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Appendix A
Hydrodynamics of the 3-D cochlea

For simplicity, we assume that the cross-section
of the scalae is a rectangle of width w and height
h (Fig. S1). Nevertheless, the approximations,
derivations, and results shown here also apply to
models where the shape of the cochlear cross-
section is different (e.g., circular). We consider
a wave elicited by a tone of angular frequency
ω; to simplify the notation, the dependence on
ω is generally omitted. The flexible part of the
cochlear partition (CP) spans a fraction of the
cochlea width, and we make no assumption about
whether the CP is centered in the radial direc-
tion.

Laplace’s equation for the pressure in the fluid
is

∂2p

∂x2
+
∂2p

∂y2
+
∂2p

∂z2
= 0 . (S.1)

Employing a separation of variables, the Laplace
equation yields

κ2x + κ2y + κ2z = 0 , (S.2)

where κx,y,z indicates the local wavenumber in
the corresponding direction. The above equa-
tion states that the pressure at any point in the
cochlea can be determined as a superposition of
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Figure S1: Cross section of a rectangular 3D model
of the cochlea.

modes determined by the boundary conditions:
∂p

∂y
= 0 z = h,

∂p

∂z
= 0 y = 0, w .

(S.3)

Given κx, the amplitude of each mode depends
on the profile of the transverse motion of the
CP in the radial (y) direction. Neglecting com-
pression waves traveling at the speed of sound
in water the solution for the pressure is largely
dominated by the mode defined by κy = 0 be-
cause the width of the CP is on the order of 100
µm and the transverse displacement produced by
low-level sounds is on the order of few nm. With
these simplifications, one obtains

κ2z = −κ2x . (S.4)
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In the limit that the space constant character-
izing the tapering of the scalae height is larger
than the height of the scalae, we can employ the
averaging procedure detailed by Duifhuis [4] for
2D box models.

Following Duifhuis and introducing the scalae-
averaged pressure, P̄ (x), one can apply Newton’s
second law and mass conservation to obtain

dP̄

dx
=− iω ρ

S(x)
U(x), (S.5)

and
dU

dx
=− b(x)VBM(x) (S.6)

=− α(x)b(x)YCP(x)P̄ (x) , (S.7)

where the fluids are assumed inviscid, ρ is the
fluid density, S(x) is the effective acoustic cross-
sectional area of the scalae, b(x) the width of the
CP, VBM = YCPP0, and P0 = αP̄ . Uncoupling
these equations yields

1

S

d

dx

(
S
dP̄

dx

)
+ κ2P̄ = 0 , (S.8)

where κ(x) is the complex wavenumber (κ2 =
−αZ̄YCP) with

Z̄(x) = iωρb(x)/S(x) . (S.9)

Equation (S.8) can be simplified by introduc-
ing the change of variables defined by

χ(x) = S0

∫ x

0

dx′

S(x′)
, (S.10)

where S0 = S(0). The new spatial variable χ
represents the effective “acoustic distance” from
the stapes [18]—it increases more rapidly with x
when the scalae areas are small and reduces to
the conventional distance x when the scalae areas
are constant. All dependent variables are now
regarded as functions of χ. With this change,
Eq. (S.8) becomes

d2P̄

dχ2
+ κ̂2P̄ = 0 , (S.11)

where κ̂ = (S/S0)κ is the wavenumber in the
χ domain. Applying the WKB approximation

yields

P̄ (χ) ≈ P̄ (0)

√
κ̂(0)

κ̂(x)
exp

(
−i
∫ χ

0
κ̂(χ′) dχ′

)
.

(S.12)
Converting this solution back into the x domain
yields

P0(x) ≈ α(x) P̄ (0)

√
S(0)

S(x)

√
κ(0)

κ(x)
×

exp

(
−i
∫ x

0
κ(x′) dx′

)
, (S.13)

as given in the main text.

Appendix B
Wavefront delay and high-frequency
cut-off
For what follows, it proves convenient to rewrite
the equations in terms of frequency normalized
to the local CF using the variable β(x, f) =
f/CF(x). Using the tonotopic map, this becomes

β(x) = β0e
xη(x)/l (S.14)

so that
dβ

dx
=

[
η(x) + x

dη

dx

]
β

l
. (S.15)

In the base of the cochlea, where simple quan-
titative statements about the relationship be-
tween wavefront delay and cochlear dimensions
can be made, the approximations η(x) ≈ 1 and
dβ/dx ≈ β/` work well. In the apex, although
the equations can be solved, the low frequency
“bend” of the cochlear map complicates the solu-
tions to the point that there is no advantage to
showing those over purely numerical results.

To determine the wave-front delay and its rela-
tion to cut-off, it suffices to ignore the prefactor
in Eq. (S.13) and focus on the complex exponen-
tial. Defining κβ as the wavenumber in the β
domain,

κβ =
dx

dβ
κ , (S.16)

enables one to rewrite the complex exponential
(eiφ) as

φ(β) = −
∫ β

β0

κβ dβ
′ . (S.17)
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At tail frequencies, where κβ is real, the group
delay in periods of the CF is given by

τwf = − 1

2π

dφ

dβ
=
κβ
2π

. (S.18)

The tail-frequency approximation to the
wavenumber discussed in the main text [Eq. (9)]
implies that

κβ ≈ ω
dx

dβ

√
m̄(x)

k(x)
, (S.19)

so that

τwf = l

√
m̄(x)

k(x)
CF(x) , (S.20)

as given in the main text.
Far enough from the helicotrema, the onset

of the CP click response is dominated by com-
ponents well below CF, and hence τwf coincides
with the onset latency of the response (i.e., with
the wavefront delay of the traveling wave). As
one approaches the helicotrema in the apex, both
m̄(x)/k(x) and dx/dβ decrease, and therefore
the wavefront delay also decreases. For an expo-
nential frequency map, given the constraints on
m̄ and k deduced from the anatomical data, one
obtains τwf ∝ Ω(ω

1/4
c ), where Ω indicates asymp-

totic growth at least as fast as its argument. As
frequency decreases, the low-frequency bend of
the tonotopic map produces a steeper decline in
the value of τwf .

When the wavenumber κβ has a significant
negative imaginary part, the complex exponen-
tial e−i

∫
κβdβ

′ dominates the behavior of the
high-frequency cut-off observed in mechanical
and neural data. For simplicity, we assume that
α ≈ 1 (i.e., the long-wave approximation); this
approximation appears not unsatisfactory in the
apex, where the scalae radius and the short-wave
gain factor are small. We can then write the
wavenumber in the form

κβ =
dx

dβ
κ = 2πτwf

√
ŶCP, (S.21)

where ŶCP = [k(x)/iω]YCP so that ŶCP ≈ 1 in
the tail. The cut-off occurs because ŶCP has a

positive imaginary part above CF (i.e., the me-
chanics of the CP contain a significant dissipa-
tive component). The complex exponential in
the pressure becomes

e−i
∫
κβdβ

′
= ei2πτwf

∫ √
ŶCPdβ

′
, (S.22)

indicating an exponential decay of pressure be-
yond the peak. Equation (S.22) implies that the
larger the wave-front delay, τwf , the more steeply
the pressure decreases above CF; conversely, the
smaller τwf , the gentler the cut-off.

Appendix C

Model of the CP admittance

To a first approximation, we assume that the cen-
ter of mass of the cochlear partition moves in
proportion to the BM. We therefore employ the
BM admittance, first deduced by Zweig [24], that
we have previously shown provides an excellent
fit to BM transfer functions measured in the base
of the gerbil and in the apex of the mouse cochlea
[1] . In particular, we assume that

YCP(x, ω) =
iω(1 + iωτ/ωc)

ma(x)(−ω2 + 2iωζωc(x) + ω2
c (x))

,

(S.23)
where τ is the strength of the active force, ma

is the acoustic mass (or mass per unit area) of
the BM (see [1]), and ζ is the damping factor.
Rewriting this in terms of the scaling variable
β = ω/ωc yields

YCP(β) =
iω

k(x)

1 + iβτ

1− β2 + 2iζβ
, (S.24)

where the CP stiffness k = maω
2
c . Imposing the

constraint that τ and ζ be constant ensures that
the local micromechanics, as reflected in the ra-
tio between BM velocity and driving pressure,
retain the same sharpness of tuning along the
cochlea. The parameters for cat are τ = 1.3
and ζ = 0.12. Consistent with our analysis,
we assume that partition stiffness (k) and fluid
acoustic mass (m̄) vary with position as deduced
from the experimental data, with the apical-basal
transition at CFa|b ≈ 3 kHz [20].
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Appendix D
Numerical calculation of the short-wave
gain factor
Having defined the geometry of the cochlea and
the admittance of the partition, we can numer-
ically compute the model’s responses. Unfortu-
nately, this is not as straight-forward as it ap-
pears, because the solution for P0(x) given by
Eq. (5) is only formal. Note that P0(x) depends
on α(x)—both directly via the prefactor and in-
directly via the wavenumber, since κ depends on
α [see Eq. (6)]—but that α(x), in turn, depends
on P0(x) via the definition α = P0/P̄ . Thus, the
solution must be obtained by iteration [19].

To determine the value of α(x), we adopt the
WKB approximation to α(x) given by Eq. (6)
and solve by iteration the following pair of equa-
tions:

κ =
√
−αZ̄YCP ,

α =
κh

tanh (κh)
.

(S.25)

At frequencies below the local CF, the itera-
tive numerical solution obtained by starting from
the long-wave approximation rapidly converges.
Above CF, however, where YCP is dominated by
dissipative forces [14], solution is complicated by
the existence of multiple solutions and the iter-
ation can fail to converge. Physically, the mul-
tiple solutions represent evanescent modes (e.g.,
standing waves in the z direction) and are re-
sponsible for the sharp peaks and notches often
observed in BM transfer functions at frequencies
above CF (see [22, 24]). In addition, the WKB
approximation to α we employ [Eq. (6)] assumes
a single mode and therefore breaks down well
above CF (see [23]). We largely circumvent these
problems in our calculations by forcing the iter-
ation to converge on the value of κ whose real
and imaginary parts have the same sign as the
wavenumber obtained using the long-wave ap-
proximation, which neglects evanescent modes.
Figure S2A,B show values of α(x) for waves of
different frequencies as computed in the model
used to obtain the transfer functions in Fig. 3B.
Figure S2C,D show the corresponding real and
imaginary parts of the wavenumber (κ).
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Figure S2: (A,B) Short-wave pressure gain fac-
tors α(x) along the cochlea computed by iterating
Eqs. (S.25) for waves of different frequencies (color
coded in A). Panels A and B give the magnitude and
phase, respectively. (C,D) Real and imaginary parts
of the wavenumber (κ). The thin line in panel C
shows the value of 1/h(x) along the cochlea: when the
wavenumber is smaller than this value, wavelengths
are larger than the scala height, and the long-wave
approximation is expected to hold well. When the
wavenumber is larger than 1/h(x), the long-wave ap-
proximation breaks down and the pressure driving
the motion of the CP undergoes an effective boost
due to the short-wave hydrodynamics (see panel A
and [24, 1]). Note that in the long-wave region, the
curves in panel C are approximately parallel, reflect-
ing the approximate scaling behavior of the wavenum-
ber at tail frequencies. Note also that at apical loca-
tions the pressure wave remains effectively long-wave,
never entering a short-wave region. For visual clar-
ity, the values of α and κ are shown only at locations
where the magnitude of the BM transfer function is
within 80 dB of its peak value.

Appendix E

Results in a gerbil model

Because of the wealth of information about
apical-basal differences in the cat [e.g., 6, 8, 2,
17], we presented the results of a model tailored
to the this species in the main text. We show here
that analogous results are obtained in a model
tailored to the gerbil cochlea, where a compari-
son with mechanical data is possible. For the ger-
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bil, we assume a Greenwood-type tonotopic map
with γ = 0.6 [5, 9] and a total cochlear length of
12.5 mm. The model parameters were adjusted
slightly from [1] (τwf = 1.1, τ = 1.3 and ζ = 01.3)
in order to yield a better match to measure-
ments of the sharpness of tuning obtained from
auditory-nerve fibers (ANFs) in the base of the
cochlea. As a result, the model transfer function
shown in Fig. S3A,B is somewhat more sharply
tuned than the BM transfer function measured
at 40 dB SPL. We are not too concerned about
this discrepancy, both because the difference be-
tween model prediction and data (roughly 4 dB
at the peak) is comparable to those observed be-
tween animals of the same species (see Fig. 3B
of [1]) and because the experimental data were
obtained at sound levels likely to be in the com-
pressive regime [21], where tuning is broader than
at sound levels near ANF threshold. Figure S3C
shows that the model provides a good match to
the sharpness of tuning measured in the auditory
nerve [15].

For completeness, Figs. S3D,E show the mag-
nitude and phase of a BM transfer function ob-
tained near the apical end of the gerbil model
(CF ≈ 1 kHz). The shape of the transfer func-
tion magnitude in Fig. S3D resembles those ob-
tained in the apex of the cat model (see Fig.3B
in main text and Fig. S5).

Appendix F

Active forces in the base and in the
apex

The active force term in the model of the CP
partition is

fact = iβτP0. (S.26)

This mathematical term provides only a phe-
nomenological description of the effect of the ac-
tive cochlear process on the response of the BM,
but its mathematical form is firmly based on
the experimental data [24, 1]. We have previ-
ously shown that this active term provides a com-
pelling phenomenological description of OHC
forces, yielding nonlinear model responses that
are strikingly similar to mechanical responses
measured near the reticular lamina (top of the
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Figure S3: (A,B) Comparison between model and
measured BM transfer functions in the base of the
gerbil cochlea. Because the model parameters were
chosen to match the sharpness of tuning estimated
from auditory-nerve recordings near threshold, the
model transfer function is more sharply tuned than
the reference data. Data courtesy of Wei Dong, Loma
Linda University. (C) Comparison between the pre-
dicted variation in the sharpness of mechanical fre-
quency tuning along the cochlea, as quantified by the
Q10 (quality factor at 10 dB below the peak), and
estimates obtained from gerbil ANF recordings (data
from [15]). (D,E) Predicted BM transfer function in
the apical turn of the gerbil cochlea (CF ≈ 1 kHz).
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Figure S4: Comparison of the frequency tuning of
the BM (black lines) and that of the model’s active
force (red line) in the base (A) and apex (B) of the
cochlea. The dashed line in panel B shows the fre-
quency response of the active force on an axis nor-
malized by the its own best frequency rather than by
the BM CF.

OHCs) in the 9–10 kHz region of the mouse
cochlea [1].

Although the local mechanics of the partition
are described by the same equation throughout
the cochlea, the manifestation of the active force
in the model appears qualitatively different in the
base and in the apex (Fig. S4). This difference
arises because of apical-basal differences in the
frequency tuning of the transpartition pressure
resulting from the global geometry of the cochlea.

In both the apex and the base, the active force
is more broadly tuned than the BM. At basal lo-
cations (Fig. S4A), the differences in tuning be-
tween the active force and the BM appear qual-
itatively similar to those observed between the
reticular lamina (RL) and BM motion [11, 7, 3].
In the apex (Fig. S4B), the active force is much
more broadly tuned and peaks at a frequency
higher than the BM. For a visual comparison of
tuning, the dashed line in Fig. S4B shows the fre-
quency response of the active force on an axis
normalized to its best frequency. That is, our

model suggests that the broad tuning of the inter-
nal organ of Corti motion measured in the apex
of the guinea pig [10]—and the apparent mis-
match between neural and mechanical tuning—
results from the broad tuning of the OHC forces
rather than the broad tuning of the overall trans-
verse motion of the partition. The truth of this
model-based conjecture remains an interesting
empirical question.

Appendix G
Effects of the active process on cochlear
hydrodynamics

As a traveling wave approaches its best place,
the cochlear amplifier acts not only to increase
its amplitude but also to decrease its group ve-
locity, thereby increasing the group delay of the
response [e.g., 13]. This coordinated action is
a consequence of causality, as manifest through
the Kramers-Krönig relations (see [16]). Phys-
ically, this means that the active process mod-
ifies both the real and imaginary parts of the
wavenumber near the best place, effectively ex-
ploiting cochlear hydrodynamics to boost the the
transpartition pressure wave via spatially dis-
tributed amplification [1].

Equation (S.25) implies that the wavenumber,
κ, and the short-wave pressure gain factor, α,
are intimately related. Both depend strongly on
the radius of the scalae, h. As a result, our
analysis reveals that the global, tapered geom-
etry of the cochlea introduces a significant spa-
tial dependence on traveling-wave amplification
(Fig. S2A,D). As we demonstrate in the model,
this conclusion holds even when the local mi-
cromechanical processes that regulate the activ-
ity of the cochlear amplifier are perfectly scal-
ing symmetric. Furthermore, the result does
not depend on the particular model form of the
CP admittance—all active cochlear models nec-
essarily include processes that modify both the
real and imaginary parts of the wavenumber (see
[16]).

Figure S5 illustrates additional important ef-
fects of the global hydrodynamics. The fig-
ure compares the magnitude and phase of the
BM transfer function in the active cat model
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Figure S5: Comparison of BM transfer functions
computed in active and passive versions of the model
of the tapered cat cochlea.

of the tapered cochlea, with those obtained in
the corresponding passive model (obtained by
setting τ = 0 in Eq. S.23). Interestingly, the
model predicts that the active process causes the
in vivo near-CF gain relative to that measured
post mortem, to decrease with distance from the
stapes. These model results, which are consistent
with both classic and more recent experimental
recordings from the apex [12, 10], are solely due
to the hydrodynamics of the tapered cochlea. In-
terestingly, at apical locations, the model also
predicts the existence of “active gain” well above
CF, a phenomenon recently observed in record-
ings from the apex of the guinea-pig cochlea [10].
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