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General Remarks

All reactions were performed inside a dry nitrogen filled glovebox or using standard Schlenk
techniques unless otherwise noted. Solvents (tetrahydrofuran, toluene, diethyl ether,
dichloromethane, n-pentane, fert-amyl alcohol (~AmOH), cyclopentyl methyl ether (CPME), and
anisole) were purified in a solvent purification system by percolation through neutral alumina
under positive pressure of nitrogen or purchased from Millipore Sigma in Sure/Seal® containers.
Deuterated solvents (chloroform-ds;, benzene-ds, tetrahydrofuran-ds) were stored over 4 A
molecular sieves. All chemicals purchased from commercial suppliers were used as received
unless otherwise noted. PAds,' Pd(PAds)(4-FCsH4)Br (1),2 and [Pd(PAds)(4-FCsHa)]" BF4 (33)°
were prepared according to literature. 'H, 3C ('H decoupled), ’F{!H}, and 3'P{'H} nuclear
magnetic resonance spectra (NMR) were obtained on a Bruker Avance III 500 MHz, Bruker
NanoBay 400 MHz or Bruker NanoBay 300 MHz spectrometers recorded in ppm (J), referenced
to residual solvent (CHCls, CHDCly, etc.).* Spin-spin coupling is described as singlet (s), doublet
(d), triplet (t), quartet (q), quintet (quint), heptet (hept), broad (br) or multiplet (m); coupling
constants (J) are reported in Hz. Purity values were utilized from commercial sources or
determined via 'H NMR spectroscopy (300 MHz, delay = 30 s) implementing 1,3,5-
trimethoxybenzene as the internal standard. All analysis was performed on a mixture of accurately
weighed (0.01 mg) standard and substrate in deuterated solvents. HR-MS was obtained from either
Agilent 6320B LC TOF-MS with 0.01 M ammonium acetate in 95:5 and 5:95 mixtures of
acetonitrile and water as mobile phases or Waters GCT Premier Spectrometer using the desorption
chemical ionization probe (DCI) with methane as CI reagent gas. UPLC analysis was performed
on a Waters I-Class instrument (MP-A: 0.05% TFA in 95:5 water:acetonitrile; MP-B: 0.05% TFA
in 95:5 acetonitrile:water; Column: Agilent Zorbax Eclipse C18+ (2.1 x 50 mm; 1.8 pm);
Temperature: 40 °C; flow: 0.8 mL/min; wavelength: specified for experiment; and gradient: 100
% MPA to 100% MPB over 1.2 min, hold at 100% MPB for 0.4 min, and return to initial
conditions). Measurement of pH was accomplished using a Mettler Toledo Seven Excellence
meter (with pH electrode) and calibrated using commercially available buffer standards (pH = 4,

7, and 10; slope > 99%).
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Methodology Optimization

General procedure for high-throughput screening. A 96-well aluminum microvial plate
(Analytical Sales & Services cat. no. 96973) was equipped with 1 mL microvials (Analytical Sales
& Services cat. no. 884001). In all reactions, stock solutions of reactants were used. In cases where
reactants were only partially soluble, slurry additions were employed. Catalyst Pd(PAds)(4-
CsH4F)Br 1 (0.2 umol, 0.004 M) was loaded by one of two methods: (i) a THF solution (50 pL)
was transferred to all vials in the reaction plate then the plate was evaporated to dryness using a
Genevac, at RT, 15 min, 20 Torr, or (i7) a solution/slurry of 1 (50 puL) using the appropriate solvent
choice for each well depicted in Figure S1 was transferred to the reaction plate last after all other
reagents and solvent were charged. For reactant dosing in method 7, stock solutions containing 4-
chloro-1,1'-biphenyl (20 pmol, 0.2 M), 4-nitroaniline (24 pmol, 0.24 M), and and 4-propyl-1,1'-
biphenyl (internal standard, 2 pmol, 0.04 M) in the indicated solvent were each dispensed into the
appropriate wells (100 uL), as shown in Figure S1. For reactant dosing in method ii, stock solutions
containing 4-chloro-1,1'-biphenyl (20 umol, 0.4 M), 4-nitroaniline (24 umol, 0.48 M), and and 4-
propyl-1,1'-biphenyl (internal standard, 2 pmol, 0.08 M) in the indicated solvent were each
dispensed into the appropriate wells (50 uL), as shown in Figure S1. To the left half of the plate
(wells A1:A6, B1:B6, C1:C6, D1:D6, E1:E6, F1:F6, G1:G6, H1:H6) additional solvent (50 pL)
was added to the appropriate well. Degassed water (50 uL) was added to the same left half of the
plate (wells A1:A6, B1:B6, C1:C6, D1:D6, E1:E6, F1:F6, G1:G6, H1:H6), (solvent / H>O (3:1) =
150 uL solvent, 50 pL water total added per well). Degassed water (100 pL) was also added to the
right half of the plate (wells A7:A12, B7:B12, C7:C12, D7:D12, E7:E12, F7:F12, G1:G12,
H7:H12), (solvent / H,O (1:1) = 100 pL solvent, 100 uL water total added per well). The organic
bases (40 umol) were added neat, as diagrammed in Figure S1, the microvial plate was sealed,
removed from the glovebox and shaken at 1000 rpm for 16 h at 60 °C on an Eppendorf
Thermomixer C with plate adapter. After aging, the reactions were diluted with MeCN: DMSO:
H>O (3:1:1) with 1% HOAc (0.5 mL) and the plate was sealed and shaken at 1000 rpm an
additional 15 minutes at RT. Aliquots of the quenched reaction mixtures (30 pL) were diluted into
750 pL of 2:1 MeCN:water. The plate was filtered and analyzed on Acquity I-class plus, Zorbax
Eclipse plus C18, 2.1 x 50 mm, 1.8 pum, TFA, 2 mins methods, 284 nm.
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Reaction mixture from wells in columns B1:H1, B2:H2, B7:H7, B8:H8 and B10:H10 in the
HTE screen were pooled and diluted with EtOAc (7 mL) and brine (7 mL) and transferred to
a separatory funnel. Layers were split and the organics were collected, and solvents
evaporated. The solid residue was redissolved in CH2Cl» and the mixture was purified via
silica, eluted with 0-40 % EtOAc/heptanes. Evaporation of solvent, followed by drying under

vacuum, provided an analytical sample of 2, as a yellow solid.

'H NMR (500 MHz, DMSO-ds) 5 9.41 (s, 1H), 8.13-8.10 (m, 2H), 7.71-7.65 (m, 4H), 7.48-7.44
(m, 2H), 7.36-7.32 (m, 3H), 7.15-7.11 (m, 2H).

13C NMR (126 MHz, DMSO-ds) & 150.5, 139.6, 139.5, 138.1, 134.9, 128.9, 127.6, 127.1, 126.2,
126.2, 120.8, 113.7.

HRMS (ESI+) Calcd. for [CisH1sN20,"] (M+H), 291.1128; Found, 291.1130.

HPLC (Zorbax Eclipse plus C18, 2.1 x 50 mm, 1.8 pm, TFA, 2 mins methods, 284 nm):
1.184 mins

96 total reaction conditions ( 6 bases x 8 solvents x 2 solvent / H,O ratios)
Bases: Et;N, DIPEA, DBU, MTBD, NMM, TMG
Solvents: MeCN, Anisole, IPAc, DMF, DME, 2-MeTHF, t-AmOH, MEK
Solvent / H>O ratios: (3:1) and (1:1)

MTBD | DBU | TMG | DIPEA | Et;N | NMM | MTBD | DBU | TMG | DIPEA | Et;N | NMM
MeCN
toluene
IPAc Left half of screen Right half of screen
DMF Solvent / H,O (3:1) Solvent / H>O (1:1)
DME 20 pumol / reaction 20 pumol / reaction
2-MeTHF 200 pL scale in microvials 200 pL scale in microvials
t-AmOH
MEK

Figure S1. Plate design for HTE screening of soluble base and solvent combinations at two
different solvent/water ratios.
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Table S1. Tabular reaction conversions (%) for HTE screen shown in Figure 1 using
catalyst loading method i.*

Solvent / H,O (1:1)

MTBD DBU TMG DIPEA EtsN NMM MTBD DBU TMG DIPEA EtsN NMM

1 2 3 4 5 6 7 8 9 10 11 12

MeCN
toluene
IPAc
DMF
DME
2-MeTHF
t-AmOH
MEK

T QO ®m m g aw >

Conversion
(%):

“Normalized conversions, versus 4-propyl-1,1'-biphenyl as internal standard, are reported as a single run.

Table S2. Tabular reaction conversions (%) for HTE screen using catalyst loading method
i

Solvent / H,O (1:1)

MTBD DBU TMG DIPEA EgN NMM  MTBD DBU TMG DIPEA EtsN  NMM

1 2 3 4 5 6 7 8 9 10 11 12

MeCN
anisole
IPAc
DMF
DME
2-MeTHF
t-AmOH
MEK

T ommgaQ®w»

Conversion (%):

“Normalized conversions, versus 4-propyl-1,1'-biphenyl as internal standard, are reported as a single run.
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0.25 mmol 0.38 mmol

1

(1 mol %) /©/
Et3N (2 equiv) F
<solvent>, H,O 3
<temp>, <time>

Representative procedure for non-parallel reaction optimizations. In a nitrogen filled

glovebox, to an oven-dried 4 mL scintillation vial equipped with a stir bar was charged with

1-bromo-4-fluorobenzene (27 puL, 0.25 mmol, 1.0 equiv), aniline (34 pL, 0.375 mmol, 1.5

equiv), triethylamine (70 pL, 0.50 mmol, 2.0 equiv), trifluorotoluene (internal standard, 10

uL, 0.083 mmol, 0.33 equiv), Pd(PAd;)(4-CsH4F)Br (1) (1.8 mg, 2.5 pmol, 1 mol %) and

solvent. The vial was capped with a puncturable PTFE-lined cap and taken out of the

glovebox. Under N, atmosphere, degassed deionized water was injected into the vial and the

reaction mixture was left stirring at a certain temperature for the desired time period. After

cooling down to room temperature, the mixture was diluted with CDCl; (1 mL) and the

organic layer was separated for NMR characterization. The yield of 3 was obtained from the

relative '°F resonance integration of product and standard.’

Table S3. Effect of water on C—N coupling yield.

Entry Variation from standard conditions® Yield (%)
1 1:2 tol:H20 >99
2 No water (1.0/0.0 mL) 0
3 25:1 tol:H20 (1.0/0.04 mL) 5
4 10:1 tol:H20O (1.0/0.1 mL) 18
5 2:1 tol:H20 (1.0/0.5 mL) 50
6 1:1 tol:H2O (1.0/1.0 mL) 55
7 0:1 tol:H20 (0.0/1.0 mL) >99

“Conditions: toluene (0.5 mL):H20 (1 mL), 60 °C, 24 h.
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Table S4. Effect of base, additive, and electrophile identity on the C—N coupling yield.

Entry Variation from standard conditions® Yield (%)
1 None (1:4 tol:H20 (0.25/1.0 mL)) 61
2 1:2 toluene:H>O 92
3 NCy:Me instead of NEt3 25
4 Triethanolamine instead of NEt3 33
5 With 1.1 equiv Lil as additive 11
6  p-F-CsHsOTf instead of p-F-CsH4Br 3
aConditions: toluene (0.5 mL):H>O (1 mL), 60 °C, 6 h.
Table SS. Effect of solvent choice on the C—N coupling yield.
Entry Variation from standard conditions® Yield (%)
1 None 59
2 THF instead of toluene 52
3 Dioxane instead of toluene 44
4 2-MeTHF instead of toluene 53
5 DMF instead of toluene 45
6 DMA instead of toluene 35
7 K Phosphate Buffer pH 7.0 (0.1 M) instead of water, no NEt3 0
8 K Phosphate Buffer pH 6.0 (0.1 M) instead of water 44
9 K Phosphate Buffer pH 7.0 (0.1 M) instead of water 46
10 K Phosphate Buffer pH 8.0 (0.1 M) instead of water 26

“Conditions: toluene (0.25 mL):H20 (1 mL), 60 °C, 1 h.
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Catalyst screen. Complex 1 was compared against other selected palladium catalysts® for
Buchwald-Hartwig amination using three substrate combinations:

Me Br

-or-

(\
Me H
L <catalyst> (1 molpq %) N ’pr N - )]>< ”N ®

e Sen o'

HNR; (1.5 equiv) F
/J\ J>< Cl EtgN, toluene/H,0 (1:4) 0
80-100 °C, 24 h
30,

from ArBr from ArBr from ArCl
@®> iPr [/\ iPr
I g dh
i-PrTi-Pr
-'--P Pd'—Pd' —P(t-Bu)s Pd Pd
0 . KN e o :
2 2
F Ph PhyP
c1 c2 Cc3 C5
product
2o
.00 ©
2
€ 20 15 7
?
>
s C3 0 0 9
©
o

ca 0 . e
% yield:

10 20 30 40 50 60 70

C5 0

w

Figure S2. Survey of alternative Pd catalysts to form products 5 or 16 using procedure A on 0.25
mmol scale, or 30 using procedure B on 0.25 mmol scale. Yields were determined by 'H or '°F
NMR using 1,3,5-(CF3)3CsHs, 1,3,5-(MeQ)3CsHs, or CF3CsHs as internal standard for 5, 16, or 30,
respectively. “Isolated yield.

S8



Comparison of 1 to commercial precatalyst. Into separate 4 mL vials equipped with stir bar and
PTFE septa in a nitrogen filled glovebox were added either 1 (1.8 mg, 2.5 umol, 1 mol %) or (2'-
amino-1,1'-biphenyl-2- yl)methanesulfonatopalladium(II) dimer, CAS [1435520-65-2] (0.924 mg,
1.250 pmol, 0.5 mol %) and PAds; (1.092 mg, 2.500 pmol, 1 mol %). Toluene (0.25 mL) was
charged into each vial and the mixture was capped and stirred for approximately 10 min. 4-Chloro-
1,1'-biphenyl (0.047 g, 0.25 mmol, 1.0 equiv) and 4-nitroaniline (0.052 g, 0.375 mmol, 0.375
mmol, 1.5 equiv) were then added to each vial. Additional toluene (0.25 mL) was added to the vial
containing 1. Triethylamine (70 pL, 0.50 mmol, 2.0 equiv) was added to each vial, then they were
sealed with a puncturable PTFE-lined cap and taken out of the glovebox. Degassed deionized water
(1 mL) was injected into the vials and the reaction mixture was heated and stirring at 80 °C
overnight. After cooling down to room temperature, the mixtures were each transferred and diluted
into a 100 mL volumetric flask with THF (5 mL), MeCN (60 mL), water (20 mL) and DMSO (15
mL) whereupon conversion (%) and solution yield (%) were determined for each of the reactions

using calibrated UPLC analysis.

Table S6. Effect of (Ad3P)Pd precatalyst on the C—N coupling yield.

H

/©/CI NH, <catalyst> (1.0 mol %) N
+ > | |
Ph 0 N/©/ Et;N (2 equiv) Ph NO

2
toluene, H,O (1:4)

2

80 °C, overnight 2
Entry Catalyst Conversion (%) Yield (%)
1 1 99.3 95
2 PAds-Buchwald-G3 ¢ 87.5 86

“Generated in situ by the admixture of PAds and (2'-amino-1,1'-biphenyl-2- yl)methanesulfonatopalladium(II)
dimer (CAS [1435520-65-2]) in 2:1 ratio.
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General procedures for C-N coupling reactions

1

Br (1 mol %) NR;
+ HNR, >
EtsN, toluene/H,0 (1:4)

(1.5 equiv) 80°C, 24 h

Procedure A (bromoarenes). To an oven-dried 20 mL scintillation vial equipped with a stir bar
was charged with Pd(PAd3)(4-CsH4F)Br (1) (5.4 mg, 7.5 umol, 1 mol %), aryl bromide (0.75
mmol), amine nucleophile (1.13 mmol, 1.5 equiv), triethylamine (0.20 mL, 1.5 mmol, 2.0 equiv),
and toluene (0.75 mL) under nitrogen (a 4 mL scintillation vial was used as reaction vessel for
reactions conducted on 0.05 or 0.25 mmol-scale). The vial was capped with a puncturable PTFE-
lined cap and taken out of the glovebox.” Degassed deionized water (3.0 mL) was injected into the
vial via a syringe. The reaction mixture was stirred at 80 °C for 24 h. After cooling to room
temperature, the mixture was extracted with dichloromethane (3 x 5 mL) and the organic layer was

dried over NaxSOa. After evaporation, the crude product was purified by column chromatography.

1

Cl (1 mol %) NR;
+ HNR, >
EtsN, toluene/H,0 (1:4)

(1.5 equiv) 100 °C, 16-48 h

Procedure B (chloroarenes). To an oven-dried 4 mL scintillation vial equipped with a stir
bar was charged with Pd(PAd;3)(4-CsH4F)Br (1) (1.8 mg, 2.5 pmol, 1 mol %), aryl chloride
(0.25 mmol), amine nucleophile (0.38 mmol, 1.5 equiv), triethylamine (70 puL, 0.50 mmol,
2.0 equiv), and toluene (0.25 mL) under nitrogen. The vial was capped with a puncturable
PTFE-lined cap and taken out of the glovebox.” Degassed deionized water (1.0 mL) was
injected into the vial via a syringe. The reaction mixture was left stirring at 100 °C for the
indicated time. After cooling to room temperature, the mixture was extracted with
dichloromethane (3 x 5 mL) and the organic layer was dried over Na>SOa. After evaporation,

the crude product was purified by column chromatography.

“Note that reaction preparation in a glove box was convenient but unnecessary. A benchtop procedure
has also been demosrated. See scaled synthesis of 30 on pS29 for details.
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Compound Characterization:

General procedure A was used, except using water (3.0 mL) as the only solvent, on 0.75 mmol

scale, and 191 mg of 4 (92%) was obtained as a pink solid.
TH NMR (500 MHz, CDCls) 8 7.07-6.96 (m, 2H), 6.83-6.81 (m, 2H), 5.37 (s, 1H).

13C NMR (126 MHz, CDCls) & 158.6 (d, J = 241.4 Hz), 141.0 (m, only 'Jcr = 246.3 Hz is well-
resolved), 138.4 (m, only 'Jcr = 250.2 Hz is well-resolved), 138.2 (d, J = 2.5 Hz), 137.0 (m, only
Ucr = 249.6 Hz is well-resolved), 118.8 (d, /= 8.1 Hz), 118.4-118.2 (m), 116.0 (d, J = 22.9 Hz).

19F NMR (376 MHz, CDCls) & -121.3 (m, 1F), -150.5 — -150.6 (m, 2F), -162.7 (td, J = 21.8, 5.3
Hz, 2F), -164.3 (tt, J=21.8, 3.4 Hz, 1F).

HRMS (DCI) Calcd. for [Ci2Hs5FsN] (M), 277.0326; Found, 277.0338.

Me

H ‘Pr
N
ipr
Me

5

General procedure A was used on 0.75 mmol scale, and 152 mg (72%) of 5 was obtained as a

colorless liquid.

TH NMR (500 MHz, CDCl3) § 7.16-7.10 (m, 3H), 6.94 (d, J = 7.5 Hz, 2H), 6.72 (t, J = 7.5 Hz,
1H), 4.79 (s, 1H), 3.15 (hept, J = 7.0 Hz, 2H), 1.98 (s, 6H), 1.12 (d, J = 7.0 Hz, 12H).

13C NMR (126 MHz, CDCl3)  144.3, 143.3, 138.9, 129.6, 125.7, 124.9, 123.4, 119.7, 28.2, 23.6,
19.5.

HRMS (ESI+) Calcd. for [C2oHasN*] (M+H®), 282.2216; Found, 282.2222.
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General procedure A was used, except using water (3.0 mL) as the only solvent, on 0.75 mmol

scale, and 219 mg (83%) of 6 was obtained as a colorless liquid.

TH NMR (500 MHz, CDCls) § 7.40 (dd, J= 8.0, 1.5 Hz, 1H), 7.30 (dd, J = 8.0, 1.5 Hz, 1H), 7.22—
7.13 (m, SH), 6.91 (td, J= 7.5, 1.5 Hz, 1H), 6.14 (s, 1H).

13C NMR (126 MHz, CDCl3) § 143.9, 142.3, 139.0, 130.2, 127.7, 123.0, 122.6, 122.1, 119.8,
118.9 (q,J=321.3 Hz), 117.2.

HRMS (ESI+) Calcd. for [C13H10oCIF3sNO3:S™] (M+H"), 352.0017; Found, 352.0020.

General procedure B was used on 0.25 mmol scale (48 h reaction time), and 26.5 mg (45%) of 7

was obtained as a grey solid.

TH NMR (500 MHz, CDCl3) § 7.45 (d, J = 4.0 Hz, 1H), 7.18-7.16 (m, 2H), 7.04 (t, J = 9.0 Hz,
2H), 6.50 (s, 1H), 6.39 (d, J = 4.0 Hz, 1H), 2.46 (s, 3H).

13C NMR (126 MHz, CDCl3) 8 189.6, 159.0 (d, J = 243.2 Hz), 158.4, 137.5 (d, /= 2.6 Hz),
134.2,130.3, 120.5 (d, /= 7.8 Hz), 116.5 (d, J = 22.9 Hz), 109.3, 25.7.

F NMR (376 MHz, CDCl3) 8 -119.2.

HRMS (DCI) Calcd. for [C12H11FNOS™] (M+H), 236.0545; Found, 236.0536.
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General procedure B was used on 0.25 mmol scale (16 h reaction time), and 56 mg (90%) of 8 was

obtained as a white solid.

'H NMR (500 MHz, CDCls) § 7.58-7.54 (m, 2H), 7.03-6.99 (m, 2H), 6.97 (s, 1H), 5.58 (s, 1H),
3.90 (s, 6H)

13C NMR (126 MHz, CDCl3) & 172.1, 158.4 (d, J = 240.0 Hz), 157.5, 135.8 (d,J = 2.5 Hz), 120.83
(d,J=7.5Hz), 115.5 (d, J=21.3 Hz), 81.2, 54.0.

F NMR (282 MHz, CDCl3) § -121.1.

HRMS (ESI+) Caled. for [C12H15FN30,'] (M+H"), 250.0986; Found, 250.0995.

H
N

oD
F3C H

9

General procedure A was used on 0.75 mmol scale, and 174 mg (84%) of 9 was obtained as a

brown solid.

IH NMR (500 MHz, CDCl3)  8.17 (s, 1H), 7.47 (d, J = 2.5 Hz, 1H), 7.40 (t, J = 8.5 Hz, 3H), 7.25
(d, J=3.0 Hz, 1H), 7.05 (dd, J = 8.5, 2.0 Hz, 1H), 6.88 (d, J = 9.0 Hz, 2H), 6.53 (t, J = 2.0 Hz,
1H), 5.87 (s, 1H).

13C NMR (126 MHz, CDCl3) 5 149.6, 133.5, 133.3, 128.7, 126.7 (¢, J = 3.8 Hz), 125.4, 125.0 (q,
J=270.6 Hz), 120.0 (g, J = 32.6 Hz), 119.5, 115.5, 113.6, 112.0, 102.8.

HRMS (ESI+) Caled. for [CisH12F3N2*] (M+H"), 277.0947; Found, 277.0955.
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General procedure A was used on 0.25 mmol scale, and 61.2 mg (91%) of 10 was obtained as a

white solid.

'H NMR (500 MHz, CDCls) & 8.71 (dd, J = 7.9, 1.7 Hz, 1H), 7.78 (d, J= 1.7 Hz, 1H), 7.65 (¢, J
= 8.0 Hz, 1H), 7.17 (s, 1H), 7.14 (d, J = 7.3 Hz, 1H), 6.94 (dd, J = 7.8, 5.0 Hz, 1H), 6.91 (d, J =
8.4 Hz, 1H), 4.05 (s, 3H).

13C NMR (126 MHz, CDCl3) § 155.06, 153.04, 146.36 (q, J = 34.3 Hz), 138.36, 138.01, 124.91,
124.30, 121.68 (q, J = 274.1 Hz), 117.54, 113.99, 111.62, 53.81.

F NMR (376 MHz, CDCI3) § -68.64.

HRMS (ESI+) Caled. for [Ci2H11F3N30*] (M+H"), 270.0849; Found, 270.0858.

OMe
L
OY©/ OMe
H
1

General procedure A was used on 0.75 mmol scale, and 228 mg (91%) of 11 was obtained as a
yellow oil.

TH NMR (500 MHz, CDCls) § 9.76 (s, 1H), 7.64-7.62 (m, 2H), 7.14-7.12 (m, 4H), 6.91-6.84 (m,
6H), 3.82 (s, 6H).

13C NMR (126 MHz, CDCl3) 8 190.43, 157.43, 154.19, 138.94, 131.56, 128.20, 127.89, 116.87,
115.18, 55.64.

HRMS (ESI+) Caled. for [Ca1H20NOs] (M+H"), 334.1438; Found, 334.1445.
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General procedure A was used on 0.75 mmol scale, and 165 mg (79%) of 12 was obtained as a

yellow oil.

TH NMR (500 MHz, CDCl3) & 8.15 (d, J = 8.0 Hz, 2H), 7.60 (t, J = 2.0 Hz, 1H), 7.55 (t, J = 8.0
Hz, 1H), 7.50 — 7.48 (m, 1H), 7.47 — 7.44 (m, 1H), 7.44 — 7.41 (m, 4H), 7.33 — 7.29 (m, 2H).

13C NMR (126 MHz, CDCl3) § 140.7, 139.1, 135.5, 131.0, 127.7, 127.4, 126.3, 125.4, 123.6,
120.5, 120.5, 109.8.

HRMS (ESI+) Caled. for [C1sHi3CIN'] (M+H"), 278.0731; Found, 278.0737.

General procedure A was used on 0.25 mmol scale, and 67.6 mg (87%) of 13 was obtained as a

white solid.

TH NMR (500 MHz, CDCl3) 5 8.40 — 8.39 (m, 1H), 7.66 (dd, J = 8.5, 3.0 Hz, 1H), 7.49 — 7.47 (m,
1H), 7.18 — 7.16 (m, 2H), 7.04 — 7.00 (m, 2H), 6.99 — 6.95 (m, 2H), 6.48 — 6.46 (m, 2H).

13C NMR (126 MHz, CDClz) & 148.6, 143.0, 138.2, 127.8, 127.4, 125.8, 124.5, 124.3, 118.8,
118.8.

HRMS (ESI+) Calcd. for [Ci7H12CIN2S*] (M+H"), 311.0404; Found, 311.0411.
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General procedure A was used, except using water (3.00 mL) as the only solvent and 3 mol % 1,

on 0.75 mmol scale, and 119 mg (81%) of 14 was obtained as an off-white solid.

'H NMR (500 MHz, CDCl3) & 8.37 — 8.35 (m, 1H), 8.22 — 8.19 (m, 1H),), 7.61 — 7.56 (m, 1H),
7.21-7.17 (m, 2H), 6.87 (t, J= 9.0 Hz, 1H), 6.79 — 6.76 (m, 2H), 4.04 (t, J = 10.5 Hz, 2H), 3.21
(t,J = 10.5 Hz, 2H).

13C NMR (126 MHz, CDCl3) § 155.6, 148.1, 145.0, 137.4, 131.5, 127.4, 124.7, 120.5, 114.5,
113.4,108.7,49.5, 27.8.

HRMS (ESI+) Caled. for [Ci3H13N,'] (M+H?), 197.1073; Found, 197.1080.

sepe

General procedure A was used on 0.25 mmol scale, and 57.4 mg (98%) of 15 was obtained as a

yellow oil.

IH NMR (500 MHz, CDCl3) § 8.69 (d, J = 3.0 Hz, 1H), 7.99 (d, J= 8.5 Hz, 1H), 7.67 (dd, J = 8.0,
2.0 Hz, 1H), 7.52 — 7.50 (m, 2H), 7.49 — 7.46 (m, 1H), 7.36 — 7.33 (m, 2H), 7.16 — 7.13 (m, 2H),
7.11 —7.08 (m, 1H), 3.4 (s, 3H).

13C NMR (126 MHz, CDCl3) & 148.2, 146.4, 143.3, 142.6, 129.8, 129.1, 129.1, 127.1, 126.7,
126.6, 123.4, 122.3, 119.6, 40.6.

HRMS (ESI+) Calcd. for [CisHisN2*] (M+H"), 235.1230; Found, 235.1233.
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General procedure A was used on 0.25 mmol scale, and 47.4 mg (83%) of 16 was obtained as an

orange solid.

'H NMR (500 MHz, CDCl3) § 7.91 (dd, J = 9.0, 3.0 Hz, 2H), 7.45 (dd, J = 9.0, 3.0 Hz, 1H), 7.22
(d, J=8.0 Hz, 1H), 7.01 (d, J = 7.5 Hz, 1H), 3.93-3.91 (m, 4H), 3.28 — 3.26 (m, 4H), 2.70 (s, 3H).

I3C NMR (126 MHz, CDCl3) § 156.4, 148.9, 143.7, 135.2, 129.6, 127.5, 122.5, 122.1, 109.4, 67.0,
49.8,25.2.

HRMS (ESI+) Calcd. for [C14H17N20"] (M+H), 229.1335; Found, 229.1343.

OBOC

O,N” :

General procedure A was used on 0.75 mmol scale, and 205 mg (89%) of 17 was obtained as an

17

orange solid.

'H NMR (500 MHz, CDCl3) § 8.14 (d, J= 9.5 Hz, 2H), 6.82 (d, J = 9.0 Hz, 2H), 3.61 — 3.59 (m,
4H), 3.43 — 3.41 (m, 4H), 1.49 (s, 9H).

13C NMR (126 MHz, CDCls) 8 154.8, 154.7, 138.9, 126.1, 113.0, 80.5, 47.0, 28.5.

HRMS (ESI+) Calcd. for [Ci5sH22N304] (M+H"), 308.1605; Found, 308.1606.
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General procedure A was used (48 h reaction time) on 0.25 mmol scale, and 63.3 mg (61%) of 18

was obtained as an off-white solid.

'H NMR (500 MHz, CDCls) & 7.53 (d, J= 9.0 Hz, 2H), 7.42 (d, J = 9.0, 3.0 Hz, 1H), 7.36 (d, J =
3.0 Hz, 1H), 7.21 (d, J = 8.5 Hz, 1H), 7.18 — 7.16 (m, 1H), 7.12 — 7.09 (m, 2H), 7.04 — 7.01 (m,
1H), 6.91 (d, J = 8.5 Hz, 2H), 3.69 (s, 4H), 3.46 (s, 4H).

13C NMR (126 MHz, CDCl3) § 159.5, 158.9, 153.4, 151.9, 139.9, 133.7, 133.0, 130.6, 129.0,
127.3,126.0, 125.1, 124.9, 123.0, 120.3, 120.0, 114.7, 101.1, 47.2.

HRMS (ESI+) Calcd. for [C24H20CIN4O'] (M+H), 415.1320; Found, 415.1326.

)

FO-&

19
General procedure A was used on 0.25 mmol scale, and 42.1 mg (89%) of 19 was obtained as an

off-white solid.

TH NMR (500 MHz, CDCls) § 7.96 (d, J = 9.0 Hz, 2H), 7.41 (d, J = 8.5 Hz, 2H), 3.70 (t, J= 4.5
Hz, 2H), 3.18 (d, J = 4.5 Hz, 2H), 2.58 (s, 3H).

13C NMR (126 MHz, CDCl3) 8 196.9, 164.9, 142.3, 132.7, 130.1, 115.9, 38.4, 36.7, 26.6.

HRMS (ESI+) Calcd. for [C11H12NO2"] (M+H"), 190.0863; Found, 190.0870.
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General procedure A was used on 0.75 mmol scale, and 193 mg (97%) of 20 was obtained as a

white solid.

IH NMR (500 MHz, CDCls) & 7.98 (d, J = 9.0 Hz, 2H), 7.42 (d, J = 8.5 Hz, 2H), 6.66 (s, 1H),
4.35 (d, J= 7.0 Hz, 2H), 1.53 (s, 9H), 1.38 (t, J = 7.0 Hz, 3H).

13C NMR (126 MHz, CDCl3) 8 166.4, 152.3, 142.7, 131.0, 124.9, 117.4, 81.3, 60.9, 28.4, 14.5.

HRMS (ESI+) Caled. for [C14H20NOs] (M+H"), 266.1387; Found, 266.1391.

H
N\N,Me
Boc

21

General procedure A was used (48 h reaction time) on 0.25 mmol scale, and 59.8 mg (69%) of 21

was obtained as an off-white solid.

'H NMR (500 MHz, CDCl3) & 8.12 — 8.06 (m, 3H), 8.05 — 7.99 (m, 2H), 7.98 — 7.93 (m, 2H), 7.87
(d, J=9.0 Hz, 1H), 7.43 (d, J= 8.4 Hz, 1H), 7.02 (s, 1H), 3.40 (s, 3H), 1.35 (s, 9H).

13C NMR (126 MHz, CDCl3) & 156.2, 141.0, 132.0, 131.3, 127.6, 126.6, 126.0, 125.9, 125.7,
125.6, 125.3, 124.6, 124.5, 124.0, 119.3, 117.1, 109.9, 81.3, 37.7, 28.2.

HRMS (ESI+) Caled. for [C2:Ha3N20,7] (M+H®), 369.1573; Found, 369.1580.

General procedure A was used on 0.25 mmol scale, and 58.1 mg (80%) of 22 was obtained as a

brown solid.
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TH NMR (500 MHz, CDCl3) § 7.60 — 7.56 (m, 4H), 7.54 — 7.51 (m, 1H), 7.42 (s, br, 1H), 7.34 —
7.29 (m, SH), 7.04 — 7.01 (m, 2H), 6.97 — 6.94 (m, 2H).

13C NMR (126 MHz, CDCl3) § 157.4 (d, J=237.8 Hz), 144.5, 141.1 (d, J=2.1 Hz), 138.4, 132.8,
129.8, 129.4, 129.2, 128.3, 128.2, 126.6, 115.9 (d, J = 22.6 Hz), 113.9 (d, J = 7.7 Hz).

HRMS (ESI+) Caled. for [CioHisFN2*] (M+H"), 291.1292; Found, 291.1305.

(6]
Me H
F
NZ 23

General procedure A was used on 50 pmol scale, and 17.7 mg (90%) of 23 was obtained as an

off-white solid.

TH NMR (500 MHz, CDCls) 8 7.84 (s, 1H), 7.52 (d, J = 2.7 Hz, 1H), 7.26 (d, J = 8.6 Hz, 1H,
obscured by chloroform-ds peak), 7.17 — 7.10 (m, 3H), 7.08 — 7.02 (m, 2H), 5.93 (s, 1H), 5.25-
5.07 (m, 1H), 4.51 — 4.29 (m, 3H), 3.23 (s, 3H), 1.45 (t,J=7.2 Hz, 3H).

13C NMR (126 MHz, CDCl3) & 166.6, 163.3, 159.4 (d, J=242.9 Hz), 145.2, 136.9 (d, J= 2.9 Hz),
135.5, 134.8, 130.4, 128.3, 124.2, 123.3, 123.2 (d, J = 8.1 Hz), 118.7, 118.0, 116.6 (d, J = 22.6
Hz), 61.1, 42.6, 36.0, 14.6.

F NMR (376 MHz, CDCl3) 6 -118.8.

HRMS (ESI+) Calcd. for [C21H20FN4O3*] (M+H"), 395.1514; Found, 395.1521.
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General procedure A was used on 50 umol scale, and 21.3 mg (91%) of 24 was obtained as a

green oil.

'H NMR (500 MHz, CDCl3) & 8.03 — 7.97 (m, 2H), 7.83 — 7.81 (m, 1H), 7.80 — 7.76 (m, 2H), 7.40
(dd, J=8.7,2.8 Hz, 1H), 7.01 — 6.89 (m, 6H), 3.07 (s, 3H), 1.76 (s, 6H).

13C NMR (126 MHz, CDCl3) 8 165.9, 158.2 (d, J = 240.8 Hz), 155.6, 147.6, 141.2, 138.7, 138.1,
137.4,136.4, 135.1, 129.7, 129.0, 127.9, 120.0 (d,J= 7.6 Hz), 116.2 (d, /= 22.6 Hz), 111.6, 84.3,
44.4,26.5.

HRMS (ESI+) Caled. for [C24H22FN205S*] (M+H"), 469.1228; Found, 469.1233.

0
MeO—4/

rOE O
><

F
25

General procedure A was used on 50 umol scale, and 24.3 mg (94%) of 25 was obtained as an
orange solid. Note that the starting aryl bromide (X4 in Merck informer library) is supplied as a
mixture of diastereomers. Flash chromatography did not separate the diastereomers of 25, and

spectral data are reported for the mixture as a result.

TH NMR (500 MHz, CDCl5) § 7.01 — 6.84 (m, 6H), 5.36 — 5.26 (m, 1H), 5.18 (d, J = 28.1 Hz,
1H), 4.81 —4.77 (m, 1H), 4.72 (s, 1H), 4.59 (s, 1H), 4.56 —4.53 (m, 1H), 4.49 — 4.30 (m, 1H), 3.78
— 3.72 (m, 4H), 3.78 — 3.59 (m, 1H), 2.52 — 2.37 (m, 1H), 2.29 — 2.16 (m, 1H), 1.49 — 1.39 (m,
9H).
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13C NMR (126 MHz, CDCl3) § 173.2, 173.1, 172.9, 172.8, 159.0, 158.9, 157.1, 157.0, 154.4,
154.4, 154.1, 154.0, 153.9, 153.8, 153.7, 153.7, 152.1, 152.1, 151.9, 139.1, 139.1, 139.0, 139.0,
134.8, 134.7, 134.7, 134.6, 134.6, 129.7, 129.7, 129.5, 129.5, 129.3, 129.2, 124.7, 124.5, 124 .4,
124.4,124.3, 124.2, 119.7, 119.7, 119.6, 119.5, 119.5, 118.8, 116.2, 116.2, 116.0, 116.0, 115.4,
115.3, 115.3, 115.2, 115.2, 115.1, 80.6, 73.8, 73.8, 73.2, 73.2, 58.1, 58.0, 57.7, 57.6, 52.8, 52.7,
52.5,52.4,52.2,51.5,51.0,51.0, 50.3, 49.8, 37.0, 37.0, 36.1, 36.0, 28.4, 28.3.

HRMS (ESI+) Caled. for [CasH30F2N306"] (M+H*), 540.1917; Found, 540.1925.

General procedure A was used on 50 pmol scale, and 26.1 mg (98%) of 26 was obtained as an
orange solid. Note that the starting aryl bromide (X8 in Merck informer library) is supplied as a
mixture of diastereomers. Flash chromatography did not separate the diastereomers of 26, and

spectral data are reported for the mixture as a result.

'H NMR (500 MHz, CDCl3)  7.38 — 7.28 (m, 5H), 7.18 (t, J = 7.8 Hz, 1H), 7.07 — 6.92 (m, 5H),
6.86 — 6.77 (m, 1H), 5.38 — 4.96 (m, 4H), 4.74 (s, 1H), 4.69 — 4.42 (m, 4H), 3.93 — 3.73 (m, 4H),
3.56 (d, J= 5.2 Hz, 1H), 2.56 — 2.45 (m, 1H), 2.32 — 2.19 (m, 1H).

13C NMR (126 MHz, CDClz) § 172.7, 172.7, 172.5, 172.5, 159.4, 159.4, 157.5, 157.5, 154.9,
154.9, 154.3, 153.9, 153.7, 139.3, 139.3, 138.2, 138.1, 138.1, 138.0, 138.0, 137.9, 137.9, 136.3,
136.3, 136.3, 136.2, 129.1, 128.5, 128.1, 128.1, 127.9, 127.9, 125.0, 124.8, 124.8, 124.7, 121.5,
121.4,121.3,121.3,116.2,116.0, 114.9, 114.8, 114.8, 114.8,114.4, 114.2, 114.1, 73.6, 73.0, 72.9,
67.4, 58.1, 58.1, 57.8, 57.8, 53.1, 53.0, 53.0, 52.8, 52.7, 52.7, 52.5, 52.3, 51.0, 50.6, 50.5, 37.2,
37.1, 36.1, 36.1.

HRMS (ESI+) Caled. for [CasH20FN306'] (M+H"), 534.2035; Found, 534.2038.
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General procedure A was used on 50 pmol scale, and 18.7 mg (76%) of 27 was obtained as an

orange solid.

TH NMR (500 MHz, CDCls) § 8.10 (d, J = 2.7 Hz, 1H), 7.20 — 7.07 (m, 3H), 7.06 — 6.96 (m, 5H),
5.63 (s, 1H), 4.13 (g, J= 7.1 Hz, 2H), 3.82 (d, J = 16.1 Hz, 2H), 3.41 - 3.31 (m, 1H), 3.31 — 3.20
(m, 1H), 3.18 — 3.04 (m, 2H), 2.85 — 2.68 (m, 2H), 2.55 — 2.44 (m, 1H), 2.43 —2.35 (m, 1H), 2.35
~2.28 (m, 2H), 1.25 (t, J= 7.1 Hz, 3H).

13C NMR (126 MHz, CDCl3) & 158.5 (d, J = 241.5 Hz), 155.5, 148.6, 139.7, 139.3, 138.5, 137.7
(d,J=2.9 Hz), 137.2, 136.0, 133.8, 133.6, 132.7, 130.2, 128.7, 126.2, 123.8, 121.2 (d, /= 7.9 Hz),
116.2 (d, J = 22.6 Hz), 61.3, 44.9, 44.9, 32.0, 31.5, 30.8, 30.6, 14.7.

HRMS (ESI+) Caled. for [CasHasCIFN30,*] (M+H"), 492.1849; Found, 492.1855.

28
General procedure A was used on 0.25 mmol scale, and 100 mg (90%) of 28 was obtained as a
brown solid.
TH NMR (500 MHz, CDCl3) & 7.62 (d, J=9.0 Hz, 2H), 7.18 — 7.15 (m, 2H), 7.07 — 7.03 (m, 2H),
6.98 — 6.96 (m, 2H), 6.88 (d, J= 8.5 Hz, 2H), 6.67 (dd, J= 9.0, 2.5 Hz, 1H), 6.14 (s, 1H), 3.84 (s,
3H), 3.70 (s, 3H), 3.68 (s, 2H), 2.47 (s, 3H).
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13C NMR (126 MHz, CDCl3) 8 171.8, 168.9, 159.5 (d, J = 242.5 Hz), 155.7, 149.5, 136.3, 136.3,
132.9,131.3,130.3, 125.3,123.9(d, J=7.5Hz), 116.5 (d, J=22.5 Hz), 114.8, 113.9, 111.5, 1 11.1,
101.0, 55.9, 52.2,30.4, 13.0.

'F NMR (282 MHz, CDCl3) § -118.2.
HRMS (ESI+) Calcd. for [C2sH24FN2O4"] (M+H), 447.1715; Found, 447.1720.

o,
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General procedure B was used (48 h reaction time), except using 2 mol % 1, on 0.25 mmol scale,

and 58.6 mg (51%) of 29 was obtained as a yellow solid.

'H NMR (500 MHz, DMSO-ds) & 9.78 (s, 1H), 8.18 (d,J = 9.5 Hz, 2H), 7.65 (d, J = 8.5 Hz, 2H),
7.36 (d, J = 9.0 Hz, 2H), 7.31 (d, J = 9.0 Hz, 2H), 7.03 (d, J = 2.5 Hz, 1H), 6.93 (d, J = 9.0 Hz,
1H), 6.71 (dd, J = 9.0, 3.0 Hz, 1H), 3.76 (s, 3H), 3.67 (s, 2H), 2.28 (s, 3H).

13C NMR (126 MHz, DMSO-ds) & 172.3, 168.1, 155.2, 148.6, 145.5, 139.7, 135.3, 131.9, 130.5,
130.4, 127.6, 126.0, 117.8, 116.0, 114.2, 112.5, 111.2, 101.4, 55.4, 29.6, 12.9.

HRMS (ESI+) Calcd. for [C2sH2oN306"] (M+H®), 460.1503; Found, 460.1505.

g oo

30
General procedure B was used (36 h reaction time) on 0.25 mmol scale, and 98.0 mg (90%) of 30

was obtained as a white solid.
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'H NMR (500 MHz, CDCl3) § 7.71 — 7.69 (m, 4H), 7.17 — 7.14 (m, 2H), 7.05 — 7.01 (m, 2H), 6.90
(d, J= 10 Hz, 2H), 6.85 (d, J = 10 Hz, 2H), 6.21 (s, 1H), 5.08 (hept, J = 6.5 Hz, 1H), 1.65 (s, 6H),
1.20 (d, J= 6.5 Hz, 6H).

13C NMR (126 MHz, CDCl3) § 194.2, 173.4, 159.2 (d, J = 241.3 Hz), 159.0, 148.7, 136.8 (d, J =
2.5 Hz), 132.6, 131.7, 131.7, 128.9, 123.4 (d, J = 7.5 Hz), 117.3, 116.3 (d, J = 22.5 Hz), 113.8,
79.4,69.4,25.5,21.6.

'F NMR (282 MHz, CDCl3) § -118.9.
HRMS (ESI+) Calcd. for [C26H27FNO4™] (M+H), 436.1919; Found, 436.1907.

y
N
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General procedure B was used (48 h reaction time), except using 2 mol % 1, on 0.25 mmol scale,

and 65.3 mg (58%) of 31 was obtained as a white solid. The yield of 31 was 60% as determined

31

by °F NMR analysis versus internal standard. The product is poorly soluble in common deuterated

solvents.

'H NMR (500 MHz, DMSO-ds) & 8.13 (s, 1H), 8.09 — 8.07 (m, 2H), 7.37 (t, J = 9.0, 2H), 7.30 (t,
J=8.5,2H),7.06 (d, J = 6.5, 4H), 6.99 (d, J = 8.5, 2H), 6.98 (brs, 1H), 3.36 — 3.17 (m, 10H), 2.02
(s, 2H), 1.72 (s, 2H).

13C NMR (126 MHz, DMSO-ds) § 197.6, 165.0 (d, J=251.7 Hz), 156.2 (d, J = 236.0 Hz), 142.4,
140.0, 133.4, 130.9 (d, J = 9.6 Hz), 125.6, 118.4 (d, J = 7.7 Hz), 115.8, 115.7 (d, J = 21.9 Hz),
115.7 (d, J=22.2 Hz), 68.2, 48.5, 35.4, 21.0.

F NMR (376 MHz, CD:Cl) 8 -107.1, -123.2.

HRMS (ESI+) Caled. for [C27H20FNO4*] (M+H™), 451.2192; Found, 451.2193.
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General procedure A was used on 0.25 mmol scale, and 72 mg (91%) of S1 was obtained as a

colorless liquid.

TH NMR (400 MHz, CDCl3) § 7.34-7.30 (m, 2H), 7.15-7.09 (m, 4H), 7.06-7.01 (m, 3H), 5.80 (s,
1H).

13C NMR (101 MHz, CDCl3) § 143.9, 142.8, 141.8, 129.7, 122.7, 122.4, 119.5, 118.9 (d, J=319.3
Hz), 117.4.

F NMR (376 MHz, CDCl3) 8 -72.8.

HRMS (ESI+) Calced. for [C13H11F3NO3S+] (M+H+), 318.0406; Found, 318.0408.

Table S7. Attempted reactions with primary aliphatic amines.

Br 1 (1.0 mol %) NHR
F Et;N (2 equiv) F

toluene, H,O (1:4)

\4

0.25 mmol 1.5 equiv 80 °C. 16.24 h ~0%
Entry R group Yield (%)
1 CPhs 0
2 I-adamantyl 0
3 CHsCFs 0
4 cyclohexyl 0
5 benzyl 0
6 n-butyl trace

Conditions: General Procedure A. Yields determined by °F NMR versus internal standard.
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Scale-Up of Synthesis of Fenofibrate Derivative 30:

Reaction Conversion Calibration Curve. To 4 x 8 mL vials was charged fenofibrate (MW

360.83 g/mol; measured purity 98%) and 30 (MW 435.495 g/mol; measured purity 99.5%)

according to the values in the Table S6. The mixtures were then dissolved in EtOAc (7 mL),

sampled (30 uL in 1.5 mL of 2:1 acetonitrile:water), and assayed via UPLC analysis. The resulting

areas of each peak were measured at 304 nm and conversion (%) values were compared to the

actual mass conversion values (%).

Table S8. Tabular data for detector response for substrate and product analytes.

Corrected wt.

Measured Area

Entry Compound Wt. (mg) i) mmol (304 nm)
fenofibrate 159.4 156.212 0.4329 333319.00
1 30 44.9 44.6755 0.103 77607
conversion: 19% 19%
fenofibrate 84.2 82.516 0.228 183257
2 30 116 115.42 0.265 203654
- - conversion:  54% 53%
fenofibrate 25.7 25.186 0.0697 58840
3 30 194.0 193.03 0.4432 323089
conversion:  86% 85%
fenofibrate 5.4 5.292 0.014 16690
4 30 226.8 225.666 0.5181 382633
- - conversion:  97% 96%
120.0%
€
gc 100.0% y= %?fixéoodooo
=] .
® 80.0%
S
c  60.0%
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5
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Figure S3. Calibration curve of measured versus actual conversion of fenofibrate to 30.
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Optimization of solvent and temperature in synthesis of 30. To 8 x 20 mL vials with stir bars
outside of the glovebox was charged isopropyl 2-(3-(3-chlorobenzoyl)phenoxy)-2-
methylpropanoate (fenofibrate) (530 mg, 1.44 mmol, 98% purity), 4-fluoroaniline (245 mg, 2.16
mmol, 1.5 equiv, 98% purity), and 1 (9.39 mg, 0.013 mmol, 0.9 mol %). The vials were then
brought into the glovebox and charged with solvent (1.5 mL), degassed water (6 mL), and
triethylamine (405 uL, 2.88 mmol, 2 equiv, 99% purity). The vials were sealed, removed from the
glovebox, and placed into a pre-heated hotplate at the specified temperatures and aged for 21 h
with vigorous stir bar agitation. Upon cooling, aliquots (50 uL) were taken with continued
agitation, diluted into 2:1 acetonitrile:water (7 mL), and assayed for reaction completion using

UPLC-MS analysis at 304 nm.

Table S9. Results of Temperature and Solvent Variation During Synthesis of 30.

(0] (0]
J\ o)l><o cl NH, 1 (0.9 mol %) J\ O&o NHAIF
+ >
,:/©/ Et3N (2 equiv)
(0] O
30

<solvent>/H,O (1:4)

<temp>, 21 h
Entry Solvent Temperature (°C) Conversion (%)
1 anisole 98 89
2 CPME 98 98
3 t~-AmOH 98 96
4 toluene 98 97
5 anisole 80 74
6 CPME 80 71
7 ~-AmOH 80 94
8 toluene 80 83

Monitoring aqueous pH at initial reaction time. To a 20 mL vial with stir bar was charged
isopropyl 2-(3-(3-chlorobenzoyl)phenoxy)-2-methylpropanoate (fenofibrate) (1.00 g, 2.72 mmol,
98% purity), 4-fluoroaniline (462 mg, 4.07 mmol, 1.5 equiv., 98% purity), tert-amyl alcohol (3
mL), degassed water (9 mL), and triethylamine (765 pL, 5.43 mmol, 2 equiv., 99% purity). The
vial was agitated for ~10 min where upon the initial pH measurement was obtained (pH = 11.9)

using the pH meter, electrode, and calibration procedure (vide supra).
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+-AmOH (3 mL/g)

(0] (0]
L o)1><o cl NH, 1(1.0 mol %) L o)l><o NHAF
+ >
,:/@/ Et;N (2 equiv)
(0] (0]
30

H,O (9 mLl/g)
85°C,12h 97% solution yield
80% Isolated yield (7.0 g)
Final pH = 8.5

Synthesis of 30 on 20-mmol Scale. To a 100 mL 2-piece EasyMax vessel fitted with reflux
condenser, pitched blade impeller, and nitrogen inlet was charged isopropyl 2-(3-(3-
chlorobenzoyl)phenoxy)-2-methylpropanoate (fenofibrate) (7.36 g, 20.0 mmol, 98% purity) and
4-fluoroaniline (3.40 g, 30.0 mmol, 1.5 equiv, 98% purity). The vessel was sealed and purged
with N». Degassed water (66 mL, 9 mL/g), ~Amyl alcohol (22 mL, 3 mL/g, commercially available
anhydrous solvent from Millipore Sigma), and degassed triethylamine (5.63 mL, 40.0 mmol, 2
equiv, 99% purity) were charged to the reactor via syringe (inert handling) while keeping the
internal temperature at 25 °C with agitation set at 600 RPM. To the reactor was then charged
complex 1 (144 mg, 200 pmol, 1 mol %) as a solid under nitrogen purge. The reaction was then
ramped to 85 °C over 15 min at 600 RPM agitation rate, aged for 12 h, sampled (50 pL in 7 mL
of 2:1 acetonitrile:water), and deemed complete (100% conversion). The reaction mixture was
cooled to 25 °C, EtOAc (37 mL, 5mL/g) was charged, and the mixture was transferred to a
separatory funnel with additional EtOAc (37 mL, 5 mL/g). The resulting biphasic solution was
separated (aqueous layer loss <0.1%, pH = 8.5), and the organic layer assayed (solution yield =
97%). The resulting dark organic phase was concentrated to a near oil on the rotary evaporator
(70-80 mm Hg, 40 °C), and then diluted with EtOAc (37 mL, 5% vol.). To the organic mixture
was then charged heptanes (22 mL, 3 mL/g), then compound 30 seed crystals (~50 mg), and the
resulting slurry was allowed to age (~30 min). Additional heptanes (29 mL, 4 mL/g) was charged
to the dark slurry over ~ 20 min. The resulting mixture was allowed to further age (30 min)
whereupon it was filtered through at disposable polypropylene filter funnel (10 um). The wet cake
was slurry washed two times with 20% EtOAc in heptanes (22 mL, 3 mL/g), and the cake was
allowed to dry overnight at room temperature under vacuum and a stream of N> to yield 30 as a

light gray solid (7.02 g, 16.0 mmol, 80% yield at 99% purity by 'H wt/wt NMR).

HRMS (ESI+) Caled. for [CasH27FNO4*] (M+HY), 436.1919; Found, 436.1938.
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t-AmOH (3 mL/g)
H,O (9 mL/g)
85°C

o} o)
/I\ J><o c NH, 1 (1.0 mol %) J\ o N
AT - T IS S
” E Et;N (2 equiv)
0 0
30

Kinetic Profile of Reaction on 20-mmol Scale. To a 100 mL 2-piece EasyMax vessel fitted
with reflux condenser, pitched blade impeller, nitrogen inlet, and EasySampler (Fitted with
the following solvent lines: Reaction = degassed water; Quench and Diluent = 2:1
acetonitrile:water — non-degassed; Dilution Factor = 350) was charged isopropyl 2-(3-(3-
chlorobenzoyl)phenoxy)-2-methylpropanoate (fenofibrate) (7.36 g, 20.0 mmol, 98% purity)
and 4-fluoroaniline (3.40 g, 30.0 mmol, 1.5 equiv., 98% purity). The vessel was sealed and
purged with Na. Degassed water (66 mL, 9 mL/g), +~Amyl alcohol (22 mL, 3 mL/g -
commercially available anhydrous solvent from Millipore Sigma), and degassed
triethylamine (5.63 mL, 40.0 mmol, 2 equiv., 99% purity) were charged to the reactor via
syringe (inert handling) keeping the internal temperature at 25 °C with agitation set at 600
RPM. To the reactor was then charged complex 1 (144 mg, 0.200 mmol, 1 mol %) as a solid
under nitrogen purge. The sampling times (min), temperature ramp (°C in min), and reaction

conversion (%) are tabulated below.

Table S10. Tabular Data for 20-mmol Scale Amination of Fenofibrate.

Entry Temp Ramp Temp Sampling Compound starting Conv. Comment
Time (min) (°C) Time (min) 30area material (%)
(304 nm) area (304
nm)
1 0 25 2 13272 240538 5% Sampling delay of ~2 min

15 25 17 104215 219975 32% Sampled after 17 min at 25 °C
30 85 32 448567 24593 95% Sampled 2 min after reaching 85 °C

A L B W

120 85 122 442854 0 100% Sampled 1h after reaching 85 °C

HArF

45 85 47 476641 0 100% Sampled 17 min after reaching 85 °C
60 85 62 421346 0 100% Sampled 32 min after reaching 85 °C
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Figure S4. Reaction conversion (left-axis) and temperature (right-axis) of fenofibrate to 30 (20-
mmol scale) versus time.

Synthesis of 2 on 17.5-mmol Scale. To a 100 mL 2-piece EasyMax vessel fitted with reflux
condenser, pitched blade impeller, and nitrogen inlet was charged 4-bromo-1,1'-biphenyl (4.16 g,
17.5 mmol, 98% purity), and 4-Nitroaniline (3.70 g, 26.3 mmol, 1.5 equiv, 98% purity). The
vessel was sealed and purged with N for at least 10 minutes. Degassed water (70 mL), toluene
(15 mL, commercially available anhydrous solvent from Millipore Sigma), and degassed
triethylamine (4.93 mL, 35.0 mmol, 2 equiv, 99% purity) were charged to the reactor via syringe
(inert handling) with agitation set at 800 RPM. The reactor was then heated to an internal
temperature of 80 °C. To a 4 mL vial with PTFE septum and magnetic stir bar was charged
complex 1 (126 mg, 0.175 mmol, 1.0 mol %). The vial was then inerted with N, and toluene (2.5
mL) was charged via syringe (inert handling). The slurry was allowed to stir and age (~5 min)
whereupon it was charged to the reactor via syringe (inert handling), and the syringe was rinsed
with the reactor contents two times. The contents of the reactor were aged (6 h) after which it was
deemed complete by UPLC analysis (100% conversion @ 238 nm), cooled to 20 °C and stirred
overnight. The resulting orange biphasic slurry was quantitatively transferred to a vessel with
EtOAc (150 mL) and fert-butylmethylether (100 mL) where the biphasic solution was decanted
from the solids, and the top organic layer collected. The remaining orange solids were dissolved
in acetone (100 mL), the organic layers were combined, dried over MgSOsa, filtered through a plug
of Silica gel, and concentrated on a rotovap (40 °C) to yield an a crude orange solid. The resulting
solid was dissolved in acetone (100 mL) after stirring for several minutes in a water bath (40 °C).
To the resulting orange solution was charged water (30 mL) whereupon an orange solid
crystallized from solution. Additional water (20 mL) was added to the slurry, allowed to age at
room temperature (approximately 10 minutes), filtered, slurry washed two times with 1:1
water:acetone (20 mL) and then toluene (20 mL). The orange wetcake was dried overnight at
room temperature with vacuum to yield 4.83g of 2 (94% yield, 99wt% as determined by '"H NMR)
as a bright orange solid. NMR spectroscopic data matched those for a reference sample of 2 (vide

supra).
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32
anti-[Pd(PAd3)(4-C¢HsF)(p-OH)]2 (32). To an oven-dried 100 mL Schlenk flask equipped with

a magnetic stir bar was charged with Pd(PAds3)(4-CsHsF)Br (1) (90 mg, 0.13 mmol) and
dichloromethane (30 mL). A solution of sodium hydroxide (50 mg, 1.3 mmol, 10 equiv) in water
(30 mL) was injected into the reaction mixture. The resulting biphasic solution was stirred
vigorously for 30 min at room temperature. The aqueous layer was then separated, the organic
layer was concentrated, and resulting was washed with n-hexane (3 x 5 mL), filtered and dried

under reduced pressure to afford 64 mg (78%) of 32 an off-white solid.

'H NMR (500 MHz, CD,Cly) & 7.40 (t, J = 7.1 Hz, 4H), 6.63 (t, J= 9.2 Hz, 4H), 2.42 (s, 36H),
1.88 (s, 18H), 1.72 - 1.57 (m, 36H), -2.19 (d, J = 3.2 Hz, 2H).

BC NMR (126 MHz, CD:Cl») 8 160.91 (d, J = 238.0 Hz), 139.96, 138.68, 112.48 (d, J=18.5
Hz), 48.83 (d, /= 5.1 Hz), 42.02, 36.97, 29.84 (d, /= 7.5 Hz).

9F NMR (470 MHz, CD,Cl,) § -125.2.
3IP{TH} NMR (202 MHz, CD>Cl,) § 67.1.

HRMS (ESI) m/z calculated for C3sHsxFNPPd (M/2-OH+MeCN), 678.28562, found 678.28588.

S32



(=1 o (=] o o o (=] o
(=] (= (=3 (=3 (=3 [=1 (=] [=1 (=3
wn (=) wn [=3 wn o wn o (=3
T bl T i i i T T il <
61 .
6> -— =007
souexay 88°0
sauexay 0g'1 N
191
mﬁ/.
NfV E6v6T
69'T E 486
831/
WwT— Wsé
p
70ead TE'S
WD 265
19°9
G.QW. s
59'9
8E'L
oq.nW ——— E 007
Wi w
2"
-
IO™ Y
\ oT
N\
a”

10

11

f1 (ppm)

Figure S5. 'H NMR spectrum (CD>Cl», 500 MHz) of 32.
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Figure S6. °C NMR spectrum (CD>Cly, 126 MHz) of 32.
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Figure S7. ’F NMR spectrum (CD,Cl,, 470 MHz) of 32.
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Stoichiometric Mechanistic Experiments:

Independent route to 32 under catalytically-relevant conditions. A solution of Pd(PAds)(4-
CsH4F)Br (1) (1.8 mg, 2.5 umol) in toluene (1.0 mL) was transferred to an NMR tube capped with a
rubber septum. Triethylamine (50 pL, 359 pmol, 143 equiv) and water (1.0 mL) were injected and
the reaction mixture was shaken gently for 1 min at room temperature. A 3'P{'H} spectrum of the
resulting solution indicated complete consumption of 1, and 32 was cleanly formed. Analogous

reactions that omitted water or triethylamine showed no conversion of 1.

3IP{'H} NMR (202 MHz, toluene) & 66.9.

-66.86

1'10 160 éO éO 710 60 E;O 40 50 éO 1'0 0
Figure S9. *'P{'H} NMR spectrum (202 MHz, toluene) of reaction of 1 with EtsN and water in
toluene after 1 min at RT.
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Independent route to 32 from an independently prepared cationic aryl-Pd complex:

<@®> @@@% BF,O @@@OF

N\ Et;N
Pd _—

Y THF % THF, H,0 O/ 8 R
F —35°C F O 0°C " 2;( @

33 32

Generation of [Pd(PAd3)(4-FCsHy4)|" BF4 (33). The generation of 33 was adapted from a
published procedure.?> PA(PAds)(p-FCsH4)Br 1 (9.0 mg, 12.5 umol) was dissolved in THF (2.5
mL). Separately, AgBF4 (20 mg, 0.10 mmol) was dissolved in THF (2 mL). Both solutions were
chilled at -35 °C (MeOH/H>O dry ice bath). The latter solution (AgBF4,2.5 umol, 50 uL) was then
added to an aliquot of the solution of 1 (2.5 pmol, 0.5 mL) in a 4 mL vial at -35 °C. The mixture
(0.55 mL) was quickly shaken, left in the cooling bath for 10 min, and transferred under nitrogen
into an NMR tube capped with a rubber septum. Generation of 33 was confirmed by 3'P{'H}

spectrum at -25 °C before proceeding to the next step.

Generation of 32 from 33. Triethylamine (10 pL, 72 umol, 29 equiv) and water (68 puL) were
injected into the solution of 32 and the resulting mixture was shaken gently for 1 min at 0 °C. A
3IP{H} spectrum was acquired at 0 °C, which showed full conversion of 33 and clean formation

of 32.

3IP{IH} NMR (202 MHz, THF, 0 °C) § 66.2.
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Figure S10. 3'P{!H} NMR spectrum (202 MHz, THF, 0 °C) of the reaction of 33 with EtsN and
H>O in THF.
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32 33
Conversion of 32 to 33. A solution of 32 (1.8 mg, 1.34 umol) in THF-ds (0.5 mL) was transferred
toan NMR tube capped with a rubber septum. Tetrafluoroboric acid diethyl ether complex (0.5 pL,
3.7 umol, 1.3 equiv to Pd) was injected and the reaction mixture was shaken gently for 1 min at -
35 °C. 'H, "F, and 3'P{'H} NMR spectra acquired at -25 °C, which indicated full conversion of

32 and clean formation of 33.3
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Figure S11. '"H NMR spectrum (500 MHz, THF-ds) of the mixture generated by reaction of
32 with HBF4-Et,O in THF at —35 °C.
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Figure S12. ’F NMR spectrum (470 MHz, THF-ds) of the mixture generated by reaction of
32 with HBF4EtO in THF at —35 °C (* = unidentified).
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Figure S13. 3'P{!H} NMR spectrum (202 MHz, THF-ds) of the mixture generated by

reaction of 32 with HBF4-Et;,O in THF at —-35 °C.
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32 34
Synthesis and characterization of catalyst resting state, syn-|Pd2(PAd3)2(4-CsH4F)2(p-OH)(p-
NH»CeFs)] (34). A solution of 32 (4.9 mg, 3.8 umol) in THF-ds (0.5 mL) was transferred to an NMR
tube under nitrogen and capped with a rubber septum. Separately, pentafluoroaniline (2.8 mg, 15
umol, 4 equiv) was dissolved in THF-ds (0.1 mL) in a 4 mL vial, and the resulting solution was
added to the solution of 32 via a 1 mL syringe at low temperature (acetone/dry ice bath). The NMR
tube was then shaken gently for 1 min. 'H, '°F, and *'P{'H} NMR spectra acquired at —25 °C
indicated full conversion of 32 and clean formation of 34. An EXSY NMR analysis indicated
exchange between free CsFsNHz and the p-anilido ligand in 34 during NMR time scale suggesting

formation of 34 can occur reversibly.

"H NMR (500 MHz, THF-ds) & 7.33 (t,J= 7.2 Hz, 2H), 6.51 (td, J= 8.9, 3.1 Hz, 2H), 6.46 (t,J=
7.6 Hz, 2H), 6.20 (td, J = 8.7, 3.1 Hz, 2H), 2.74 (s, 2H), 2.70 — 2.53 (m, 36H), 2.46 — 2.27 (m,
18H), 2.03 — 1.58 (m, 36H, partly obscured by THF residual peak), -3.84 (s, 1H).

19F NMR (470 MHz, THF-ds) § -125.09 (2F), -147.73 (1F), -158.18 (1F), -170.71 (1F), -171.42
(1F), -176.06 (1F).

3IP{'H} NMR (202 MHz, THF-ds) & 58.8.
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Figure S14. '"H NMR spectrum (500 MHz, THF-ds) of 34.
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Figure S15. ’F NMR spectrum (470 MHz, THF-ds) of 34.
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Figure S16. 3'P{'H} NMR spectrum (202 MHz, THF-ds) of 34.
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Figure S17. '"H-'H NOESY/EXSY NMR spectrum (500 MHz, THF-ds) of 34.
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Stoichiometric C—N bond formation from resting state complex 34. In a glove box, 32 (3.3 mg,
2.5 umol) and octafluorotoluene (internal standard, 15 pL, 106 umol) were dissolved in THF (0.5
mL) in a 4 mL vial. The resulting solution was transferred into an NMR tube capped with a rubber
septum. Separately, pentafluoroaniline (10 mg, 55 umol) was dissolved in THF (1 mL) in a 4 mL
vial, and the resulting solution (0.1 mL, 5.5 pmol, 2.2 equiv) was drawn into a 1 mL syringe. A
solution of PAds (4.4 mg, 10 umol) in THF (0.2 mL) was drawn into another 1 mL syringe. The
syringe needles were sealed by insertion into a rubber septum to prevent exposure to air. Both the
NMR tube and syringes were taken out of the box, and the C¢FsNH> solution was then injected
into the NMR tube cooled in an acetone/dry ice bath. The NMR tube was shaken gently for 1 min
after the addition. 'F and 3'P{'H} NMR spectra acquired at —25 °C, which confirmed full
conversion of 32 and formation of 34 (84%). Next, the PAds solution (to stabilize (Ad;P)Pd’) was
injected into the NMR tube at -78 °C, and the mixture was warmed up to room temperature. '°F
and *'P{'H} NMR spectra acquired after 1 h, which indicated full conversion of 34 and formation
of 4 in 93% yield.
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Figure S18. '°F NMR spectrum (470 MHz, THF) of 34 generated in presence of internal
standard (* = unidentified).
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Figure S19. 3'P{'H} NMR spectrum (202 MHz, THF) of 34.
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Figure S20. ’F NMR spectrum (470 MHz, THF) of 4 generated upon warming a solution of 34
(* = unidentified).
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Independent synthesis of 34 from 33 in the presence of H,O. The generation of
[Pd(PAd;)(4-FC¢Has)]* BFs (33) was adapted from a known procedure.* Pd(PAds)(4-
FCsH4)Br (1) (9.0 mg, 12.5 umol) was dissolved in THF (2.5 mL). Separately, AgBF4 (20
mg, 0.10 mmol) was dissolved in THF (2 mL). Both solutions were chilled at -35 °C
(MeOH/H>O0 dry ice bath). The latter solution (AgBF4,2.5 umol, 50 pL) was then added to
the solution of 1 (2.5 pmol, 0.5 mL) in a 4 mL vial at -35 °C. The mixture (0.55 mL) was
quickly shaken, left in the cooling bath for 10 min, and transferred into an NMR tube capped
with a rubber septum. Next, degassed deionized water (14 pL, 0.75 mmol, 300 equiv),
pentafluoroaniline (0.1 mL from a 15 mM stock solution in THF, 15 pumol, 6 equiv), and
triethylamine (5 pL, 38 pmol, 15 equiv) were injected into the NMR tube sequentially at -78
°C. The reaction mixture was shaken gently for 1 min, then a 3'P{'H} NMR spectrum was

acquired at -25 °C, which indicated clean formation of 34.
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Figure S21. Stacked *'P{"H} NMR spectra (202 MHz, THF) for generation of 34 from 1 (via
33) by sequential addition of (top to bottom) AgBF, water, pentafluoroaniline, then EtzN.
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33 35

Synthesis and characterization of [Pd(PAd;3)(4-FCsH4)(NEt3)]* BF4 (35). The generation of
[Pd(PAd;3)(4-FC¢Ha)]* BF4 (33) was adapted from a known procedure.’ Pd(PAd;3)(4-FC¢Hs)Br 1
(5.4 mg, 7.5 umol) was dissolved in THF-ds (1.5 mL). Separately, AgBF4 (9.8 mg, 50 umol) was
dissolved in THF-ds (1 mL). Both solutions were chilled at -35 °C (MeOH/H>O dry ice bath). The
latter solution (AgBFa4, 2.5 pmol, 50 uL) was then added to the solution of 1 (2.5 pmol, 0.5 mL) in
a 4 mL vial at -35 °C. Octafluorotoluene (internal standard, 0.3 pL, 1.9 pmol) was added to the
solution. The mixture (0.55 mL) was quickly shaken, left in the cooling bath for 10 min, and
transferred into an NMR tube capped with a rubber septum. 'H, '°F, and *'P{'H} NMR spectra
were acquired at -25 °C to confirm clean formation of 33 prior to proceeding to the next step. Next,
triethylamine (5.0 pL, 38 pmol, 15 equiv) was injected and the reaction mixture was shaken gently
for 1 min at -35 °C. 'H, F, and 3'P {'"H} NMR spectra were acquired at -25 °C, which indicated
formation of a new complex (35) in 74% yield along with an unidentified side product (19%).
Analysis by EXSY NMR indicated exchange between free and Pd-bound NEt; on the NMR time
scale; signals corresponding to the 4-fluorophenyl group on 35 and the unidentified side product
supports an equilibrium process involving the two compounds. NOE correlations (dashed lines)
between the 4-fluorophenyl on Pd and coordinated EtzN, and also between PAds resonances and

coordinated EtsN, support the structure assignment of 35 shown above.

TH NMR (500 MHz, THF-ds) & 7.55 — 7.49 (m, 2H), 6.96 (t, J = 8.7 Hz, 2H), 2.47 (6H, obscured
by NEt; peak), 2.43 (18H, obscured by NEt; peak), 2.07 (br, 9H), 1.87 — 1.69 (m, 18H, obscured
by THF peak), 1.51 (br, 9H).

F NMR (470 MHz, THF-ds) 6 120.5, 153.8

3IP{IH} NMR (202 MHz, THF-ds) & 41.5.
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Figure S22. ’F NMR spectrum (470 MHz, THF-ds) of 33 generated prior to addition of EtsN
and formation of 35.
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Figure S23. ’F NMR spectrum (470 MHz, THF-ds) of 35 (* = unidentified).
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Figure S24. 3'P{'H} NMR spectrum (202 MHz, THF-ds) of 35.
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Figure S25. '"H NMR spectrum (500 MHz, THF-ds) of 35 (* = unidentified).
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Figure S28. Inset of '"H-'"H NOESY/EXSY NMR spectrum (500 MHz, THF-ds) of 35.
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Attempted conversion of 35 into 4 in the absence of water. The generation of [Pd(PAd3)(4-
FCsHa4)]" BF4 (33) was adapted from a known procedure.> Pd(PAds)(4-FC¢H4)Br 1 (5.4 mg, 7.5
umol) and trifluorotoluene (internal standard, 1 pL, 8.2 umol) were dissolved in THF-ds (1.5 mL).
Separately, AgBF4(10 mg, 50 umol) was dissolved in THF-ds (1 mL). Both solutions were chilled
at -35 °C (MeOH/H2O dry ice bath). The latter solution (AgBF4, 2.5 pmol, 50 uL.) was then added
to the solution of 1 (2.5 umol, 0.5 mL) in a4 mL vial at -35 °C. The mixture (0.55 mL) was quickly
shaken, left in the cooling bath for 10 min, and transferred into an NMR tube capped with a rubber
septum. Next, pentafluoroaniline (0.1 mL from a 15 mM stock solution in THF, 15 pmol, 6 equiv),
and triethylamine (5 pL, 37.5 pmol, 15 equiv) were injected into the NMR tube sequentially at -
78 °C. The reaction mixture was shaken gently for 1 min then a 3'P{'H} NMR spectrum was
acquired at -25 °C confirming formation of 35 (77%). Finally, a solution of PAd; (2.2 mg, 5.0
umol, 2 equiv) in THF (0.1 mL) was injected into the NMR tube and the mixture was warmed to
room temperature. After 1 h, '°F and 3'P{'"H} NMR spectra were acquired that showed formation

of only a trace of 4 (4%).
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Figure S29. ’F NMR spectrum (470 MHz, THF) of 33 prior to addition of EtsN and formation
of 35.
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Figure S30. ’F NMR spectrum (470 MHz, THF) of 35 in the presence of pentafluoroaniline,

indicating the preference for coordination of Et;N to Pd.
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Rapid conversion of 35 into 32 in the presence of water. The sequential conversion of 1 (7.5
umol scale) to 33 then to 35 was repeated according to the procedure described above. Water (1
uL, 75 pmol, 10 equiv) was injected into the solution of 35 and the resulting mixture was shaken
gently for 1 min at 0 °C. A *'P{'H} spectrum (Figure S31) was then acquired at -25 °C, which

showed consumption of 35 and formation of 32 as the only new species.

32 33 3 1

‘L | 3) H20, 1 minat0 °C

2) after addition of NEts

1) after addition of AgBF4

complex 1 only

' . ' - - - T . r - - . T - - - T . f —

dp (ppm)

Figure S32. ”F NMR spectrum (470 MHz, THF) of 35 after warming to RT for 1 h (* =
unidentified).
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Figure S33. Untruncated *'P NMR spectrum of inset in Figure 7, top.
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Figure S34. Untruncated *'P NMR spectrum of inset in Figure 7, second from top.
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Figure S35. Untruncated *'P NMR spectrum of inset in Figure 7, second from bottom.
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Figure S36. Untruncated *'P NMR spectrum of inset in Figure 7, bottom.
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Kinetic studies:

General procedure for determination of the rate dependence on [4-FCgF4Br]. The method of
variable time normalization analysis (VTNA) was used to interpret kinetic data.” To an oven-dried
4 mL scintillation vial equipped with a stir bar was charged with 1-bromo-4-fluorobenzene (0.125
or 0.25 mmol), aniline (34 pL, 0.38 mmol), triethylamine (70 pL, 0.5 mmol), trifluorotoluene
(internal standard, 10 pL, 83 pumol), 1 (1.8 mg, 2.5 pmol) and toluene (0.5 mL). The vial was
capped with a puncturable PTFE-lined cap and was taken out of the glovebox. Under N
atmosphere, degassed deionized water (3 mL) was injected into the vial and the reaction mixture
was left stirring vigorously at 80 °C for 160 minutes. Aliquots (20 puL) were taken at 5, 10, 20, 40,
80, and 160 min and were quenched by dilution in CDCl; (0.6 mL) at RT in an NMR tube. The
yields were determined by '°F NMR using a quantitative, single-scan experiment (acquisition time
of 1.46 s and recycle delay time (d1) of 10 s). Both [3] vs. Z([4-F-CesF4Br]**At) and [3] vs. Z([4-
F-CsF4Br]'*At) were plotted where time (t) is in units of min, and the best overlay of data points
was found for the zeroth-order plot with respect to the dependence of the rate on [4-F-C¢F4Br]".
Note that for the reaction using 0.25 mmol 4-F-C¢F4Br, data were not plotted beyond 20 min

because yield of 3 at this time was 94%.

0.3 0.3
0.25 . 0.25 A
0.2 0.2
—_ b { A 0.250 mmol — A 0.250 mmol
° § Ee) A ArBr
o ArBr
50 © o01s
- 0.125 mmol = A 0.;25 mmol
01 ArBr 0.1 ArBr
0.05 0.05
0 &
0 &
0 5 10 15 20
0 2 4 6

Z([ArBr]°*At) 3([ArBr]™*at)

Figure S37. Variable time normalization analysis (VTNA) of reactions conducted at varying [4-
F-C6F4BI‘].
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General procedure for determination of the rate dependence on [PhINH;]. The method of
variable time normalization analysis (VTNA) was used to interpret kinetic data.” To an oven-dried
4 mL scintillation vial equipped with a stir bar was charged with 1-bromo-4-fluorobenzene (27
uL, 0.25 mmol, 1.0 equiv), aniline (0.38 mmol or 0.75 mmol), triethylamine (70 pL, 0.5 mmol),
trifluorotoluene (internal standard, 10 pL, 83 pumol), 1 (1.8 mg, 2.5 pmol) and toluene (0.5 mL).
The vial was capped with a puncturable PTFE-lined cap and was taken out of the glovebox. Under
N> atmosphere, degassed deionized water (3 mL) was injected into the vial and the reaction mixture
was left stirring vigorously at 80 °C for 160 minutes. Aliquots (20 puL) were taken at 5, 10, 20, 40,
80, and 160 minutes and were quenched by dilution into CDCl; (0.6 mL) at RT in an NMR tube.
The yields were determined by '°F NMR using a quantitative, single-scan experiment (acquisition
time of 1.46 s and recycle delay time (d1) of 10 s). Both [3] vs. Z([PhNH2]°*At) and [3] vs.
Y([PhNH:]'*At) were plotted where time (t) is in units of min, and the better overlay of data points
was found for the zeroth-order plot with respect to the dependence of the rate on [PhNH>]".
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Figure S38. Variable time normalization analysis (VINA) of reactions conducted at varying
[PhNH:].
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General procedure for determination of the rate dependence on [Et;N]. The method of
variable time normalization analysis (VTNA) was used to interpret kinetic data.” To an oven-dried
4 mL scintillation vial equipped with a stir bar was charged with 1-bromo-4-fluorobenzene (27
uL, 0.25 mmol, 1.0 equiv), aniline (34 pL, 0.38 mmol), triethylamine (0.5 mmol or 1.0 mmol),
trifluorotoluene (internal standard, 10 pL, 83 pumol), 1 (1.8 mg, 2.5 pmol) and toluene (0.5 mL).
The vial was capped with a puncturable PTFE-lined cap and was taken out of the glovebox. Under
N> atmosphere, degassed deionized water (3 mL) was injected into the vial and the reaction mixture
was left stirring vigorously at 80 °C for 160 minutes. Aliquots (20 puL) were taken at 5, 10, 20, 40,
80, and 160 minutes and were quenched by dilution into CDCl; (0.6 mL) at RT in an NMR tube.
The yields were determined by '°F NMR using a quantitative, single-scan experiment (acquisition
time of 1.46 s and recycle delay time (d1) of 10 s). Both [3] vs. X([NEt;]°*At) and [3] vs.
Y([NEt3]'*At) were plotted where time (t) is in units of min, and the better overlay of data points

was found for the zeroth-order plot with respect to the dependence of the rate on [EtsN]".
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Figure S39. Variable time normalization analysis (VINA) of reactions conducted at varying

[EtsN].
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General procedure for determination of the rate dependence on [1] by initial rates. The
method of initial rates was used. To an oven-dried 4 mL scintillation vial equipped with a stir bar
was charged with 1-bromo-4-fluorobenzene (27 pL, 0.25 mmol), aniline (34 puL, 0.375 mmol),
triethylamine (70 pL, 0.5 mmol), trifluorotoluene (internal standard, 10 pL, 83 pumol), 1 (2.5 pmol
or 5.0 umol) and toluene (0.5 mL). The vial was capped with a puncturable PTFE-lined cap and
was taken out of the glovebox. Under N, atmosphere, degassed deionized water (3 mL) was
injected into the vial and the reaction mixture was left stirring vigorously at 80 °C. Aliquots (20
uL) were taken at 2, 4, 6, 8, and 10 minutes and were quenched by dilution into CDCI3 (0.6 mL)
at RT in an NMR tube. The yields at each time were determined by '°F NMR using a quantitative,
single-scan experiment (acquisition time of 1.46 s and recycle delay time (d1) of 10 s). Data were
fit by linear regression analysis of plots of [3] vs. time at conversions of <30% yield. The

dependence of the initial rate on [1] was calculated according to the following equations:

[Pd],\" _ (slope 2
([Pd]1> B (slope 1)

0.028
x = _—
) <0.015)
x =0.90

0.9 order in Pd

0.16 y =0.028x - 0.002
R*=0.999

g 01 A
“
£ 0.08 " y=0.015x +0.003 A 1mol% Pd

A 2 = 8
0.06 L 2 mol% Pd

0 5 10

time (min)

Figure S40. Initial rates during reactions conducted with either 2.5 umol or 5.0 umol of catalyst
1.
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General procedure for determination of the rate dependence on [Pd] by VINA. The method
of variable time normalization analysis (VINA) was used to interpret kinetic data. To an oven-
dried 4 mL scintillation vial equipped with a stir bar was charged with 1-bromo-4-fluorobenzene
(27 pL, 0.25 mmol, 1.0 equiv), aniline (34 pL, 0.38 mmol), triethylamine (70 pL, 0.5 mmol),
trifluorotoluene (internal standard, 10 puL, 83 umol), 1 (2.5 umol or 7.5 pumol) and toluene (0.5
mL). The vial was capped with a puncturable PTFE-lined cap and was taken out of the glovebox.
Under N> atmosphere, degassed deionized water (3 mL) was injected into the vial and the reaction
mixture was left stirring vigorously at 80 °C for 160 minutes. Aliquots (20 uL) were taken at 5,
10, 20, 40, 80, and 160 minutes and were quenched by dilution into CDCI3 (0.6 mL) at RT in an
NMR tube. The yields were determined by '°F NMR using a quantitative, single-scan experiment
(acquisition time of 1.46 s and recycle delay time (d1) of 10 s). Both [3] vs. [Pd]o"**t and [3] vs.
[Pd]o**t were plotted where time (t) is in units of min, and the better overlay of data points was

found for the 0.9 order plot with respect to the dependence of the rate on [Pd]".
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Figure S41. Variable time normalization analysis (VITNA) of reactions conducted with either 2.5
umol or 5.0 umol of catalyst 1.
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Linear free-energy relationship (LFER) studies with respect to para-substituted anilines.
Five parallel reactions were performed using a para-substituted aniline (p-R-CsHsNHz; R = MeO,
Me, H, CF3, or NO2). To an oven-dried 4 mL scintillation vial equipped with a stir bar was charged
with 1-bromo-4-fluorobenzene (27 puL, 0.25 mmol, 1.0 equiv), aniline (0.38 mmol), triethylamine
(70 uL, 0.5 mmol), trifluorotoluene (internal standard, 10 pL, 83 pmol), 1 (1.8 mg, 2.5 umol, 1
mol %), and toluene (0.5 mL). The vial was capped with a puncturable PTFE-lined cap and was
taken out of the glovebox. Under N, atmosphere, degassed deionized water (3 mL) was injected
into the vial and the reaction mixture was left stirring vigorously at 80 °C. Aliquots (20 puL) were
taken at 2, 4, 6, 8, and 10 minutes and were quenched by dilution into CDCl; (0.6 mL) at RT in an
NMR tube. The yields at each time were determined by '°F NMR using a quantitative, single-scan
experiment (acquisition time of 1.46 s and recycle delay time (d1) of 10 s). Data were fit by linear
regression analysis of plots of [product] vs. time at conversions of <30% yield.>® A Hammett
analysis was performed using the initial rates and corresponding substituent constants (op).” A p

value of +0.3 was determined from the slope of this plot.
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Figure S42. Determination of the initial rate of reactions between 4-FCsH4Br and a para-
subsituted aniline under the conditions noted above.
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LFER plot for aniline
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Figure S43. Hammett plot determined from initial rates of reactions between 4-FCsH4Br and a
para-subsituted aniline under the conditions noted above.

C¢HsND:. To a 20 mL scintillation vial equipped with a stir bar was charged with aniline (0.5 mL,
5.5 mmol), D>O (5.0 mL, 0.28 mol, 51 equiv), and DCM (2 mL). The mixture was stirred at room
temperature for 3 min. The organic layer was extracted with DCM and washed with D>O (3 mL x
2), dried over sodium sulfate, and concentrated under reduced pressure. '"H NMR taken in CDCl;3

indicated the absence of NH> resonances.
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Figure S44. 'H NMR spectrum (500 MHz, CDCl3) of CsHsND..
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Kinetic isotope effect (KIE) experiments. To an oven-dried 4 mL scintillation vial equipped with
a stir bar was charged with 1-bromo-4-fluorobenzene (27 pL, 0.25 mmol, 1.0 equiv), CcHsNH>
(0.38 mmol), triethylamine (70 pL, 0.5 mmol), trifluorotoluene (internal standard, 10 pL, 83
umol), 1 (1.8 mg, 2.5 pmol, 1 mol %), and toluene (0.5 mL). The vial was capped with a
puncturable PTFE-lined cap and was taken out of the glovebox. Under N> atmosphere, degassed
deionized water (3 mL) was injected into the vial and the reaction mixture was left stirring
vigorously at 80 °C. Aliquots (20 uL) were taken at 2, 4, 6, 8, and 10 minutes and were quenched
by dilution into CDCIl; (0.6 mL) at RT in an NMR tube. The yields at each time were determined
by 'F NMR using a quantitative, single-scan experiment (acquisition time of 1.46 s and recycle
delay time (d1) of 10 s). Data were fit by linear regression analysis of plots of [3] vs. time at
conversions of <30% yield. The experiment and data analysis were repeated with substitution of

CsHsND» for CsHsNH> and D>O for H>O. The KIE was calculated according to the equation:

B kH_ 0.154_
kp 0.127
0.18
0.16 y = 0.0154x + 0.0029 .
R2=0.9978 .-
0.14
0.12 Lk
=y A aniline-H2
13, o A and H20
8 0.08
0.06 LA y =0.0127x - 0.0019 aniline-D2
- R? = 0.9984 and D20
0.04 &
0.02 e
0 &
0 5 10
time (min)

Figure S45. Plot of product (3) formation versus time during reacitons with aniline isotopologues.
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Kinetic simulations. A rate law was derived for the catalytic cycle below involving the proposed

formation of off-cycle species C:D (e.g., 34).

A
-P + ArX
ky
K A = Pd(0)
"
+‘”&er B = Pd(ANX
CDhD — D B C = Pd(Ar)OH
D = Pd(Ar)NHR
l<_1[H20] product = P
+ NEt
k,[amine] 3
c +H,0
— (HNEt,)Br

Expressions for [C] (eq S1) and [C:D] (eq S2) using the steady-state approximation:

IOV _ K [Cllarmine] - k_,[H,0lID] - kD] = 0
ot
k .[H,O] + k
cl- (W)“’l (SD)
A . CIDI—k, _[CDI=0
ot ~ “dimer! —dimer -
[C-D] =K, __ [CI[D] (52)

An expression for the mass balance of kinetically relevant catalyst species, stipulating that [A] and
[B] are approximately zero based on kinetic data in Figures S38 and S40:

[Pd]._ . = [C]+[D] + 2[C-D] (S3)

total —

Combining eqs S1 and S2 with eq S3 gives:

k_.[H,O] + k Kk TH.Ol + k
[Pdlgral = <ﬁ>[m +[D1+ 2K, <%> D2
1 J[amine 4
The expression for the rate of product formation is given in eq S5:
d[P]
- = kz [D]
dt 5
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Substituting for [D], which was determined by quadratic factoring of eq S4,'° in eq S5 gives:

r= 2k {Pd], .. hore =<mwgm+@>
(1+ 0+ {1+ 12 + 8K o F[Pd] )2

k,[amine]

dimer 'total

(56)

a) b)
Kaimer = 2.5 x 102
ki=2x104s" [amine]=1.0M ki =2 x 10-4s™! [amine]=1.0M
kilH,0] = 5 x 10-5s7! f=0.75 ki[H,0] = 5 x 10557 f=0.75
ka=1x104s" (1+H=175 ky=1x104s" (1+H=175
-5 l 5
A Kaimer =25 x 100; y = 0.99x - 4.26
625 ? Keimer = 2.5 % 107 ; y = 0.95x - 4.39 -6.25
% ‘ mer = 2.5 x 102;y = 0.81x — 4.87 16 ® nochange ;y=0.81x-4.87
g " 88M\ Kdme =25x10%;y=064x-557 < .75 ¢ ¥ 0 10xk iy =0.90x-4.33
2 g oo ‘\ Kimer = 2.5 x 105; y = 0.52x - 6.76 g V 10 x k4[H;0] ;y = 0.83x - 5.16
-8.75 x x XX ‘ mer = 2.5 X 106y = 0.50x — 7.28 -8.75 O 10k 1y =0.85x-4.26
-10 10 |
4 35 3 25 -2 A5 4 35 3 25 2 15
log (Pd}otal) log (Pd}otal)

Figure S46. Kinetic simulations to determine the change in catalyst order from (a) variation of
Klimer, or (b) variation of other elementary rate constants by 10x at fixed Kgimer = 2.5 x 102,

Simulated kinetic data were calculated using eq S6. Values for elementary rate constants were
selected arbitrarily with relative magnitudes estimated to be k> < k1 >> k-1 based on the results of
stoichiometric reactions. The order in catalyst was determined by the slope of linear regression
analysis of calculated plots of log(rate) versus log([PdJww shown in Figure S48a. The
experimentally determined value for the order in catalyst of 0.9 is thus consistent with the predicted
fractional values for [Pd]wtl at moderate values of Kaimer. Adjusting the arbitrary elementary rate
constant values (Figure S48b) does influence the calculated catalyst order but to a lesser extent
than a comparable change to the dimerization equilibrium at moderate values of Kdimer (€.g., Kdimer
= 10°-10%). These data also suggest catalyst orders approaching the upper boundary of 1 can occur
even when the off-cycle mixed dimer C-D (i.e., 34) is thermodynamically favored (e.g., Kdimer =

2.5-25).
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(D)) = P
APt (87)
f[D]
2(C) = AL
(LS (S8)
_ 2Kdimer [CID]
2(C-D]) = o
[Pl (S9)
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ky=2x104s"" [amine] = 1.0 M ki =2x104s" [amine] = 1.0 M ky=2x104s" [amine] = 1.0 M
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o6 o6 \ -
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Figure S47. Simulations of catalyst speciation between C, C-D (normalized, 2% versus C or D),
and D at different Kaimer values and the specified elementary rate constants as using eqs S7—S9.

Data shown in Figure S49 illustrate the relative mol fraction () of catalytic intermediates at
different catalyst loadings and different values of Kgimer. The possibility for the off-cycle aggregate
C-D to comprise a significant or even major propotion of the total Pd mass balance is apparent
even when the catalyst order falls toward the upper boundary (e.g., Kdimer = 2.5 x 10?), which
supports C-D as a reasonable resting state species under catalytic conditions giving rise to an

experimental order in [1] of 0.9.
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Test for byproduct inhibition. To a 100 mL 2-piece EasyMax vessel fitted with reflux condenser,
pitched blade impeller, nitrogen inlet, and EasySampler probe (Note: Easysampler is fitted with
the following solvent lines and reagents: Reaction = degassed H>O; Quench = acetone, non-
degassed; Diluent = 2:1 MeCN:H>O, non-degassed; 450x dilution) was charged 4-bromo-1,1'-
biphenyl (4.16 g, 17.5 mmol, 98% purity), 4-nitroaniline (3.70 g, 26.3 mmol, 1.5 equiv, 98%
purity) with or without triethylammonium bromide (1.626 g, 8.75 mmol, 0.5 equiv, 98% purity).
The vessel was sealed and purged with N for at least 10 minutes. Degassed H,O (70 mL), toluene
(15 mL, commercially available anhydrous solvent from Millipore Sigma), and degassed
triethylamine (4.93 mL, 35.0 mmol, 2 equiv, 99% purity) were charged to the reactor via syringe
(inert handling) with agitation set at 800 RPM. The reactor mixture was then heated to an internal
temperature of 60 °C. To a 4 mL vial with PTFE septum and magnetic stir bar was charged
complex 1 (63 mg, 0.088 mmol, 0.5 mol %). The vial was then inerted with N», and toluene (2.5
mL) was charged via syringe (inert handling). The slurry was allowed to stir and age (~5 min)
whereupon it was charged to the reactor via syringe (inert handling). The syringe was rinsed with
the reactor contents (2x’s) and sampling was initiated using the Easysampler.
.,

H
Br NH, 1 (0.5 mol%) /©/N
+ >
ph/©/ o N/©/ HNEt;*Br~ (X mol%) Ph

2

2

Et;N (2 equiv)
toluene, H,O (1:4) 2
60 °C
100 5 0—0—0—
o o | |
]
. o "
9 75 o T
~ (o) -
s o O X=0
g 50 t © -
5 = B X=50
E Onm
8 25 'o.
o
0 =

0 60 120 180 240
Time (min)
Figure S48. Reaction profile for formation of 2 from 4-bromobiphenyl in the presence or absence

of added (HNEt3)"Br (50 mol %) under conditions of general procedure A, expect with 0.5 mol
% catalyst at 60 °C to modulate the rate for ease of data sampling.

The modest inhibitory effect of the rate with added exogenous bromide could indicate reversibility
in the ionization equilibrium converting (AdsP)Pd(Ar)X (X = Br, Cl) intermediates to
[(Ad3P)Pd(Ar)(OH>)]" species in the proposed catalytic mechanism. However, exogenous halide
salts may also induce inhibitory effects during catalysis due to other potential effects on catalyst
speciation between active and inactive states. For leading references on this topic, see ref. 11.
Either rationalization seems plausible and further study required to differentiate unambiguously.
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Figure S49. 'H NMR (500 MHz, DMSO-ds) of 2.
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Figure S64. 'H NMR (500 MHz, CDCI3) of 9.
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Figure S65. °C NMR (126 MHz, CDCl;) of 9.
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Figure S70. °C NMR (126 MHz, CDCl;) of 11.
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Figure S71. 'H NMR (500 MHz, CDCI;3) of 12.
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Figure S100. '"H NMR (500 MHz, CDCI;3) of 26.
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Figure S111. ’F NMR (282 MHz, CDCl3) of 30.
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