Supporting Information

Reagentless Amperometric Pyruvate Biosensor Based on a Prussian Blueand Enzyme Nanoparticle-Modified Screen-Printed Carbon Electrode

Dinakaran Thirumalai,[†] Seonghye Kim,[‡] Suhkmann Kim,^{*,‡} and Seung-Cheol Chang^{*,†}

[†]Department of Cogno-Mechatronics Engineering, Department of Optics and Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan 46241, Republic of Korea

[‡]Department of Chemistry, Chemistry Institute for Functional Materials, Sustainable Utilization of Photovoltaic Energy Research Center, Pusan National University, Busan, 46241, Republic of Korea

Figure S1. EDS spectrum analysis of (a) Bare SPCE, (b) PB/SPCE, and (c) PoxBNPs/PB/SPCE.

Figure S2. EDS elemental mapping of Bare SPCE.

Figure S3. EDS elemental mapping of PB/SPCE.

Figure S4. EDS elemental mapping of PoxBNPs/PB/SPCE.

Composition of electrode	Method of immobiliza tion	Reagent	Working potential (V) vs. Ag/AgCl	Dynamic linear range (µM)	LOD (µM)	Sensitivity (µA mM ⁻¹ cm ⁻²)	Ref.
PoxB/Polytyr amine/platini zed glassy carb electrode	Covalent	Reagent	+0.65	100– 3000	50	6.0	S1
PoxB/conduc ting polymer- modified electrode	Covalent	Reagent- less	+0.10 vs. SCE	0–2500	100	0.028	S2
PoxB/3- mercaptopro pionic acid and 6- aminocaproic acid/ Au electrode	Cross- linking	Reagent	+0.03	1.0–10	0.56	-	S3
PoxBNPs/Au electrode	Covalent	Reagent	+0.28	0.01– 5000	0.67	-	S4
PoxBNPs/pe ncil graphite electrode	Adsorption	Reagent	+0.10	0.001– 6000	0.58	-	S5
PoxBNPs/PB /SPCE	Adsorption	Reagent- less	-0.10	10–100	0.91	40.8	Present study

 Table S1. A comparison of various analytical parameters of amperometric Py biosensors

Figure S5. ¹H NMR spectrum of spiking experiment. The single resonance at 2.38 ppm was the Py. This resonance increased depending on spiked concentration of Py.

References

(S1) Situmorang, M.; Gooding, J. J.; Hibbert, D. B.; Barnett, D. The development of a pyruvate biosensor using electrodeposited polytyramine. *Electroanalysis* **2002**, *14*, 17–21.

(S2) Dang, L. A.; Haccoun, J.; Piro, B.; Pham, M. C. Reagentless recycling of pyruvate oxidase on a conducting polymer-modified electrode. *Electrochimica Acta* **2006**, *51*, 3934–3943.

(S3) Bayram, E.; Akyilmaz, E. A new pyruvate oxidase biosensor based on 3-mercaptopropionic acid/6-aminocaproic acid modified gold electrode. *Artif. Cells Nanomed. Biotechnol.* **2014**, *42*, 418–422.

(S4) Malik, M.; Chaudhary, R.; Pundir, C. S. An improved enzyme nnanoparticles based amperometric pyruvate biosensor for detection of pyruvate in serum. *Enzyme Microb. Technol.* **2019**, *123*, 30–38.

(S5) Malik, M.; Chaudhary, R.; Pundir, C. S. An amperometric pyruvate biosensor based on ppyruvate oxidase nanoparticles immobilized onto pencil graphite electrode. *Process Biochem.* **2020**, 93, 12–20.