Supplementary Information

Exploration of chromone-based thiosemicarbazone derivatives: SCXRD/DFT, spectral (IR, UV–Vis) characterization and quantum chemical analysis

Rabia Basri,¹ Muhammad Khalid,^{*2} Zahid Shafiq,^{*1} Muhammad Suleman Tahir,² Muhammad Usman Khan,^{3,4} Muhammad Nawaz Tahir,⁵ Muhammad Moazzam Naseer,⁶ Ataualpa Albert Carmo Braga⁷

¹Institute of Chemical Sciences, Bahauddin Zakariya University, Multan-60800, Pakistan ²Department of Chemistry, Khwaja Fareed University of Engineering & Information Technology, Rahim Yar Khan, 64200, Pakistan ³Department of Chemistry, University of Okara, Okara-56300, Pakistan ⁴Department of Applied Chemistry, Government College University, Faisalabad-38000, Pakistan ⁵Department of Physics, University of Sargodha, Sargodha-40100, Pakistan ⁶Department of Chemistry, Quaid-i-AzamUniversity, Islamabad-45320, Pakistan ⁷Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, Avenida Professor LineuPrestes, 748, São Paulo 05508-000, Brazil

Corresponding authors E-mail addresses:

(Dr. Muhammad Khalid) <u>khalid@iq.usp.br</u>; <u>muhammad.khalid@kfueit.edu.pk</u>

(Dr. Zahid Shafiq) zahidshafiq25@hotmail.com

Bond length				Bond angel			
	EXP	DFT		EXP	DFT		
N6-N7	1.371	1.359	N7-N6-C14	120.1	122.5		
N5-C8	1.447	1.464	N6-N7-C15	116.5	116.4		
C8-C9	1.501	1.536	N5-C8-C9	106.4	109.6		
C9-C10	1.506	1.537	N5-C8-C13	114.3	111.5		
C10-C11	1.528	1.536	C8-N5-C14	124.4	125.7		
C11-C12	1.475	1.536	C8-C9-C10	111.7	111.1		
C12-C13	1.525	1.536	C9-C8-C13	110	111.5		
C8-C13	1.537	1.54	C9-C10-C11	112.6	111.9		
S1-C14	1.681	1.687	C10-C11-C12	110.5	111.3		

Table S1: Comparison of selected bond lengths (Å) and angles (°) of **3a** by using B3LYP/6-311+G(d,p)

N5-C14	1.331	1.343	C11-C12-C13	112.8	111.5
N6-C14	1.348	1.38	C12-C13-C8	108.1	111.2
N7-C15	1.276	1.29	S1-C14-N5	124.3	126.9
C15-C16	1.459	1.459	S1-C14-N6	119	118.2
C16-C17	1.386	1.404	N5-C14-N6	116.7	115
C17-C18	1.367	1.391	N7-C15-C16	120.2	122.7
C18-C19	1 361	1 397	C15-C16-C17	120.9	122.6
C19-C20	1 373	1 395	C15-C16-C21	121.4	119
C20-C21	1 382	1 398	C16-C17-C18	121.1	121.2
C16-C21	1 39	1 416	C17-C16-C21	117 7	118.3
02-C21	1 381	1 37	C17-C18-C19	120.2	119.6
$02 \cdot 021$ 02-C22	1 414	1.37	C18-C19-C20	120.2	120.5
$C^{22} - C^{23}$	1 492	1.506	C19-C20-C21	118.8	119.8
C23-C24	1 322	1.356	C20-C21-C16	121.3	120.5
C23-C24	1.322	1 438	C_{20} - C_{21} - C_{10}	121.5	120.5
$C_{24}-C_{25}$	1.723	1.408	$C_{20} - C_{21} - O_{2}$	122.7	115.0
C_{25} - C_{20}	1.377	1 3 8 7	$C_{10} - C_{21} - C_{22}$	116.8	115.7
C_{20} - C_{27}	1.300	1.387	02 C22 C22	110.8	108.2
C_{27} - C_{20}	1.302	1.404	02-022-023	110	106.2
C_{20}	1.303	1.391	C22-C23-C24	120.3	124.1
03-030	1.38	1.309	C22-C23-C31	115.2	113.7
C_{23} - C_{30}	1.3/4	1.406	C_{23} - C_{24} - C_{23}	121.7	121.2
$C_{29}-C_{30}$	1.382	1.395	$C_{24}-C_{23}-C_{31}$	120.3	120.2
C_{23} - C_{31}	1.405	1.218	C_{24} - C_{25} - C_{26}	124.4	124.1
03-031	1.359	1.3/8	C24-C25-C30	118	11/.6
04-031	1.201	1.461	C25-C26-C27	120.5	120.5
N37-N38	1.372	1.354	C26-C25-C30	117.6	118.3
36-C39	1.453	1.464	C26-C27-C28	120.9	120
C39-C40	1.506	1.54	C27-C28-C29	120.3	120.8
C40-C41	1.516	1.537	C28-C29-C30	118.3	118.7
C41-C42	1.499	1.536	O3-C30-C25	120.6	120.8
C42-C43	1.506	1.536	03-C30-C29	117	117.4
C39-C44	1.508	1.538	C30-O3-C31	122.4	122.8
C43-C44	1.509	1.537	C25-C30-C29	122.3	121.8
S32-C45	1.67	1.382	C23-C31-O3	117	117.6
N36-C45	1.325	1.69	C23-C31-O4	124.1	125.1
N37-C45	1.349	1.34	O3-C31-O4	118.9	117.3
N38-C46	1.273	1.291	N38-N37-C45	120.4	123.3
C46-C47	1.456	1.461	N37-N38-C46	115.4	117.1
C47-C48	1.385	1.404	N36-C39-C40	112	111.3
C48-C49	1.365	1.392	N36-C39-C44	108.6	110
C49-C50	1.37	1.396	C39-N36-C45	125.7	124.9
C50-C51	1.371	1.397	C39-C40-C41	110.3	111.2
O33-C52	1.365	1.368	C40-C39-C44	111.4	111.3
C47-C52	1.389	1.417	C40-C41-C42	110.5	111.6
C51-C52	1.378	1.399	C41-C42-C43	111	111.2
O33-C53	1.409	1.422	C42-C43-C44	112.1	111.7
C53-C54	1.479	1.505	C39-C44-C43	112.1	111.1
C54-C55	1.334	1.354	S32-C45-N36	124.7	117.2
C55-C56	1.422	1.44	S32-C45-N37	119.7	115.8
C56-C57	1.391	1.408	N36-C45-N37	115.6	127
C57-C58	1.374	1.387	N38-C46-C47	121.6	122.2
			1		

C58-C59	1.37	1.403	C46-C47-C48	122.3	122
C59-C60	1.365	1.391	C46-C47-C52	119.6	119.6
C60-C61	1.385	1.368	C47-C48-C49	121.5	121.2
C56-C61	1.38	1.395	C48-C47-C52	118.1	118.4
O35-C61	1.377	1.407	C48-C49-C50	119.9	119.6
O35-C62	1.366	1.385	C49-C50-C51	119.8	120.6
C54-C62	1.45	1.213	C50-C51-C52	120.6	119.7
O34-C62	1.211	1.464	O33-C52-C47	115.7	115.7

EXP=experiment, DFT=density functional theory

Table S1: Continued...Comparison of selected bond lengths (Å) and angles (°) of **3a** by using B3LYP/6-311+G(d,p)

BOND ANGLE							
	EXP	DFT					
O33-C52-C51	124.2	123.9					
C52-O33-C53	117.9	119.3					
C47-C52-C51	120.1	120.4					
O33-C53-C54	108.9	108.5					
C53-C54-C55	126.5	124.7					
C53-C54-C62	113.9	114.7					
C54-C55-C56	122.2	121					
C55-C54-C62	119.5	120.6					
C55-C56-C57	124.7	123.9					
C55-C56-C61	117.6	117.8					
C56-C57-C58	120.8	120.5					
C57-C56-C61	117.7	118.4					
C57-C58-C59	119.6	119.9					
C58-C59-C60	121.6	120.7					
C59-C60-C61	118	118.9					
C60-C61-C56	122.2	117.5					
C60-C61-O35	116.9	121					
C56-C61-O35	120.9	122.7					
C61-O35-C62	121.8	121.6					
O35-C62-C54	118	118.2					
O35-C62-O34	116.9	117.1					
C54-C62-O34	125.1	124.8					

EXP=experiment, DFT=density functional theory

Table S2: Comparison of selected bond lengths (Å) and angles (°) of **3b** by using B3LYP/6-311+G(d,p)

	BOND LEN	GTH	BC	OND ANGLE	
	EXP	DFT		EXP	DFT
S1-25	1.682	1.675	S1-C25-N6	120.2	119.2
O2-8	1.375	1.364	S1-C25-N7	124.2	126.6
O2-16	1.375	1.391	C8-O2-C16	122.3	123.2
O3-16	1.207	1.202	O2-C8-C9	117.3	117.6
O4-17	1.435	1.435	O2-C8-C13	120.5	121
O4-18	1.364	1.366	O2-C16-O3	116.8	117.9
N5-N6	1.377	1.355	O2-C16-C15	117.4	116.4

N5-24	1.277	1.286	O3-C16-C15	125.8	125.8
N6-25	1.35	1.378	C17-O4-C18	120.6	119.1
N7-25	1.338	1.351	O4-C17-C15	106.3	107.5
N7-26	1.438	1.433	O4-C18-C19	125.5	123.7
C8-C9	1.376	1.393	O4-C18-C23	114.9	116
C8-C13	1.386	1.404	N6-N5-C24	115.5	117.4
C9-C10	1.382	1.389	N5-N6-C25	120	122.4
C10-C11	1.372	1.402	N5-C24-C23	120.2	122.1
C11-C12	1.369	1.385	N6-C25-N7	115.6	114.2
C12-C13	1.402	1.407	C25-N7-C26	123.2	125.8
C13-C14	1.439	1.437	N7-C26-C27	120.3	120.8
C14-C15	1.332	1.353	N7-C26-C31	118.8	118.6
C15-C16	1.45	1.468	C9-C8-C13	122.1	121.4
C15-C17	1.501	1.5	C8-C9-C10	118.9	118.9
C18-C19	1.392	1.397	C8-C13-C12	117.2	118.6
C18-C23	1.4	1.415	C8-C13-C14	117.8	117.4
C19-C20	1.376	1.394	C9-C10-C11	120.5	120.8
C20-C21	1.376	1.393	C10-C11-C12	120.1	119.8
C21-C22	1.378	1.389	C11-C12-C13	121.1	120.5
C22-C23	1.395	1.401	C12-C13-C14	125	124
C23-C24	1.465	1.46	C13-C14-C15	121.5	121.6
C26-C27	1.382	1.404	C14-C15-C16	120.3	120.4
C26-C31	1.375	1.393	C14-C15-C17	124.2	122.8
C27-C28	1.393	1.397	C16-C15-C17	115.6	116.8
C27-C32	1.507	1.506	C19-C18-C23	119.6	120.3
C28-C29	1.388	1.398	C18-C19-C20	119.9	120
C29-C30	1.371	1.396	C18-C23-C22	119.1	118.3
C29-C33	1.528	1.51	C18-C23-C24	120	119.5
C30-C31	1.387	1.392	C19-C20-C21	120.7	120.5

EXP=experiment, DFT=density functional theory

Table S2: Continued.	Comparison	of selected	bond lengths	S(Å) and	angles (°)	of 3b by	using
B3LYP/6-311+G(d,p	I						

BOND	ANGLE	
	EXP	DFT
C20-C21-C22	120.1	119.5
C21-C22-C23	120.4	121.5
C22-C23-C24	120.9	122.2
C27-C26-C31	120.9	120.5
C26-C27-C28	117.5	117.7
C26-C27-C32	120.3	121.6
C26-C31-C30	120.3	120.6
C28-C27-C32	122.2	120.7
C27-C28-C29	122.7	122.7
C28-C29-C30	118	118.1
C28-C29-C33	120.8	120.7
C30-C29-C33	121.2	121.2
C29-C30-C31	120.7	120.4

EXP=experiment, DFT=density functional theory

_

Donor(i)	Туре	Acceptor(j)	Туре	E(2) ^a [kJ/mol]	E(J)E(i) ^b (a.u)	F(I,j) ^e (a.u)
C43-C44	π	O4-C56	π*	25.15	0.28	0.077
C37-C39	π	C33-C35	π^*	21.85	0.29	0.072
C47-C49	π	C51-C53	π^*	20.86	0.28	0.069
C30-C31	π	N9-C28	π^*	18.52	0.26	0.064
C47-C49	π	C46-C55	π^*	18.04	0.27	0.065
C51-C53	π	C47-C49	π^*	17.41	0.29	0.064
C46-C55	π	C51-C53	π^*	16.47	0.29	0.064
C46-C55	π	C43-C44	π^*	15.52	0.3	0.065
C43-C44	π	C46-C55	π^*	11.66	0.3	0.056
N9-C28	π	C30-C31	π^*	7.52	0.37	0.051
O4-C56	π	C43-C44	π^*	5.24	0.41	0.043
C43-C44	π	C40-H41	∂^*	1.32	0.75	0.029
O4-C56	π	O4-C56	π^*	1.01	0.38	0.019
N9-C28	π	N9-C28	π^*	0.87	0.34	0.016
C43-C44	π	O2-C40	∂*	0.77	0.57	0.02
C37-C39	π	C37-C39	π^*	0.6	0.28	0.012
N5-H6	∂	S1-C27	∂*	5.51	0.94	0.064
C35-C37	∂	O2-C39	∂*	4.85	1.06	0.064
C40-H42	∂	C43-C44	π^*	4.42	0.55	0.046
C37-C39	∂	C30-C39	∂*	3.99	1.26	0.063
C47-H48	∂	C49-C51	∂^*	3.61	1.09	0.056
C46-C55	∂	C46-C47	∂^*	3.29	1.27	0.058
C21-H22	∂	C15-C18	∂^*	3.08	0.87	0.046
C44-C46	∂	C43-C44	∂^*	2.99	1.31	0.056
C10-H11	∂	С12-Н13	∂^*	2.64	0.93	0.044
C31-C33	∂	C33-C35	∂^*	2.49	1.27	0.05
C31-C33	∂	С35-Н36	∂^*	2.32	1.18	0.047
C30-C39	∂	С37-Н38	∂^*	2.04	1.17	0.044
C37-C39	∂	С35-Н36	∂^*	1.99	1.19	0.044
C40-H41	∂	C43-C44	π^*	1.71	0.55	0.028
С53-Н54	∂	C51-C53	∂^*	1.14	1.11	0.032
N5-H6	∂	C10-H11	∂^*	1.09	1.13	0.031
C37-H38	∂	C35-C37	∂^*	1.02	1.11	0.03
C31-H32	∂	C30-C31	∂^*	0.99	1.09	0.029
С53-Н54	∂	C53-C55	∂^*	0.81	1.09	0.027
C10-C24	∂	C21-C24	∂^*	0.66	0.98	0.023
N7-N9	∂	N9-C28	∂^*	0.59	1.47	0.026
C12-C15	∂	C12-H13	∂^*	0.51	1.01	0.02

Table S3: Natural bond orbital (NBO) analysis of compound**3a** by using B3LYP/6-311+G (d, p).

С40-Н42	∂	C40-C43	∂^*	0.5	0.94	0.019
O3	LP(2)	O4-C56	π*	41.09	0.34	0.106
O4	LP(2)	O3-C56	∂^*	35.24	0.6	0.131
O3	LP(2)	C46-C55	π^*	28.86	0.35	0.094
O2	LP(2)	C37-C39	π^*	25.21	0.35	0.09
O4	LP(2)	C43-C56	∂^*	15.96	0.71	0.097
S1	LP(2)	N5-C27	∂^*	10.33	0.68	0.076
N9	LP(1)	N7-H8	∂^*	8.57	0.83	0.076
O3	LP(1)	C46-C55	∂^*	6.92	1.08	0.077
O2	LP(2)	C40-H41	∂^*	5.02	0.79	0.058
S1	LP(1)	N5-C27	∂^*	3.46	1.18	0.058
S1	LP(2)	C10-H11	∂^*	1.05	0.66	0.024
O4	LP(2)	O2-C40	∂^*	0.55	0.55	0.016
S1	LP(1)	N7-H8	∂^*	2.5	1.11	0.021

^a E(2) means energy of hyper conjugative interaction (stabilization energy).
^b Energy difference between donor and acceptor i and j NBO orbitals.
^c F(i,j) is the Fock matrix element between i and j NBO orbitals.

Table S4:Natural	bond orbita	l (NBO) a	nalysis of i	investigated	compound	3b by usi	ngB3LY	P/6-311+G
(d, p).								

Donor(i)	Туре	Acceptor(j)	Туре	E(2) ^a [kJ/mol]	E(J)E(i) ^b (a.u)	F(I,j) ^e (a.u)
C44-C45	π	C40-C47	π*	23.27	0.28	0.072
C34-C36	π	N5-C37	π^*	18.02	0.25	0.063
C27-C28	π	C30-C32	π*	14.96	0.44	0.072
C34-C36	π	C30-C32	π*	12.22	0.42	0.064
C20-C22	π	C10-C19	π^*	11.31	0.3	0.055
C27-C28	π	C34-C36	π^*	7.87	0.6	0.062
C20-C22	π	O4-C24	∂^*	6.37	0.56	0.056
O3-C23	π	C20-C22	π^*	4.96	0.41	0.042
C41-C42	π	C49-H50	∂^*	2.91	0.65	0.043
C41-C42	π	С49-Н52	∂^*	2.15	0.66	0.037
C20-C22	π	C24-H26	∂^*	1.26	0.67	0.027
C10-C19	π	C10-C19	π*	1.12	0.28	0.016
N5-C37	π	N5-C37	π^*	0.89	0.34	0.016
C27-C28	π	C27-C28	π^*	0.62	0.29	0.012
С53-Н56	∂	С53-Н55	∂^*	42.91	4.22	0.382
С53-Н56	∂	C34-C36	π*	18.31	0.81	0.12
С53-Н56	∂	C30-C32	π*	11.96	0.65	0.086
C44-C53	∂	С53-Н56	∂^*	10.15	3.13	0.159
C44-C53	∂	C34-C36	π*	6.35	0.95	0.077
N8-H9	∂	S1-C39	∂^*	5.85	0.95	0.067
С53-Н54	∂	С37-Н38	∂^*	4.96	1.17	0.068
С53-Н54	∂	C36-C37	∂*	3.92	1.11	0.059

C15-C17	∂	C17-C19	∂^*	2.99	1.26	0.055
С53-Н54	∂	C44-C45	π^*	2.02	0.54	0.032
C42-C44	∂	C42-H43	∂^*	1.01	1.15	0.031
C40-C47	∂	C47-H48	∂^*	0.99	1.16	0.03
N8-C39	∂	C40-C47	π^*	0.58	0.89	0.022
C44-C53	∂	C40-C47	∂^*	0.5	1.24	0.022
O3	LP(2)	O2-C23	∂^*	37.01	0.57	0.131
O3	LP(2)	C22-C23	∂^*	15.67	0.7	0.096
N5	LP(1)	N6-H7	∂^*	8.35	0.77	0.072
O2	LP(1)	C22-C23	∂^*	4.32	0.99	0.059
S1	LP(1)	N8-C39	∂^*	3.87	1.16	0.06
S1	LP(2)	C10-H11	∂^*	1.55	0.66	0.029
O2	LP(1)	C40-H41	∂^*	1.12	0.99	0.030
O2	LP(1)	C40-H42	∂^*	1.20	0.99	0.031
O2	LP(1)	O3-C23	∂^*	2.07	1.17	0.044
N5	LP(1)	C36-C37	∂^*	1.74	1.02	0.038
O4	LP(1)	C22-C24	∂^*	1.32	0.97	0.032
O2	LP(1)	C10-C11	∂^*	0.92	1.1	0.028
S 1	LP(2)	C40-C47	π^*	0.77	0.22	0.013
N5	LP(1)	S1-C39	∂^*	0.57	0.7	0.018

^a E(2) means energy of hyper conjugative interaction (stabilization energy). ^b Energy difference between donor and acceptor i and j NBO orbitals. ^c F(i,j) is the Fock matrix element between i and j NBO orbitals.

^a Freq (unscaled)	Freq (scaled)	^a I _{IR}	Vibrational assignments
3575	3460.243	32	υN-H
3546	3432.173	184	υN-H
3532	3418.623	31	υN-H
3228	3124.381	7	υ (s)C-H _{Ben}
3218	3114.702	16	$v(as)+(s)C-H_{Ben}$
3216	3112.766	12	$v(as)+(s)C-H_{Ben}$
3205	3102.12	10	$v(as)+(s)C-H_{Ben}$
3199	3096.312	8	$\upsilon(s)$ +(as)C-H _{Ben}
3124	3023.72	17	υ C-H
3107	3007.265	25	υ C-H
3100	3000.49	17	$\upsilon(as)C-H_{Cyh}$
3099	2999.522	43	$v(as)C-H_{Cyh}$
3095	2995.651	2	υ(as)C-H _{CH2}
3083	2984.036	27	$\upsilon(s)+(as)C-H_{Cyh}$
3079	2980.164	28	v(as)C-H _{Cyh}
3076	2977.26	42	v(as)C-H _{Cyh}
3072	2973.389	80	v(as)C-H _{Cyh}
3069	2970.485	78	$v(s)+(as)C-H_{Cyh}$

Table S5: Calculated vibrational frequencies of 3a.

	1		
3032	2934.673	34	v(s) C-H _{Cyh}
3027	2929.833	27	υ(s) C-H _{Cyh}
3027	2929.833	19	υ(s)C-H _{CH2}
3020	2923.058	24	υ(s) C-H _{Cyh}
2996	2899.828	15	$\upsilon(s) C-H_{Cyh}$
1806	1748.027	508	$\upsilon C = O_{H-Pyran} + \upsilon (C = C - C = C_{Ben})$
1783	1725.766	750	$\upsilon C = O_{H-Pyran} + \upsilon (C = C - C = C_{Ben}) + \rho N - H$
1694	1639.623	29	υ (C=C-C=C _{Ben}) + υ C=C _{H-Pvran} + w C-H _{CH2}
1668	1614.457	34	υ (C=C-C=C _{Ben}) + δ C-H _{Ben} + υ C=N + ρ C-H
1663.	1609.618	88	$\upsilon (C=C-C=C_{Ben}) + (\delta + \rho)C-H_{Ben}$
1663.	1609.618	58	$\upsilon (C=C-C=C_{Ben}) + \delta C-H_{Ben} + \upsilon C=N + \rho C-H$
1626	1573.805	24	υ (C=C-C=C _{Ben}) + δ C-H _{Ben} + υ C=N
1620	1567.998	37	$\upsilon (C=C-C=C_{Ben}) + (\delta + \rho)C-H_{Ben} + \upsilon C=C_{H-Pvran}$
1578	1527.346	539	$\upsilon C-N + \rho N-H$
1571	1520.571	772	$\upsilon C-N + \rho N-H$
1540	1490.566	336	$vC=S+vC-N+\rho N-H+vN-N$
1532	1482.823	48	$\nu C = S + \rho N - H + \delta C - H_{CH2}$
1531	1481.855	60	$\nu C = S + \nu C - N + \rho N - H + \delta C - H_{CH2}$
1528	1478.951	179	$\nu C = S + \nu C - N + \rho N - H + \delta C - H_{CH2}$
1499	1450 882	96	$\delta C - H_{Cvh} + \rho C - H_{Ben} + \upsilon C - O$
1497	1448.946	21	$\upsilon (C=C-C=C_{Ben}) + \rho C-H_{Ben} + \upsilon C-O_{H-Pyran}$
1494	1446.043	39	ρC -H _{Ban} + νC -O + δC -H _{CH2}
1450	1403.455	51	$v C=S + v C-N + \rho N-H + w C-H_{CH2}$
1442	1395.712	43	$vC-C_{H, Dyran} + wC-H_{CH2} + vC-O$
1394	1349.253	28	$(w + \tau)C-H_{Cvh}$
1377	1332.798	136	w C-H _{Cyb} + ρ N-H
1374	1329.895	151	$W C-H_{Cvh} + \rho N-H + \upsilon C-N$
1327	1284.403	74	$\rho C - H_{Ben} + \upsilon C - O$
1301	1259.238	148	$(w + \tau)C-H_{Cvh}$
1291	1249.559	301	$(\rho + \delta)C-H_{Ban} + \nu C-O$
1284	1242.784	93	W C-H _{Cub} + ρ N-H
1243	1203.1	214	$214 \qquad \nu C = S + \nu C - N + \nu N - N$
1222	1182 774	153	$\nu C = S + \nu C - N + \rho N - H + \tau C - H_{Cub}$
1211	1172 127	147	$(w + \tau)C-H_{Cvb} + \psi C=S + \psi C-N + \rho N-H$
1198	1159 544	667	$\nu C = O_{H Burgen} + \delta C - H_{Ben}$
1136	1099.534	199	$vC=S+vC-N+\rho N-H$
1135	1098 567	90	$(\rho + \delta)C-H_{Port}$
1076	1041 46	30	$(\rho + \delta)C - H_{Pon} + \nu C = O_{H_{Purph}}$
1039	1005 648	50	W C-H _{Cub}
1036	1002.744	112	$vC=O_{H_{e}Pvran}$
969	937 8951	19	$(W + \tau)C-H_{\text{Ban}} + \gamma C-H_{\text{H},\text{Burgen}}$
940	909 826	13	$(w + \tau)C-H_{D,w} + \gamma C-H_{U,D,ww}$
902	873 0458	24	$\nu C = S + \rho N - H + \tau C - H_{c}$
843	815 9397	27	$\nu C - O$
800	774 32	9	$0C-H_{C+1} + yC=S$
776	751 0904	42	w C-H _p
1 / / 0	101.0704		$1 \sim 14$ Ben

Frequencies are given in cm⁻¹, v =stretching, β =in-plane bending, γ =out-plane bending δ =scissoring, ρ =rocking, w= wagging, s =symmetric, as=asymmetric, τ =twisting,5,6-dihydro-2H-Pyran-2-one = H-Pyran, Cyclohexane = Cyh, Ben=benzene ring. ascaling factor= 0.9679 [1]

^a Freq	^a Freq	^a I _{IR}	Vibrational assignments	
(unscaled)	(scaled)			
3540	3426.366	86	υ N-H	
3520	3407.008	21	υN-H	
3201	3098.248	12	$\upsilon(s) + \upsilon(as) C - H_{Ben}$	
3187	3084.697	13	$v(s)+v(as) C-H_{Ben}$	
3106	3006.297	22	$v(s)+v(as) C-H_{CH3}$	
3099	2999.522	25	υC-H	
3082	2983.068	6	v(as) C-H _{CH2}	
3075	2976.293	18	$\upsilon(s) + \upsilon(as) C-H_{CH3}$	
3029	2931.769	22	υ(s) C-H _{CH3}	
3023	2925.962	35	υ(s) C-H _{CH2}	
3021	2924.026	40	υ(s) C-H _{CH3}	
1797	1739.316	585	υ C=O	
1676	1622.2	79	υ C=C + υ (C=C-C=C _{Ben}) + υ C-H	
1656	1602.842	49	$\upsilon C=N+\upsilon(\rho) C-H$	
1647	1594.131	81	$\upsilon(\delta) + \upsilon(\rho) C-H_{Ben} + \upsilon (C=C-C=C_{Ben})$	
1612	1560.255	35	$\upsilon C=N+\upsilon(\rho) + (\delta) C-H_{Ben}$	
1604	1552.512	47	$\upsilon (C=C-C=C_{Ben}) + \upsilon(\rho) + (\delta) C-H_{Ben}$	
1546	1496.373	809	$\upsilon(\rho)$ N-H + υ C-N	
1535	1485.727	38	$\upsilon(\delta) + \upsilon(\tau) C-H_{CH3} + \upsilon(\rho)N-H + \upsilon(\rho)C-H_{Ben}$	
1527	1477.983	51	$\upsilon C=S + \upsilon C-N + \upsilon(\rho) N-H$	
1513	1464.433	128	$\upsilon C=S + \upsilon(\rho) N-H + \upsilon(\delta)C-H_{CH2}$	
1501	1452.818	64	$\upsilon(\delta) + \upsilon(\tau) C-H_{CH3} + \upsilon(\delta)C-H_{CH2}$	
1485	1437.332	40	$\upsilon(\rho) \text{ C-H}_{\text{Ben}} + \upsilon (\text{C=C-C=C}_{\text{Ben}})$	
1483	1435.396	84	$\upsilon(\delta) + \upsilon(\tau) C-H_{CH3} + \upsilon(\rho) C-H_{Ben}$	
1424	1378.29	41	$\upsilon(w) \operatorname{C-H}_{\operatorname{CH2}} + \upsilon(\rho) \operatorname{C-H} + \upsilon(\rho) \operatorname{N-H}$	
1416	1370.546	14	υ(w) C-H _{CH3}	
1348	1304.729	238	$\upsilon(\rho)$ N-H + υ (C=C-C=C _{Ben}) + υ C-H	
1315	1272.789	65	$\upsilon(\rho) \text{ N-H} + \upsilon(\rho) \text{ C-H}_{\text{Ben}}$	
1312	1269.885	87	$\upsilon(\rho) \text{ N-H} + \upsilon(\rho) \text{ C-H}_{\text{Ben}}$	
1279	1237.944	58	υ C-N + υ (C=C-C=C _{Ben}) + υ (ρ) N-H	
1270	1229.233	62	$\upsilon(\tau)C-H_{CH2}$	
1258	1217.618	332	$\upsilon(\tau)C-H_{CH2} + \upsilon (C=C-C=C_{Ben}) + \upsilon C-C + \upsilon C-O$	
1229	1189.549	73	$\upsilon C=S + \upsilon(\delta) + \upsilon(\rho) C-H_{Ben} + \upsilon(\rho) N-H$	
1206	1167.287	400	υ C-N + υ (ρ) N-H + υ C=S	

Table S6: Calculated vibrational frequencies for **3b** by B3LYP/6-311+G(d,p)

1200	1161.48	116	$\upsilon(\rho) C-H_{Pyran} + \upsilon(\delta) C-H_{Ben} + \upsilon C-C$
1106	1070.497	167	υ N-N + υ (ρ) C-H + υ C-O
1055	1021.135	41	$\upsilon(\delta) + \upsilon(\rho) \text{ C-H}_{\text{Ben}} + \upsilon (\text{C=C-C=C}_{\text{Ben}}) + \upsilon \text{ C-O}_{\text{Pyran}}$
1028	995.0012	138	υ C-O + $\upsilon(\gamma)$ C-H _{Pyran}
1022	989.1938	40	$\upsilon \text{ C-O}_{\text{Pyran}} + \upsilon(\rho)\text{C-H}_{\text{CH2}}$
973	941.7667	32	$\upsilon(\tau) + \upsilon(w) \text{ C-H}_{\text{Ben}}$
952	921.4408	21	$\upsilon(\tau) + \upsilon(w) \text{ C-H}_{\text{Ben}} + \upsilon(\gamma)\text{C-H}$
952	921.4408	14	$\upsilon(\tau) + \upsilon(w) \text{ C-H}_{\text{Ben}} + \upsilon(\gamma)\text{C-H}$
877	848.8483	21	$\upsilon(\tau) + \upsilon(w) \text{ C-H}_{\text{Ben}}$
769	744.3151	63	v(w) C-H _{Ben}
765	740.4435	56	$\upsilon(w) \text{ C-H}_{\text{Ben}} + \upsilon(\tau) \text{C-H}_{\text{CH3}}$
763	738.5077	63	v(w) C-H _{Ben}
657	635.9103	14	β (C=C-C=C _{Ben})
622	602.0338	18	β (C=C-C=C _{Ben})

Frequencies are given in cm⁻¹, v =stretching, β =in-plane bending, γ =out-plane bending δ =scissoring, ρ =rocking, w= wagging, s =symmetric, as=asymmetric, τ =twisting, Ben=benzene ring,3,6-dihydro-2H-Pyran = Pyran ascaling factor= 0.9679 [1]

Figure S1: Experimental vibrational frequencies for 3a

Figure S2: Experimental vibrational frequencies for3b.

Figure S3:UV-Vis spectra of 3a molecule.

Figure S4: UV-Vis spectra of 3b molecule.

S14

Figure S6: NMR spectra of 3b molecule