIO-GCaMP7s-	Shanghai Taitool Bioscience	Cat# S0590-9-H20	
WPRE	Co.		
Chemicals			
Clozapine N-oxide	Enzo Life Sciences, Inc.	Cat # NS105-0025	
DAPI	Sigma-Aldrich	N/A	

Experimental Animals			
vGAT-ChR2(H134R)-eYFP	The Jackson Laboratory	JAX014548	
GAD2-ires-Cre (B6N.Cg-	The Jackson Laboratory	JAX019022	
Gad2tm2(cre)Zjh/J)			
C57BL6/J	Shanghai SLAC Laboratory	http://www.slaccas.co	
	Animal Co. Ltd	<u>m/</u>	
VgluT2-ires-Cre (<u>Slc17a6^{tm2(cre)Lowl}/J</u>)	The Jackson Laboratory	JAX016963	
Gad67-GFP	From the Takeshi Kaneko	N/A	
	laboratory of Kyoto		
	University		
Software and Code			
ANY-Maze software 5.3	Global Biotech Inc.	http://www.anymaze.	
		<u>co.uk/</u>	
Plantar Test apparatus	IITC Life Science Inc.	http://www.iitcinc.co	
		<u>m/</u>	
Implantable Optical Fibers	Anlai, Ningbo	http://www.anilab.cn/	
Image J	NIH	nttps://imagej.nih.gov	
		/ij/index.html;	

GraphPad Prism 6	GraphPad Software	https://www.graphpad
		.com/scientificsoftw
		are/prism/;RRID:
		<u>SCR_002798</u>
Fiber photometry system	Thinker Tech Nanjing	N/A
	Bioscience Inc.	
MatLab R2016a	MathWorks	tps://www.mathwork
		s.com/products.html;
		RRID:SCR_001622