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SUMMARY
In this study, we incorporate analyses of genome-wide sequence and structural alterations with pre- and on-
therapy transcriptomic and T cell repertoire features in immunotherapy-naive melanoma patients treated
with immune checkpoint blockade. Although tumor mutation burden is associated with improved treatment
response, themutation frequency in expressed genes is superior in predicting outcome. Increased T cell den-
sity in baseline tumors and dynamic changes in regression or expansion of the T cell repertoire during therapy
distinguish responders from non-responders. Transcriptome analyses reveal an increased abundance of
B cell subsets in tumors from responders and patterns of molecular response related to expressed mutation
elimination or retention that reflect clinical outcome. High-dimensional genomic, transcriptomic, and immune
repertoire datawere integrated into amulti-modal predictor of response. These findings identify genomic and
transcriptomic characteristics of tumors and immune cells that predict response to immune checkpoint
blockade and highlight the importance of pre-existing T and B cell immunity in therapeutic outcomes.
INTRODUCTION

Cutaneous melanoma, often induced by the carcinogen ultravi-

olet (UV) radiation, bears a high tumor mutation burden (TMB),

and advanced metastatic disease responds to first-line

anti-PD-1 therapy administered alone or combined with anti-

CTLA-4 at rates of 44% and 58%, respectively.1,2 A higher

mutation and neoantigen load3–6 and a lower degree of tumor

aneuploidy7 have been linked with clinical benefit from immune

checkpoint blockade for patients with melanoma. Tumor-

intrinsic features, such as JAK1/JAK2 mutations,8 PTEN loss,9

neoantigen loss,10 antigen presentation deficiency,11 WNT/

b-catenin signaling,12,13 and interferon-ɣ signaling,14 affect the

recruitment and activation of T cells to the tumor microenviron-

ment and may therefore mold the anti-tumor immune response.

In addition to intrinsic tumor characteristics, the composition of

the tumor microenvironment has been shown to influence
Cell Repor
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response and resistance to immune checkpoint blockade.15

T cell states determined by deconvolution of bulk RNA

sequencing data16 or single-cell approaches17 have been linked

to anti-tumor immunity, underlying the multifaceted mecha-

nisms of therapeutic response and resistance.

The complex crosstalk between tumor and immune cells dur-

ing immune checkpoint blockade highlights the unmet need for

development of integratedmodels for interpreting anti-tumor im-

mune responses and predicting clinical outcome. Emerging data

on nuanced genomic features18–20 and the variable quality of the

anti-tumor immune response in the setting of immunotherapy21

highlight this clinical need for developing molecular platforms

that capture the complexities of the cancer-immune system

crosstalk. Furthermore, although pre-existing and on-treatment

T cell infiltration has been shown to associate with response to

immune checkpoint blockade in melanoma,15,21 data are only

beginning to emerge on the potential contribution of B cell
ts Medicine 1, 100139, November 17, 2020 ª 2020 The Authors. 1
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subsets to anti-tumor immune responses.22–25 Intratumoral B

cell infiltration, especially in the context of tertiary lymphoid

structures, has been associated with improved response to

immune checkpoint blockade in metastatic melanoma.24,25 In

this study, we have combined comprehensive genomic, tran-

scriptomic, and immune cell repertoire analyses to gain insight

into the dynamic interplay between cancer and immune cells

during immune checkpoint blockade in melanoma.

RESULTS

Overall Approach, Cohort Characteristics, and
Response Assessment
We performed comprehensive genomic and transcriptomic

tumor analyses in conjunction with T cell repertoire analyses

for 64 melanoma patients treated with immune checkpoint

blockade as part of the CheckMate-038 clinical trial

(NCT01621490; Figure S1; Table S1A). The purpose of Check-

mate-038 was to investigate the mechanism of action of nivolu-

mab and nivolumab in combination with ipilimumab, including its

ability to modulate immune function and to overcome tumor

escape, in subjects with advanced melanoma. Objective

response was defined as complete or partial response based

on RECIST 1.1 radiographic assessments. To explore the

genomic landscape of these tumors, we performed whole-

exome sequencing (WES) of matched tumor-normal pairs and

utilized transcriptome analyses (RNA sequencing [RNA-seq])

and T cell receptor (TCR) sequencing (TCR-seq) to assess base-

line and on-treatment immune repertoire composition (STAR

Methods; Figure S1). The clinical outcomes of radiographic

best overall response (BOR) by radiology review, progression-

free survival (PFS), and overall survival (OS) were correlated

with WES, TCR-seq, and RNA-seq data.

Genomic Determinants of Clinical Outcome
Tumors from responding patients harbored a higher TMB than

those that did not respond to therapy (false discovery rate

[FDR]-adjusted p = 0.0048; Table 1); however, there was a

substantial overlap in TMB values of baseline tumors among

responders and non-responders (Figure 1). Tumors from re-

sponders harbored a higher number of mutations independent

of the type or functional consequence of sequence alterations

(FDR-adjusted p = 0.0048), and these findings were more pro-

nounced in the ipilimumab/nivolumab treatment group (FDR-

adjusted p = 0.0013; Table 1). Tumors of responding patients

harbored a higher clonal mutation fraction, which was more

prominent in the ipilimumab/nivolumab group (FDR-adjusted

p = 0.0037 and p = 0.0013 for all patients and patients receiving

ipilimumab/nivolumab, respectively). Additionally, major histo-

compatibility complex (MHC) class I and II mutation-associated

neoantigens computationally derived from non-synonymous

mutations revealed that MHC class I and MHC class II neoanti-

gen load was significantly higher in tumors from responding

patients (Table 1). TMB predicted PFS, but not OS, for both ipi-

limumab/nivolumab- and nivolumab-treated patients (Figure S2).

Consistent with the notion that an increased number of somatic

mutations inmelanoma are related to UV exposure, we observed

that a UV-related mutation signature was more prominent in tu-
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mors from responding patients, especially in the ipilimumab/

nivolumab group (FDR-adjusted p = 0.03 and p = 0.0096,

respectively; Table 1). As only expressed neoantigens could

potentially be presented and induce the priming and activation

of neoantigen-specific T cells, we evaluated the expression of

transcripts containing single base substitutions that we had

identified through whole-exome analyses (Tables S1B and

S1C). Interestingly, whole-exome sequence data combined

with transcriptome data revealed that the mutation frequency

in expressed genes (expressed mutation burden) more accu-

rately predicted OS than TMB alone (Figure S2).

We subsequently sought to identify genomic alterations in

driver genes and pathways that may be selectively associated

with therapeutic response or resistance after adjusting for TMB

(Tables S1B and S1D). We did not identify any differences in

sequence alterations in driver genes among tumors from re-

sponding versus non-responding patients (Figure 1). Low-den-

sity lipoprotein (LDL)-receptor-related protein 1B (LRP1B) and

eyes shut homolog (EYS) genes appeared to be differentially

mutated in responders; however, these genes span 13,891 bp

and 9,653 bp, respectively, and therefore, the higher frequency

of sequence alterations observed is most likely a reflection of

the expected number of passenger mutations in these genes

rather than driver events (Table S1D). There was a non-signifi-

cant trend in enrichment of ERBB4 and ANK3 mutations in

tumors of responders, likely reflecting TMB-high tumors (TMB-

adjusted p = 0.133 and p = 0.058, respectively; Table S1D).

We subsequently assessed enrichment or mutual exclusivity of

genomic alterations in oncogenic pathways, including DNA

damage repair genes, chromatin-regulating genes, and the

Wnt and phosphatidylinositol 3-kinase (PI3K)/AKT/PTEN path-

ways, but we did not identify differential mutation clustering in re-

sponders versus non-responders. As an example, we identified

a case of a radiographic responder with disproportionally short

overall survival whose tumor harbored biallelic inactivation of

PTEN (patient 40002) but also a patient treated with nivolumab

monotherapy (patient 30050) who achieved a long progres-

sion-free and overall survival (24-month PFS and OS) despite

harboring a homozygous deletion in PTEN (Figures 1 and S3).

These findings suggest that PI3K-AKT pathway activation is

not always linked with inferior outcomes to immune checkpoint

blockade. We considered the Ras/mitogen-activated protein ki-

nase (MAPK) pathway in particular, given the high frequency of

BRAF mutations in cutaneous melanoma as well as the poten-

tially immunosuppressive role of the MAPK pathway;26 however,

no differences were noted when either all mutations or hotspot

mutations were considered (Figure S3). Additionally, although a

potential association of mutant BRAF with improved overall

survival in patients receiving combination PD-1 and CTLA-4

blockade compared to anti-PD-1 monotherapy has been re-

ported,27 we did not identify differential clinical outcomes based

on BRAF mutation status in our study (Figure 1).These data

are consistent with previous findings in melanoma that BRAF

V600E/Kmutations do not predict response to nivolumabmono-

therapy or ipilimumab/nivolumab combination therapy.1

Analyses of copy number changes revealed recurring copy

number alterations in a group of genes residing on 11q14.1,

and this locus was found to be co-amplified with CCND1 in a



Table 1. Differential Enrichment Analysis for Genomic, Transcriptomic, and TCR Features for All Patients and Patients in the

Ipilimumab/Nivolumab Arm

All Patients Patients in the Ipilimumab/Nivolumab Arm

Feature

NR

(Count) R (Count)

Mean

Value (NR)

Mean

Value (R) FDR

NR

(Count) R (Count)

Mean

Value (NR)

Mean

Value (R) FDR

Genomic Features

TMB 20 25 227 694 0.0048 15 21 172 768 0.0013

SBS 20 25 223 684 0.0048 15 21 168 758 0.0013

Indels 20 25 4 10 0.0376 15 21 3 10 0.0125

Non-synonymous 20 25 200 622 0.0048 15 21 151 688 0.0013

Nonsense mutations 20 25 14 37 0.0059 15 21 10 41 0.0026

Splice site mutations 20 25 11 28 0.0133 15 21 8 32 0.0026

Frameshift mutations 20 25 2 6 0.0288 15 21 2 6 0.0096

Clonal mutations 18 24 173 666 0.0037 14 20 160 745 0.0013

Clonal mutations (%) 18 24 0.92 0.96 0.0048 14 20 0.92 0.97 0.0054

UV mutation signature (%) 20 25 0.41 0.64 0.0313 15 21 0.35 0.66 0.0096

Candidate MANAs (I) 20 25 146 433 0.0048 15 21 107 479 0.0013

Expressed MANAs (I) 20 25 106 300 0.0057 15 21 78 331 0.0013

Immunogenic MANAs (II) 20 25 4,218 14,700 0.0016 15 21 3,264 16,1734 0.0013

Tumor Aneuploidy Features

Estimated ploidy 18 24 2.52 2.90 0.1851 14 20 2.60 3.01 0.2249

Allelic imbalance (%) 18 25 0.23 0.17 0.1912 14 21 0.23 0.16 0.3303

CN entropy 18 24 1.41 1.50 0.9012 14 20 1.43 1.55 0.7770

HLA class I alleles 19 25 5 5 0.9012 14 21 5 5 0.7770

TCR Features

TCR rearrangements 23 25 5,137 8,308 0.0018 15 20 4,939 8,338 0.0089

TCR productive clonality 23 25 0.11 0.15 0.0865 15 20 0.12 0.16 0.0765

Transcriptomic Features

Expressed SBS 18 23 67 150 0.0124 13 19 53 166 0.0040

Ig rearrangements 18 23 2 7 0.0016 13 19 2 8 0.0016

TIGIT expression (TPM) 18 23 2.35 11.80 0.0007 13 19 1.67 12.47 0.0016

PDL1 expression (TPM) 18 23 3.70 14.16 0.0007 13 19 2.67 15.46 0.0011

LAG3 expression (TPM) 18 23 3.24 15.95 0.0016 13 19 2.54 17.64 0.0016

PD1 expression (TPM) 18 23 1.12 4.24 0.0016 13 19 0.55 4.45 0.0016

LCA expression (TPM) 18 23 24.04 72.60 0.0016 13 19 19.35 79.94 0.0018

CTLA4 expression (TPM) 18 23 4.60 6.56 0.0189 13 19 3.58 7.09 0.0061

Differences in genomic, tumor aneuploidy, transcriptomic, and TCR features were assessed by the Mann-Whitney test, p values were corrected using

the Benjamini-Hochberg procedure, and the associated false discovery rate (FDR) values were calculated. Candidate mutation-associated neoanti-

gens with a predicted MHC class I affinity of <500 nM were included in the analyses. Candidate mutation-associated neoantigens with a predicted

MHC class II affinity of <500 nM and a differential agretopic index >2 were considered immunogenic (see STARMethods). Patients in the single-agent

nivolumab arm are not shown, as the small sample size (n = 12) precluded firm statistical analyses and comparisons between responders and non-

responders for this arm. CN, copy number; FDR, false discovery rate; HLA, human leukocyte antigen; Ig, immunoglobulin; MANA,mutation-associated

neoantigen; NR, non-responder; R, responder; SBS, single base substitution; TCR, T cell receptor; TMB, tumor mutation burden; TPM, transcripts per

million.
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fraction of cases (Figure 1; Table S1E). The AAMDC, CLNS1A,

INTS4, KCTD14, NDUFC2, NDUFC2-KCTD14, RSF1, and

THRSP loci were found to be co-amplified in melanomas from

five non-responders but in none from responders, with a trend

toward significance after FDR correction (Fisher’s exact p =

0.013; FDR-adjusted p = 0.094; Figure 1; Table S1D). The locus

contains RSF1, a chromatin-regulating gene required for nucle-

osomal assembly, and amplifications of RSF1 may lead to a
more ‘‘closed’’ chromatin state,28 decreased transcription, and

potentially a lower number of expressed mutation-associated

neoantigens. We further assessed whether the amplification re-

sulted in increased gene expression and found that the AAMDC,

CLNS1A, INTS4, NDUFC2, and RSF1 genes were overex-

pressed in all five tumors that harbored an amplification (Fig-

ure S4). To systematically assess the impact of chromosomal

imbalances, we performed genome-wide copy number analyses
Cell Reports Medicine 1, 100139, November 17, 2020 3



Figure 1. Tumor Genomic Features Associated with Clinical Benefit

Tumors of responding patients had a higher total and clonal TMB compared to non-responders (FDR-adjusted p = 0.0048 and p = 0.0037, respectively). Overall, a

higher number of single-base substitutions and indels were found in tumors of responders, which was largely driven by their higher TMB. A UV-related mutational

signature was found to be enriched in tumors of responders for all patients and patients in the ipilimumab/nivolumab group (FDR-adjusted p = 0.03 and

p = 0.0096, respectively). Following an exome-wide unbiased approach, we investigated potential differential abundance of sequence alterations in tumors of

responding patients. LRP1B and EYS mutations appeared to accumulate in tumors of responding patients (FDR p = 0.058 for both genes and TMB-adjusted

p = 0.036 and p = 0.025 for LRP1B and EYS, respectively), most likely due to the expected larger number of passenger mutations in larger DNA regions. There was

a non-significant trend in enrichment of ERBB4 mutations in tumors of responders, likely reflecting TMB-high tumors (TMB-adjusted p = 0.133). There were no

(legend continued on next page)
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coupled with tumor purity correction (STARMethods; Table S1F)

and found a trend toward a higher level of aneuploidy in tumors

from non-responders (Figure 1). A similar trend was observed in

survival analyses such that patients with highly aneuploid tumors

had worse PFS and OS, especially in the ipilimumab/nivolumab

treatment group (Figure S5). There was no difference in the num-

ber of somatic rearrangements as determined by transcriptome

analyses between tumors from responding versus non-respond-

ing patients (Mann Whitney p = 0.62).

Antigen PresentationMachinery Variation Is Linkedwith
Therapeutic Response
Given the role of antigen presentation diversity in shaping anti-

tumor immunity,29 we analyzed germline and tumor-specific

HLA class I and class II genomic variation leveraging whole-

exome sequencing from baseline tumors (Table S1G). HLA class

I germline zygosity and somatic HLA class I loss of heterozygos-

ity (LOH) events were combined to determine the number of

unique HLA class I alleles in tumor cells (Figure 2A). Although

HLA class I genetic diversity (germline or somatic) did not appear

to correlate with response to immune checkpoint blockade in

this cohort, patients with maximal germline heterozygosity for

HLA class II had a significantly longer progression-free survival

(log rank p = 0.043; Figure 2B). Loss of heterozygosity in HLA

class II loci did not appear to correlate with clinical outcome

(log rank p = 0.753), suggesting that loss of heterozygosity of

the somatic HLA class II loci may not be indicative of an impaired

potential to elicit a CD4+ T cell response. Homozygosity at the

HLA-DP, and particularly in the HLA-DPB1 locus was associated

with significantly longer PFS (log rank p = 0.007 and log rank

p = 0.005, respectively; Figures 2C and 2D). The b2-microglobu-

lin locus frequently underwent monoallelic loss; however, we did

not detect an enrichment in concurrent inactivating mutations in

tumors from non-responding patients, suggesting that b2-micro-

globulin inactivation was an infrequent mechanism of immune

evasion in this cohort (Figure 2A). There was a trend toward an

anti-correlation between tumor antigen presentation capacity,

as determined by the number of distinct HLA class I alleles in

the tumor, and TMB (Spearman rho =�0.224, p = 0.14 for all pa-

tients and rho = �0.349, p = 0.088 in responders), suggesting

that tumors with increased TMB may overcome the evolutionary

disadvantage of being more visible to the immune system

through HLA loss and diminished neoantigen presentation.19

Interestingly, a higher expression of all HLA class I and II mole-

cules was noted in baseline tumors from responding patients

(Mann-Whitney p = 0.00032 and p = 0.014, respectively), likely

reflecting a higher pre-existing lymphocytic intratumoral infiltra-

tion of responding tumors (post-leukocyte common antigen

[LCA] expression normalization p = 0.29 for HLA-A, B, and C al-

leles; Figure S6). Similarly, b2-microglobulin expression was
differences in the abundance of BRAF and NF1 mutations between tumors o

NDUFC2,NDUFC2-KCTD14,RSF1, and THRSP loci on chromosome 11q14.1 we

0.094). Genome-wide copy number analyses revealed a trend toward increased

the genome with complete allelic imbalance; FDR-adjusted p = 0.19). AI, allelic i

mutation consequence; CR, complete response; OS, overall survival; PD, diseas

disease. Dots represent hotspot mutations, and X denotes monoallelic loss of th
significantly decreased in non-responders independent of bial-

lelic inactivation in the tumor (Mann Whitney p = 0.014), poten-

tially suggesting that the differences in expression are primarily

driven by immune cell content in the tumor microenvironment

rather than cancer cells (Figure 2A).

Baseline T Cell Features and On-Therapy Dynamics
Reflect Clinical Response to Immune Checkpoint
Blockade
To assess the T cell repertoire in tumors with differential re-

sponses to immune checkpoint blockade, we performed TCR

sequencing of baseline and on-therapy tumor-infiltrating lym-

phocytes (see STAR Methods and Table S1H). These analyses

revealed a significantly higher number of unique TCR clones at

baseline, signifying an increased density of pre-existing T cells

in tumors from responders (FDR p = 0.0018 and p = 0.009 for

all patients and patients in the ipilimumab/nivolumab treatment

group, respectively; Tables 1 and S1I; Figure 3A). A trend toward

a more clonal TCR repertoire was noted in tumors of responding

patients (FDR p = 0.09 for all patients and p = 0.08 for the ipilimu-

mab/nivolumab group; Table 1). Patients with highly infiltrated

tumors, denoted by a high number of productive TCR rearrange-

ments, had a significantly longer PFS (log rank p = 0.007 and p =

0.005 for all patients and patients in the ipilimumab/nivolumab

group, respectively; Figure S5). Baseline intratumoral TCR clo-

notypic density was associated with relative abundance of

T cell transcriptional profiles, consistent with both CD8+

(Spearman rho = 0.606; FDR p = 0.0014) and memory CD4+

(Spearman rho = 0.67; FDR p = 0.0001) phenotypes independent

of response to therapy (Tables S1J and S1K).

Importantly, in the on-treatment tumors from responding pa-

tients, there was evidence of T cell repertoire changes toward

higher clonality (FDR p = 0.02 for all patients and p = 0.015 for

patients in the ipilimumab/nivolumab group; Table S1I). Paired

analyses of TCR sequencing of baseline and on-treatment

tumors from individual patients revealed that clonotypic dyna-

mism (expansions and regressions of TCR clones) were a hall-

mark of responding patients (Figure 3B). Of note, the fraction

of expanding TCR clones significantly correlated with the relative

abundance of CD8+ T cells derived from expression data

(Spearman rho = 0.52; FDR p = 0.04). These dynamic shifts in

the T cell repertoire were reflective of clinical outcome (Figures

3B–3D) such that the fraction of expanding and regressing

TCR clones was significantly higher in responders compared

to non-responders (FDR p = 0.02 for all patients and p = 0.04

for patients in the ipilimumab/nivolumab group; Table S1I). As

CD8+ T cells are functionally rewired to exhausted T cells in an

immunosuppressive tumor microenvironment and can be re-

invigorated by immune checkpoint blockade,30,31 we investi-

gated whether a T cell exhaustion transcriptional program was
f responders and non-responders. The AAMDC, CLNS1A, INTS4, KCTD14,

re found to be co-amplified in five tumors of non-responders (FDR-adjusted p =

tumor aneuploidy in tumors of non-responding patients (denoted by fraction of

mbalance; BOR, best overall response; CNV, copy number variation; Conseq,

e progression; PR, partial response; SBS, single-base substitution; SD, stable

e wild-type allele.

Cell Reports Medicine 1, 100139, November 17, 2020 5



Figure 2. Antigen Presentation Genomic Diversity and Expression Is Associated with Response to Immune Checkpoint Blockade

(A) There were no differences in the number of germline HLA class I alleles or the degree in homozygosity found between responders and non-responders. HLA

class I germline zygosity and somatic HLA class I LOH were combined to calculate the unique number of HLA class I alleles in tumor cells. The b2-microglobulin

locus frequently underwent monoallelic loss, but there was no evidence pointing to an enrichment in concurrent inactivating mutations in tumors from non-

responder patients. HLA class I and II as well as b2-microglobulin expression was significantly higher in tumors from responding patients.

(B) HLA class II genotypes for DPA1, DPB1, DQA1, DQB1, and DRB1 were derived from whole-exome sequence data. Patients with maximal heterozygosity for

HLA class II (HLA class II alleles = 10) had a significantly longer progression-free survival (log rank p = 0.043).

(C and D) Patients heterozygous at the HLA-PD locus and more specifically at the HLA-DPB1 locus had a significantly longer progression-free survival (log rank

p = 0.007 and p = 0.005, respectively).

Article
ll

OPEN ACCESS
prominent in baseline tumors of responding patients. Interest-

ingly, we found a significant difference in expression of the

high-mobility group (HMG)-box transcription factor TOX be-

tween responding and non-responding tumors (Mann Whitney

p = 0.0007; Figure S7). This finding supports the notion that

CD8+ T cell exhaustion, identified here through TOX expression,

may be reversible and result in a therapeutic effect for immune

checkpoint blockade.

Differential B Cell Infiltration Is Linked to Therapeutic
Response to ImmuneCheckpoint Blockade inMelanoma
Although T cell activation and their epigenetic/functional state

has been shown to be essential for controlling anti-tumor im-

mune responses,31 there is limited evidence to date for a role

of tumor-associated B cells.22–25 Through analyses of gene

fusions using transcriptome data, we identified a higher number

of rearrangements involving the immunoglobulin genes in base-

line tumors from responders compared to non-responders (FDR-

adjusted p = 0.0016; Figure 4A; Tables 1 and S1L), suggesting a

greater and potentially more diverse infiltration of B cells. To

further investigate this finding, we examined the relative abun-
6 Cell Reports Medicine 1, 100139, November 17, 2020
dance of transcripts from RNA-seq analyses to computationally

characterize the extent of immune cell infiltration and infiltrate

composition of baseline tumors.32 Consistent with the rear-

rangement analysis, we found an enrichment in tumor-associ-

ated B cells in baseline tumors of patients with a clinical

response (Figures 4B–4E), suggesting that pre-existing B cell

infiltration correlates with therapeutic response. Interestingly,

the relative abundance of both naive B cells and plasma cells

at baseline were significantly higher in responders (Figures 4B,

4D, and 4E) and correlated with the number of productive TCR

clonotypes (Spearman rho = 0.472; FDR p = 0.04; Table S1J),

suggesting the possibility that these immune cell subsets may

interact to generate an effective immune response in the setting

of immune checkpoint blockade. There was no correlation be-

tween transcriptomic B cell signatures and anatomic location

of the tumor analyzed, and we did not observe a higher B cell

abundance in lymph nodemetastasis specimens (MannWhitney

p = 0.2). In addition, we investigated whether the transcriptome-

derived B cell enrichment correlated with the approximate den-

sity of plasma cells by morphologic assessment in hematoxylin/

eosin-stained tissue sections; however, this correlation did not



Figure 3. T Cell Receptor Repertoire Features and Dynamics during Immune Checkpoint Blockade Differentiate Tumors of Responders from

Non-responders

(A) Differential abundance analysis employing the number of TCR clones revealed an enrichment of unique TCR rearrangements in tumors of responding patients

(FDR-adjusted p = 0.0018).

(B) Dynamic shifts in the TCR repertoire composition on therapy were reflective of clinical outcome, such that tumors of responders harbored a higher fraction of

expanding and regressing clones. A representative example of TCR repertoire reshaping is shown in (B) for patient 20002, who achieved a complete response on

ipilimumab and nivolumab.

(C) Overall, the fraction of expanding and regressing TCR clones was significantly higher in responders compared to non-responders (FDR p = 0.02 for both

fractions of responding and regressing clones).

(D) Representative example of TCR repertoire dynamics for a patient experiencing disease progression on the ipilimumab/nivolumab arm; a less dynamic

repertoire is observed, denoted by a significantly lower number of clonotypic expansions and regressions after therapy initiation.
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reach statistical significance, likely due to the small number of

cases in the subset of tumors available for this analysis (n = 26;

data not shown).

High pre-existing intratumoral memory B cell abundance

correlated with a more-diverse TCR repertoire (Spearman
rho = �0.357; p = 0.024; FDR p = 0.2), whereas plasma cell rela-

tive abundance was associated with greater degree of T cell infil-

tration (Spearman rho = 0.367; p = 0.02; FDR p = 0.17) and a

more restricted repertoire (Spearman rho = 0.375; p = 0.017;

FDR p = 0.15; Table S1J). Unsupervised clustering applied to
Cell Reports Medicine 1, 100139, November 17, 2020 7



Figure 4. Transcriptome Deconvolution Reveals B Cell Enrichment in Tumors of Responding Patients

(A) Fusion analysis utilizing transcriptome data revealed an enrichment in immunoglobulin rearrangements in tumors of responding patients, which was reflective

of a higher pre-existing intratumoral B cell infiltration (Mann Whitney p = 7e�04).

(B) Through gene expression signature analysis and deconvolution of RNA sequence data, we identified an enrichment in tumor associated B cells in baseline

tumors of responding patients (Mann Whitney p = 9.3e�05).

(C and D) This observation was driven by enrichment in the naive B cell and plasma cell populations (Mann Whitney p = 0.013 and p = 0.03, respectively).

(E) Through unsupervised clustering of relative abundance of 22 immune-cell-type populations, patients with clinical response to therapy clustered together and

showed higher relative abundance in B cell subsets as well as CD8+ T cells. Z scores were computed across samples for each immune cell type separately using

the relative abundance measurements obtained from CIBERSORT.
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the relative abundance of immune cell subsets based on decon-

volution of transcriptomic data revealed a cluster of responding

tumors with enrichment in B cell subsets (Figure 4E). Patients

with tumors harboring a high number of immunoglobulin gene

rearrangements had a significantly longer PFS (log rank p =

0.0014 and p = 0.003 for all patients and patients in the ipilimu-

mab/nivolumab group, respectively; Figure S7). Concurrent

elevated pre-existing T and B cell infiltration defined tumors

from responding patients independent of tumor mutation burden

(Figure 5). Characterization of the intratumoral B cell repertoire is

critical for understanding B cell immunity. To this end, we assem-

bled B cell immunoglobulin heavy (IgH) and light (IgL) chain

CDR3 sequences from bulk RNA-seq data33 to gain insights

into the functional effects of intratumoral B cells in anti-tumor

immune responses in the context of immune checkpoint

blockade. We identified significantly increased clonal counts

for both IgH and IgL chains (Mann Whitney p = 0.00023 and

p = 4.69e�05, respectively) in tumors from responding patients,

indicating an increased abundance of B cells in tumors from re-

sponding patients (Figure S7).

We subsequently evaluated B cell receptor (BCR) clonotypic

abundance in baseline tumors, and these analyses were consis-

tent with our previous findings suggesting a higher B cell abun-

dance in tumors from responding patients independent of treat-

ment (FDR-adjusted p = 0.002 and p = 0.002 for all patients and
8 Cell Reports Medicine 1, 100139, November 17, 2020
patients in the ipilimumab/nivolumab group; Figure S7; Table

S1M). We then investigated the class and subclass composition

of the B cell repertoire in baseline tumors and identified an

enrichment in IgG1, IgG2, and IgG3 CDR3s in tumors from

responding patients (FDR-adjusted p = 0.001, p = 0.02, and

p = 0.001, respectively; Table S1M). Importantly, tumors from re-

sponding patients showed a trend toward a more clonal BCR

repertoire (FDR-adjusted p = 0.076; Figure S7; Table S1M).

Immunoglobulin class and subclass differential abundance anal-

ysis revealed a higher abundance of IgG1, IgG2, and IgG3

CDR3s in on-treatment tumors (FDR-adjusted p = 0.002, p =

0.008, and p = 0.003; Table S1M). BCR clonal dynamics, by

means of significant expansions and regressions, were more

evident for IgG3 CDR3s (FDR p = 0.067 and p = 0.047 for clones

increasing and decreasing in frequency, respectively). Our find-

ings suggest unique functional states of B cells in tumors from

patients with differential responses to immune checkpoint

blockade and further highlight that the complex phenotype of

the immune infiltrate, beyond T cell infiltration, is relevant for

determining clinical outcome.

Tumor Cell Evolutionary Trajectories during Immune
Checkpoint Blockade
Wesubsequentlymodeled temporal tumor dynamics, employing

an approach that combined exome with pre- and on-treatment



Figure 5. B and T Cell Interactions Shape

Clinical Responses to Immune Checkpoint

Blockade Independent of Tumor Mutation

Burden

Immunoglobulin rearrangements highly correlated

with TCR rearrangements in tumors of responders

(Spearman rho = 0.68; p = 1e�06), delineating a

group of patients that derived benefit from immune

checkpoint blockade (shown as blue circles and

triangles and clustered in the right upper corner of

the plot). This correlation between pre-existing B

and T cell rearrangements with each other and with

response to therapy was not affected by TMB.

Circles indicate treatment with ipilimumab and

nivolumab, although triangles denote treatment with

nivolumab. Responders are shown in blue and non-

responders in magenta. The size of each point (solid

circle or triangle) is proportional to the TMB of the

corresponding baseline tumor.
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transcriptome data (STAR Methods). A Bayesian generalized

linear mixed effects model was utilized to account for changes

in tumor purity between the pre- and on-therapy tumors and

capturemolecular response patterns for patients with differential

clinical responses to immune checkpoint blockade. We tracked

changes in frequencies of expressed single-base substitutions

and mapped temporal trajectories of tumor cells to clinical

outcomes. Overall, analyses of tumors from responding patients

revealed contractions of the expressed mutation repertoire, in

biopsies obtained 2–4 weeks after treatment initiation. In

contrast, tumors of non-responders were predominated by

retention of expressed mutations signifying a pattern of molecu-

lar primary resistance that predicted clinical disease progression

(Figure S8). Of note, tumors of responding patients 30028,

20021, 30032, 30023, and 30050 showed a pattern of expressed

mutation retention, likely attributed to the timing of the on-treat-

ment tumor biopsy that preceded tumor clearance. Patient

30020 showed a clear pattern of molecular response that was

reflected in a long overall survival of 26.1 months, but not

captured by early radiographic assessments denoting disease

progression at 1.4 months. Conversely, the tumor of non-

responding patient 20001 showed a molecular progression

pattern that was reflective of eventual clinical outcome (OS of

10.2 months), despite a radiographic response assessment of

partial response. These findings suggest that molecular re-

sponses reflect tumor cell dynamics during therapy and may

provide early predictors of long-term clinical outcome.

Integrative Modeling Incorporating Genomic,
Transcriptomic, and Immune Characteristics
The complexity of tumor and immune cell interactions during

immune checkpoint blockade suggests that integrative ap-

proaches may identify more nuanced biomarkers of therapeutic

response. We first assessed correlations among baseline

genomic, transcriptomic, and T cell repertoire features and iden-

tified clusters of interrelated variables (Figure 6A). We applied

random forests, an ensemble tree method, to integrate these

features into a multi-modal predictor of therapeutic response
and analyzed the utility of our approach in predicting clinical

response. The model incorporated training and testing with a

10-fold cross-validation approach, and feature selection,

including elimination of collinear features, was embedded in

the cross-validation (STAR Methods). Our approach demon-

strated a high prediction accuracy with an area under the curve

(AUC) of 0.866 (95% confidence interval [CI]: 0.738–0.994;

Figure 6B). The integrated classifier outperformed TMB (AUC =

0.583; 95% CI: 0.377–0.79) and PD-L1 expression (AUC =

0.726; 95% CI: 0.552–0.9; Figure S9). We subsequently em-

ployed multivariable Cox proportional hazards regression

analysis to evaluate the combined contribution of B cell, T cell,

and tumor features in predicting outcome. The combined contri-

bution of immunoglobulin rearrangements, TCR productive

clones, PD-L1 expression, and expressed mutation burden

was utilized to compute a risk score and classify patients in

high- and low-risk groups (STAR Methods). Patients classified

in the high-risk category had a significantly shorter PFS

compared to patients in the low-risk category (median PFS

1.43 months versus 29.01 months; log rank p = 9.07e�05;

HR = 5.92; 95% CI: 2.25–15.58; Figure 6C; Table S1N). This

was also evident in the ipilimumab/nivolumab group (median

PFS 1.43 months versus 29.01 months; log rank p = 7.05e�05;

HR = 8.09; 95% CI: 2.53–25.93; Figure 6D).

DISCUSSION

There is an unmet clinical need for development of integrated

biomarkers of response to immune checkpoint blockade that

reveal the underlying biology of the anti-tumor immune response

and predict clinical outcome. In this study, we report multifacto-

rial tumor biopsy analyses in a cohort of melanoma patients

receiving immune checkpoint blockade, including genomic and

pre- and on-therapy transcriptomic and T cell repertoire charac-

teristics. Our findings highlight the multifaceted interactions

between the tumor and the immune system and suggest the

importance of pre-existing T and B cell immunity in driving clin-

ical responses to immune checkpoint blockade.
Cell Reports Medicine 1, 100139, November 17, 2020 9



Figure 6. Multi-parameter Integrative Modeling Accurately Predicts Therapeutic Outcome

(A) Non-parametric correlations among genomic, transcriptomic, and T cell repertoire features were assessed by the Spearman’s rho statistic, and p values were

corrected for multiple comparisons. The color of each dot refers to the Spearman rho coefficient value (darkest blue being 1 and darkest red being �1), and the

size of each dot is proportional to the strength of the correlation. ***FDR-adjusted p < 0.05, **FDR-adjusted p < 0.1, and *FDR-adjusted p < 0.2.

(B) Random forests were employed to integrate genomic, transcriptomic, and TCR features following training and testing with 10-fold cross-validation and

resulted in an integrated model with an area under the curve of 0.866.

(C) Immunoglobulin rearrangements, TCR productive clones, PD-L1 expression, and expressedmutation load were combined in amultivariable Cox proportional

hazards regression model, and a risk score was calculated for each case based on the weighted contribution of each parameter. The second tertile of the risk

score was used to classify patients in high-risk (top 33.3%) and low-risk (bottom 66.6%) groups. Patients with a higher risk score had a significantly shorter

progression-free survival compared to patients at low risk for disease progression (median PFS 1.43 months versus 29.01 months; log rank p = 9.07e�05; HR =

5.92; 95% CI: 2.25–15.58).

(D) This outcome was also pronounced in the ipilimumab/nivolumab group (median PFS 1.43 months versus 29.01 months for high- and low-risk score patients,

respectively; log rank p = 7.05e�05; HR = 8.09; 95% CI: 2.53–25.93).
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Multifactorial biomarker models have the potential to be highly

predictive of clinical outcomes following immune checkpoint

blockade, compared to unidimensional markers.19,20,34 Several

transcriptomic signature-based models have been proposed to

predict therapeutic response for patients treated with immune

checkpoint blockade,21,35,36 and the predictive value of gene
10 Cell Reports Medicine 1, 100139, November 17, 2020
expression signatures, such as IPRES,36 TIDE,35 and IMPRES,37

was assessed in a recent study utilizing RNA-seq data from a

cohort of melanoma patients treated with immune checkpoint

blockade.38 In that study, none of the published immune-predic-

tive signatures accurately predicted clinical response to therapy.

We also evaluated the performance of the TIDE algorithm in our
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cohort, which generated a receiver operator characteristic (ROC)

curve with an AUC of 0.506 (Figure S9). These findings highlight

the challenges with gene expression signatures in accurately

classifying clinical response to immune checkpoint blockade.

Consistent with the notion that the efficacy of anti-PD-1-based

immune checkpoint blockade is based on reinvigoration of the ac-

tivity of pre-existing anti-tumor effector cells,15,21 we noted an

increased pre-existing T cell infiltration in tumors from responding

patients. Importantly, TCRclonotypic expansions and regressions

resulted in a more clonal on-therapy TCR repertoire that differen-

tiated responders fromnon-responders. In line with previouswork

from our group in non-small cell lung cancer treated with immune

checkpoint blockade,39,40 we noted TCR clonotypic expansions

and regressions in the responding tumors that may reflect anti-

gen-driven T cell expansion and antigen-dependent T cell arrest.

A companion study utilizing samples from the CheckMate038

clinical trial demonstrated through complementary analyses that

T cell infiltration and expression of interferon-ɣ-regulated genes

differentiate tumors of responding patients from non-responders

to immune checkpoint blockade.41

Emphasis has been historically placed on the contribution of

cytotoxic CD8+ T cells rather than a combined contribution of

T andB cell subsets. B cellsmodulate T cell responses; however,

the functional role of B cells as it relates to clinical benefit to im-

mune checkpoint blockade is incompletely understood. B cell

immunity against tumor-associated antigens, in the form of

circulating tumor-specific antibodies, has been linked with clin-

ical responses to ipilimumab in the presence of T cell anti-tumor

immune responses,42 but the role of pre-existing B cell immunity

in shaping the anti-tumor immune response in the setting of

immunotherapy has not beenwell established.43We report a sig-

nificant enrichment in B cells evidenced by the abundance of

immunoglobulin rearrangements as well as by deconvolution of

transcriptomic data in tumors from responding patients.

Increased immunoglobulin gene rearrangements are a hallmark

of antigen-specific B cell responses, potentially consistent, but

not confirmed to be tumor-specific in this study. We identified

an enrichment in naive B cells in tumors from responding pa-

tients; naive B cells play a role in MHC class II antigen presenta-

tion44 and may induce antigen-specific proliferation of naive

T cells.45 The vital contribution of tumor-associated B cells in

the anti-tumor immune response is evidenced by depletion of

B cells in melanoma patients by anti-CD20 therapy causing a

decrease in CD8+ T cell infiltration.22 Recent human studies

have associated immunotherapy response with increased intra-

tumoral B cell diversity.25 The presence of tertiary lymphoid

structures consisting of organized collections of T, B, and den-

dritic cells, where immune cell education and activation against

tumor antigens is hypothesized to occur, has been shown to

confer improved response to these therapies.23–25 Furthermore,

murine tumor modeling supports a central functional role for B

cells in immune interactions occurring in the context of PD-1

pathway blockade.46 Additional mechanistic studies integrating

this knowledge to B cell functional diversity in the tumor micro-

environment will be required to elucidate the functional contribu-

tions of these processes to anti-tumor immunity.

Moving forward, we envision machine learning approaches

that are not limited to integration of static features of pre-
treatment tumors but also encompass dynamic biomarkers

that capture tumor and immune response evolution under the se-

lective pressure of immune-targeted therapies.

Limitations of Study
Our work on integrative modeling of multi-omics sequence data

is limited by the relatively small sample size and heterogeneity of

the cohort analyzed. Additional larger scale studies of prospec-

tively collected cohorts would be necessary to independently

validate the predictive value of our multi-modal approach.

STAR+METHODS

Detailed methods are provided in the online version of this paper

and include the following:

d KEY RESOURCES TABLE

d RESOURCE AVAILABILITY
B Lead Contact

B Materials availability

B Data and Code Availability

d EXPERIMENTAL MODEL AND SUBJECT DETAILS

B Patient characteristics and treatment

B Assessment of clinical response

d METHOD DETAILS

B Tissue sample characteristics

B Whole exome sequencing

B Mutation Signature Analysis

B Copy number analysis, tumor purity, ploidy and clon-

ality assessment

B HLA class I and II genetic variation and loss of hetero-

zygosity

B RNA sequencing pipeline and analysis

B TCR sequencing

B B cell receptor analyses

B Morphological assessment of plasma cells

B Modeling of tumor dynamics during therapy

B Machine learning

d QUANTIFICATION AND STATISTICAL ANALYSIS

d ADDITIONAL RESOURCES

SUPPLEMENTAL INFORMATION

Supplemental Information can be found online at https://doi.org/10.1016/j.

xcrm.2020.100139.

ACKNOWLEDGMENTS

We thank members of our labs for critical review of the manuscript. This work

was supported by Bristol-Myers Squibb and in part by USNational Institutes of

Health grants CA121113 (V.E.V. and V.A.), CA233259 (V.E.V.), CA006973

(V.E.V.), CA142779 (S.L.T., J.T., and D.P.M.) and CA233259 (V.E.V.); the

Commonwealth Foundation (V.E.V.); the Bloomberg-Kimmel Institute for Can-

cer Immunotherapy (V.A., J.T., D.M.P., S.L.T., and V.E.V.); the Dr. Miriam and

Sheldon G. Adelson Medical Research Foundation (V.E.V.); the V Foundation

(V.A. and V.E.V.); Swim Across America (V.A.); the Allegheny Health Network

– Johns Hopkins Research Fund (V.A. and V.E.V.); the LUNGevity Foundation

(V.A.); the Mark Foundation For Cancer Research (V.E.V. and J.T.); the Barney

Foundation (J.T. and S.L.T.); Moving for Melanoma of Delaware (J.T. and

S.L.T.); the Laverna Hahn Charitable Trust (J.T. and S.L.T.); the Melanoma

Research Alliance (J.T., A.R., D.M.P., and S.L.T.); and a Cancer Immunology
Cell Reports Medicine 1, 100139, November 17, 2020 11

https://doi.org/10.1016/j.xcrm.2020.100139
https://doi.org/10.1016/j.xcrm.2020.100139


Article
ll

OPEN ACCESS
Translational Cancer Research Grant (SU2C-AACR-DT1012) from Cancer

Research Institute–Stand Up 2 Cancer (J.T., A.R., D.M.P., and S.L.T.). Stand

Up 2 Cancer is a program of the Entertainment Industry Foundation adminis-

tered by the American Association for Cancer Research.

AUTHOR CONTRIBUTIONS

Conceptualization, V.A., S.L.T., and V.E.V.; Methodology, V.A., D.C.B., N.N.,

J.R.W., X.M.S., and V.E.V.; Software, D.C.B., N.N., J.R.W., X.M.S., and A.B.;

Formal Analysis, V.A., D.C.B., N.N., J.R.W., A.B., L.F., R.K., and R.B.S.; Re-

sources, P.R.-M. and M.W.-R.; Data Curation, P.R.-M. and M.W.-R.; Writing

– Original Draft, V.A., D.C.B., J.W.S., Z.B., J.M., A.S.B., C.G., A.R., D.M.P.,

S.L.T., and V.E.V.; Visualization, V.A., D.C.B., N.N., and J.R.W.; Supervision,

V.A., S.L.T., and V.E.V.; Funding Acquisition, V.A., S.L.T., and V.E.V.

DECLARATION OF INTERESTS

V.A. and J.T. receive research funding from Bristol-Myers Squibb. J.T. serves

as a consultant/advisory board member to Bristol-Myers Squibb, Merck,

Astra Zeneca, and Compugen. J.R.W. is a consultant for Personal Genome

Diagnostics; is the founder and owner of Resphera Biosciences; and holds

patents, royalties, or other intellectual property from Personal Genomic Diag-

nostics. A.B. receives honoraria from Proscia and Corista; is a consultant of

Bristol-Myers Squibb, Genentech, and Bayer; and receives research funding

from Genentech. C.G. has patents, royalties, or other intellectual property

from Karyopharm and Arcus. A.R. has received honoraria from consulting

with Amgen, Bristol-Myers Squibb, Chugai, Genentech, Merck, Novartis,

Roche, and Sanofi; is or has been a member of the scientific advisory board

and holds stock in Advaxis, Arcus Biosciences, Bioncotech Therapeutics,

Compugen, CytomX, Five Prime, FLX-Bio, ImaginAb, Isoplexis, Kite-Gilead,

Lutris Pharma, Merus, PACT Pharma, Rgenix, and Tango Therapeutics; and

has received research funding from Agilent and from Bristol-Myers Squibb

through Stand Up to Cancer (SU2C). P.R.-M. and M.W.-R. are employees

of Bristol-Myers Squibb. D.M.P. and S.L.T. report stock and other ownership

interests in Aduro Biotech, DNAtrix, Dracen Pharmaceuticals, Dragonfly

Therapeutics, Ervaxx, Five Prime Therapeutics, Potenza Therapeutics,

RAPT, Tizona Therapeutics, Trieza Therapeutics, and WindMIL; a consulting

or advisory role in Amgen, DNAtrix, Dragonfly Therapeutics, Dynavax, Ervaxx,

Five Prime Therapeutics, Immunocore, Immunomic Therapeutics, Janssen

Pharmaceuticals, MedImmune/AstraZeneca, Merck, RAPT, and WindMIL;

research grants from Bristol-Myers Squibb and Compugen; patents, roy-

alties, and/or other intellectual property through their institution with Aduro

Biotech, Arbor Pharmaceuticals, Bristol-Myers Squibb, Immunomic Thera-

peutics, NexImmune, and WindMIL; and travel, accommodations, and ex-

penses from Bristol-Myers Squibb and Five Prime Therapeutics. V.E.V. is a

founder of Delfi Diagnostics and Personal Genome Diagnostics, serves on

the Board of Directors and as a consultant for both organizations, and

owns Delfi Diagnostics and Personal Genome Diagnostics stock, which are

subject to certain restrictions under university policy. Additionally, Johns

Hopkins University owns equity in Delfi Diagnostics and Personal GenomeDi-

agnostics. V.E.V. is an advisor to Bristol-Myers Squibb, Genentech, Merck,

and Takeda Pharmaceuticals. Within the last 5 years, V.E.V. has been an

advisor to Daiichi Sankyo, Janssen Diagnostics, and Ignyta. These arrange-

ments have been reviewed and approved by the Johns Hopkins University

in accordance with its conflict of interest policies.

Received: June 24, 2020

Revised: August 10, 2020

Accepted: October 20, 2020

Published: November 17, 2020

REFERENCES

1. Larkin, J., Chiarion-Sileni, V., Gonzalez, R., Grob, J.J., Cowey, C.L., Lao,

C.D., Schadendorf, D., Dummer, R., Smylie, M., Rutkowski, P., et al.

(2015). Combined nivolumab and ipilimumab or monotherapy in untreated

melanoma. N. Engl. J. Med. 373, 23–34.
12 Cell Reports Medicine 1, 100139, November 17, 2020
2. Larkin, J., Chiarion-Sileni, V., Gonzalez, R., Grob, J.J., Rutkowski, P., Lao,

C.D., Cowey, C.L., Schadendorf, D., Wagstaff, J., Dummer, R., et al.

(2019). Five-year survival with combined nivolumab and ipilimumab in

advanced melanoma. N. Engl. J. Med. 381, 1535–1546.

3. Snyder Charen, A., Makarov, V., Merghoub, T., Walsh, L., Yuan, J., Miller,

M., Kannan, K., Postow, M.A., Elipenahli, C., Liu, C., et al. (2014). The

neoantigen landscape underlying clinical response to ipilimumab.

J. Clin. Oncol. 32, 3003.

4. Liu, D., Schilling, B., Liu, D., Sucker, A., Livingstone, E., Jerby-Arnon, L.,

Zimmer, L., Gutzmer, R., Satzger, I., Loquai, C., et al. (2019). Integrative

molecular and clinical modeling of clinical outcomes to PD1 blockade in

patients with metastatic melanoma. Nat. Med. 25, 1916–1927.

5. Samstein, R.M., Lee, C.H., Shoushtari, A.N., Hellmann, M.D., Shen, R.,

Janjigian, Y.Y., Barron, D.A., Zehir, A., Jordan, E.J., Omuro, A., et al.

(2019). Tumor mutational load predicts survival after immunotherapy

across multiple cancer types. Nat. Genet. 51, 202–206.

6. Van Allen, E.M., Miao, D., Schilling, B., Shukla, S.A., Blank, C., Zimmer, L.,

Sucker, A., Hillen, U., Foppen, M.H.G., Goldinger, S.M., et al. (2015).

Genomic correlates of response to CTLA-4 blockade in metastatic mela-

noma. Science 350, 207–211.

7. Davoli, T., Uno, H., Wooten, E.C., and Elledge, S.J. (2017). Tumor aneu-

ploidy correlates with markers of immune evasion and with reduced

response to immunotherapy. Science 355, eaaf8399.

8. Zaretsky, J.M., Garcia-Diaz, A., Shin, D.S., Escuin-Ordinas, H., Hugo, W.,

Hu-Lieskovan, S., Torrejon, D.Y., Abril-Rodriguez, G., Sandoval, S.,

Barthly, L., et al. (2016). Mutations associated with acquired resistance

to PD-1 blockade in melanoma. N. Engl. J. Med. 375, 819–829.

9. Peng, W., Chen, J.Q., Liu, C., Malu, S., Creasy, C., Tetzlaff, M.T., Xu, C.,

McKenzie, J.A., Zhang, C., Liang, X., et al. (2016). Loss of PTEN promotes

resistance to T cell-mediated immunotherapy. Cancer Discov. 6, 202–216.

10. Anagnostou, V., Smith, K.N., Forde, P.M., Niknafs, N., Bhattacharya, R.,

White, J., Zhang, T., Adleff, V., Phallen, J., Wali, N., et al. (2017). Evolution

of neoantigen landscape during immune checkpoint blockade in non-

small cell lung cancer. Cancer Discov. 7, 264–276.

11. Sade-Feldman, M., Jiao, Y.J., Chen, J.H., Rooney, M.S., Barzily-Rokni,

M., Eliane, J.P., Bjorgaard, S.L., Hammond,M.R., Vitzthum, H., Blackmon,

S.M., et al. (2017). Resistance to checkpoint blockade therapy through

inactivation of antigen presentation. Nat. Commun. 8, 1136.

12. Spranger, S., Bao, R., and Gajewski, T.F. (2015). Melanoma-intrinsic

b-catenin signalling prevents anti-tumour immunity. Nature 523, 231–235.

13. Grasso, C.S., Giannakis, M., Wells, D.K., Hamada, T., Mu, X.J., Quist, M.,

Nowak, J.A., Nishihara, R., Qian, Z.R., Inamura, K., et al. (2018). Genetic

mechanisms of immune evasion in colorectal cancer. Cancer Discov. 8,

730–749.

14. Patel, S.J., Sanjana, N.E., Kishton, R.J., Eidizadeh, A., Vodnala, S.K.,

Cam, M., Gartner, J.J., Jia, L., Steinberg, S.M., Yamamoto, T.N., et al.

(2017). Identification of essential genes for cancer immunotherapy. Nature

548, 537–542.

15. Tumeh, P.C., Harview, C.L., Yearley, J.H., Shintaku, I.P., Taylor, E.J., Rob-

ert, L., Chmielowski, B., Spasic, M., Henry, G., Ciobanu, V., et al. (2014).

PD-1 blockade induces responses by inhibiting adaptive immune resis-

tance. Nature 515, 568–571.

16. Riaz, N., Havel, J.J., Makarov, V., Desrichard, A., Urba, W.J., Sims, J.S.,

Hodi, F.S., Martı́n-Algarra, S., Mandal, R., Sharfman, W.H., et al. (2017).

Tumor and microenvironment evolution during immunotherapy with nivo-

lumab. Cell 171, 934–949.e16.

17. Sade-Feldman, M., Yizhak, K., Bjorgaard, S.L., Ray, J.P., de Boer, C.G.,

Jenkins, R.W., Lieb, D.J., Chen, J.H., Frederick, D.T., Barzily-Rokni, M.,

et al. (2018). Defining T cell states associated with response to checkpoint

immunotherapy in melanoma. Cell 175, 998–1013.e20.

18. Wolf, Y., Bartok, O., Patkar, S., Eli, G.B., Cohen, S., Litchfield, K., Levy, R.,
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Data and Code Availability
The accession numbers for WES and RNaseq sequence data reported in this paper from patients who consented to sequence data

deposition are EGAS00001004548 and EGAS00001004545 (deposited in the European Genome phenome Archive).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Patient characteristics and treatment
CheckMate 038 was a prospective, multicenter, international, multi-cohort clinical trial of nivolumab as front-line therapy (Part 3 arm

B and part 4 arm E) or after progressing on therapy with the anti-CTLA-4 antibody ipilimumab (part 1), or receiving the combination of

both antibodies (Parts 2 and 3 arm A and part 4 arm D, NCT01621490) A full description of the clinical trials and its outcomes can be

found at https://clinicaltrials.gov/ct2/show/results/NCT01621490. Analyses of CheckMate 038 part 116 and parts 1-441 that included

detailed descriptions of the cohorts in each arm have been previously published. The clinical trial protocol and its amendments were

approved by the relevant institutional review boards, and the studywas conducted in accordancewith the Declaration of Helsinki and

the International Conference on Harmonization Guidelines for Good Clinical Practice. All patients signed written informed consent

prior to having any study procedures performed. Here, we analyzed biopsies of patients in CheckMate 038 parts 2-4 and patient

characteristics are summarized in Table S1A.

Assessment of clinical response
Radiographic assessment of response was performed approximately every 8 weeks until progression and disease progression was

confirmed with a repeat CT scan at least four weeks later. Response to therapy indicates best overall response by response evalu-

ation criteria in solid tumors (RECIST) 1.1. Patients with complete (CR) and partial (PR) response as BOR were classified as re-

sponders while patients with stable (SD) or progressive disease (PD) were classified as non-responders. PFS and OS were defined

as the time from treatment initiation to documented evidence of progressive disease or death. Radiographic responses and outcome

are listed in Table S1A.

METHOD DETAILS

Tissue sample characteristics
Patients underwent a baseline biopsy prior to therapy initiation (1 to 7 days before the first dose of therapy) and a repeat biopsy,

2-4 weeks on-therapy. Tumor tissue was stored in RNAlater (TheromoFisher, MA) for subsequent RNA/DNA extraction.

Whole exome sequencing
Sample preparation

Whole exome sequencing was performed on pre-treatment tumor and matched normal samples. DNA was extracted from patients’

tumors and matched peripheral blood using the QIAGEN DNA kit (QIAGEN, CA). Fragmented genomic DNA from tumor and normal

samples was used for Illumina TruSeq library construction (Illumina, San Diego, CA) and exonic regions were captured in solution

using the Agilent SureSelect v.4 kit (Agilent, Santa Clara, CA) according to the manufacturers’ instructions as previously

described10,47. Paired-end sequencing, resulting in 100 bases from each end of the fragments for the exome libraries was performed

using Illumina HiSeq 2000/2500 instrumentation (Illumina, San Diego, CA). The mean depth of total and distinct coverage for the

pre-treatment tumors were 206x and 173x (Table S1O).

Mutation calling

Somatic mutations, consisting of point mutations, insertions, and deletions across the whole exome were identified using the Var-

iantDx custom software for identifying mutations in matched tumor and normal samples as previously described (Personal Genome

Diagnostics, Baltimore, MD)10,47. Somatic sequence alterations are listed in Table S1B.

Computational neoantigen prediction

Somatic mutations, consisting of nonsynonymous single base substitutions, insertions and deletions, were evaluated for putative

MHC class I neoantigens using the ImmunoSelect-R pipeline (Personal Genome Diagnostics, Baltimore, MD) as previously

described10. We employed MHCnuggets48 to analyze MHC class II neoantigens. In brief, for each single-base substitution mutation,

mutant and reference peptide sequences surrounding the affected amino acid were extracted, filtering out silent and none sense

mutations. Windowing around the affected amino acid, all possible 12-20-mer mutant/reference peptide pairs were then selected

as candidate neoantigens. Each patient’s candidate neoantigens were then predicted against the patient’s MHC II haplotypes.

Putative immunogenic peptides were defined as candidate mutant peptides with an IC50 < 500nM and a differential agretopic index

(DAI), defined as = Reference Peptide IC50
Mutant Peptide IC50

49, higher than 2.

Mutation Signature Analysis
Mutation signatures were derived based on the fraction of coding point mutations in each of 96 trinucleotide contexts and estimated

the contribution of each signature to each tumor sample using the deconstructSigs R package50.
e2 Cell Reports Medicine 1, 100139, November 17, 2020
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Copy number analysis, tumor purity, ploidy and clonality assessment
The somatic copy number profile and the extent of aneuploidy in each tumor were estimated using whole exome sequencing data as

previously described19. Focal copy number alterations are summarized in Table S1E.We calculated several measures of tumor aneu-

ploidy including the fraction of the genomewith loss of heterozygosity (LOH that signifies complete loss of theminor allele), and allelic

imbalance (AI that denotes inequality of major and minor allele copy number; Table S1F). Mutant allele frequency, ploidy and purity

were incorporated to estimate mutation cellular fraction, that is the fraction of cancer cells that harbor a specific mutation, as pre-

viously described19,51.

HLA class I and II genetic variation and loss of heterozygosity
OptiType v1.2. was used to determine HLA class I haplotypes52, xHLAwas used to determine HLA class II haplotypes for HLA-DPB1,

HLA-DQB1, HLA-DRB153, and SOAP-HLA was used to determined class II haplotypes for HLA-DPA1 and HLA-DQA154. A separate

bioinformatic analysis using POLYSOLVER55 was applied to detect and annotate the somatic mutations in class I HLA genes. Loss of

heterozygosity of each HLA gene was determined by considering the minor allele copy number of the overlapping genomic region

(minor CN= 0 indicated complete loss ofminor allele). We determinedHLA class I loss in the tumor by applying LOHHLA using default

program settings56. For two patients, 20039 and 30019, class I HLA loss was not identified by LOHHLA but was identifiedmanually by

the presence of LOH through analysis of allele-specific copy number at this locus. The number of unique class I HLA alleles in the

tumor was calculated by subtracting the number of germline heterozygous alleles with somatic LOH from the total number of unique

alleles in germline. Germline and somatic HLA class I genomic variation is summarized in Table S1G. We evaluated somatic loss of

class II HLA genes by review of allele-specific copy number of these loci, where minor copy number of zero indicated loss of hetero-

zygosity. The number of unique class II HLA genes in the germline and the tumor was calculated similar to class I HLA genes, and is

summarized in Table S1G.

RNA sequencing pipeline and analysis
Paired-end reads were first processed to remove adapters and low quality sequences using Trimmomatic v0.3657. Reads were then

aligned to the GRCh37 reference genome using STAR v2.5.1b58 and duplicate reads were filtered using Picard Tools (https://

broadinstitute.github.io/picard/). RNA sequencing characteristics are summarized in Table S1P. Normalized gene-level expression

measurements were then obtained as transcripts per million (TPM) with RSEM v1.2.30 using the strand-specific mode59. STAR-

Fusion v1.2.060 was utilized to identify somatic and immunoglobulin rearrangements. CIBERSORT v1.06 was used for deconvolution

of transcriptome data to generate relative proportion estimates for 22 immune cell types32. CIBERSORT determines the fraction of

each immune cell type among the total immune cells in the mixture and we employed the relative abundance measurement of im-

mune cell subsets for differential abundance analyses as opposed to the absolute abundance metrics. Single base substitutions

identified through whole-exome sequencing were considered expressed if at least 3 reads containing the mutation were detected

by RNaseq (Table S1C). When explicitly stated, gene expression measurements were normalized to control for the degree of leuko-

cytic intratumoral infiltration by dividing their expression by the expression of the LCA gene. The TIDE algorithm was implemented35,

using TPM values, where a log2 fold change was computed for each gene in each sample relative to the average expression of that

gene across 41 samples with baseline RNaseq data. The resultingmatrix was used as input to compute the TIDE score using the TIDE

web platform61.

TCR sequencing
TCR clones were evaluated in tumor tissue by next generation sequencing, with an input material of 500ng of genomic DNA for

each sample analyzed. TCR-b CDR3 regions were amplified using the survey ImmunoSeq assay in a multiplex PCR method using

45 forward primers specific to TCR Vb gene segments and 13 reverse primers specific to TCR Jb gene segments (Adaptive

Biotechnologies)62. Productive TCR sequences were further analyzed (Table S1H). For each sample, a clonality metric was

estimated in order to quantitate the extent of mono- or oligo-clonal expansion by measuring the shape of the clone frequency

distribution. Clonality values range from 0 to 1, where values approaching 1 indicate a nearly monoclonal population (Table S1H).

For differential abundance analysis between baseline and on-therapy tumors, we selected the most expanded and most regressed

TCR clonotypes, corresponding to fold changes in productive frequency of TCR clones with an FDR < 0.001. These TCR clones are

referred to as expanded and regressed.

B cell receptor analyses
IgH and IgL CRD3 assemblies and IgH isotypes were generated by running TRUST33 and MiXCR63 using RNaseq FASTQ files

as input. For each sample, the productive BCR clone count and the BCR repertoire clonality were calculated utilizing IgH CDR3

sequences. BCR clonality was defined as (1-normalized Shannon entropy), where normalized Shannon entropy is Shannon

entropy/log2(unique productive clones). For differential abundance analysis between baseline and on-therapy tumors, BCR

clonotypes with a fold change in productive frequencies between baseline and on-treatment tumors with an FDR < 0.05 we

considered.
Cell Reports Medicine 1, 100139, November 17, 2020 e3
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Morphological assessment of plasma cells
Cases with available hematoxylin & eosin (H&E) stains were assessed for plasma cell infiltration. Plasma cells were identified by

morphological features and a semiquantitative assessment was performed (0 = no plasma cells; 1 = singular plasma cells; 2 = plasma

cells scattered throughout lesion or foci of 5-10 grouped plasma cells; 3 = diffuse infiltration of tumor by plasma cells or larger clusters

of plasma cells (> 10 together)).

Modeling of tumor dynamics during therapy
We hypothesized that changes in tumor purity post-therapy would have the same effect on all mutations regardless of subclonal

origin, while the effects of immunotherapy on mutant allele frequencies (MAFs) among non-responders would be more heteroge-

neous with the potential for both positive and negative selection pressures on the subclonal composition of the tumor. To evaluate

this hypothesis, we modeled the change in mutant allele frequencies of single base substitutions for each patient with whole-exome

sequencing data as well as both pre-treatment and on-treatment RNaseq data available. We fit a generalized linear mixed effects

model with a fixed effect for the overall mean MAF pre-therapy and the overall slope describing the change in the average MAF

pre- and on-therapy using the brms R package64. Mutation-specific MAFs pre- and on-therapy were estimated by random effects,

providing some shrinkage to the overall means but with priors that were sufficiently diffuse to allow heterogeneity in the mutation-

specific intercepts and slopes. The slope from this model represents the change in the tumor cell fraction between pre-treatment

and on-treatment samples. To identify individual expanding or contracting mutations in a manner not explained by the general slope,

we computed the probability that the slope for amutationwas different than the overall slope. Mutations with a probability of > 0.99 of

being different than the overall slope were considered to be expanding if their slope was positive relative to the overall slope, and

contracting if their slope was negative relative to the overall slope.

Machine learning
Integrated machine learning analysis of genomic, transcriptomic and immunologic features was performed using the randomForest

and caret R packages (http://cran.r-project.org). Tomitigate possible issueswith feature collinearity, an approach to control inclusion

of highly correlated features was applied as follows. In a given set of samples, pairwise non-parametric correlations between all

possible feature pairs were calculated and these feature pairs were sorted in decreasing order of their Spearman’s rank correlation

coefficient. Given a maximum allowed correlation coefficient, the ordered list of feature pairs above this threshold were considered

(offending pairs). Starting from the first element in the list, the feature appearing in the smallest number of other offending pairs was

eliminated. If both features in the pair appeared in the same number of remaining offending pairs, these were equally likely to be elim-

inated and onewas randomly selected. Next, any feature pair containing the eliminated feature was removed from the offending pairs

list, and the process was repeated until the offending pairs list was empty. Since the final set of features included depends on the

maximum allowable correlation coefficient, a sensitivity analysis to identify the optimal value of this threshold was carried out using

5 repeats of 10- fold cross-validation as follows. In each cross-validation fold, correlation coefficients were calculated using the

training samples, the list of features was filtered by application of the process above for a given correlation threshold value, and

the remaining features were used to train a random forest. The performance of the random forest on the test samples of the fold

was recorded. The sensitivity analysis revealed that a maximum allowable value of 0.75 for pairwise feature correlation coefficients

yielded the highest accuracy. Finally, pairwise feature correlations were calculated based on the entire cohort (n = 37, after exclusion

of samples with missing feature values), the list of features were narrowed down by applying the described process using a threshold

of 0.75. By doing so, we reduced the initial set of 27 features to 13 features with controlled pairwise correlations. A random forest was

trained on the entire cohort (n = 37) using the R randomForest package. For each sample, the out-of-bag predicted probabilities were

calculated; these probabilities serve as an estimate of the random forest’s performance in samples not seen before. The global

importance of each feature was quantified using themean decrease in accuracymeasure andwas calculated as follows. The random

forest was trained using all the cohort samples and the accuracy of out-of-bag predictions was recorded. Next, for each feature, the

values were permuted across the dataset, and the accuracy of out-of-bag predictions was recalculated. The difference between

these two accuracy estimates reflects the contribution of each feature to the classification performance. Variable importance plots

displaying the relative contribution of each feature to the random forest model during cross-validation were generated using the caret

package. The ROCRRpackagewas applied for AUC evaluation of response classification accuracy based on out-of-bag predictions

(http://cran.r-project.org).

QUANTIFICATION AND STATISTICAL ANALYSIS

Differences between responding and non-responding tumors were evaluated using chi-square or Fisher’s exact test for categorical

variables and theMann-Whitney test for continuous variables. The Pearson correlation coefficient (R) was used to assess correlations

between continuous variables and the Spearman rho coefficient was calculated for non-parametric correlations. P values were cor-

rected using the Benjamini-Hochberg procedure and the associated false discovery rate (FDR) values were calculated.

The median point estimate and 95% CI for PFS were estimated by the Kaplan–Meier method and survival curves were compared

by using the nonparametric log rank test. To evaluate statistically significant associations of genomic, transcriptomic and TCR fea-

tures with PFS and OS, we performed Kaplan Meier analysis utilizing the survminer (https://github.com/kassambara/survminer) and
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survival (https://github.com/therneau/survival) R packages. The log-rank test implemented in the R package coin (http://coin.r-forge.

r-project.org) was applied to assess statistical significance. To optimize the final strata for each quantitative feature assessed, we

evaluated a range of potential thresholds (between the 10th and 90th percentile across all samples) and selected the threshold

that minimized the log-rank test p value.

Univariate Cox proportional hazards regression analysis was used to determine the impact of individual parameters on PFS. A

multivariable Cox proportional hazards model was employed using immunoglobulin rearrangements, TCR productive clones, PD-

L1 expression and expressed mutations and a risk score reflecting the relative hazard was calculated as the exponential of the

sum of the product of mean-centered covariate values and their corresponding coefficient estimates for each case. The second ter-

tile of the risk score was used to classify patients in high risk (top 33.3%) and low risk (bottom 66.6%) groups. All p values were based

on two-sided testing and differences were considered significant at p < 0.05. Statistical analyses were done using the SPSS software

program (version 25.0.0 for Windows, IBM, Armonk, NY) and R version 3.2 and higher, http://cran.r-project.org).

ADDITIONAL RESOURCES

Further information relevant to the clinical trial Checkmate 038, NCT01621490, can be found at https://clinicaltrials.gov/ct2/show/

results/NCT01621490.
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Supplemental Information  

Supplementary Figures 

 

Figure S1. Overview of the whole exome, transcriptome and TCR sequencing analyses. Related to Figures 1-
6. CheckMate-038 was a prospective, multi-cohort clinical trial of nivolumab as front-line therapy or after 
progression on therapy with ipilimumab, or receiving ipilimumab/nivolumab combination. Here, we focused on 
patients on parts 2, 3 and 4 which included ipilimumab-naïve patients treated either with nivolumab or combination 
nivolumab/ipilimumab. Sixty four tumors in parts 2, 3 and 4 had evaluable whole exome sequencing, RNA 
sequencing or TCR sequencing. As an initial quality control step the following cases were excluded: i. 3 tumor 
samples without matched normal samples, ii. 3 tumors with tumor purity less than 5%, iii. 7 patients that did not 
ultimately receive therapy on the CheckMate-038 trial, iv. One patient on ipilimumab monotherapy and v. One 
patient on unplanned therapy. Forty six baseline tumors had evaluable whole exome sequencing data which was 
processed for variant calling, neoantigen prediction, copy number analyses, purity-ploidy correction, HLA class I 
germline and somatic status assessment, gene enrichment and mutation signature analyses. Of these, forty four 
tumors were analyzed by TCR sequencing and forty tumors were also analyzed by RNA sequencing.       
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Figure S2. Association between TMB and expressed mutation load and clinical outcome. Related to Figure 1. 
(A) TMB predicted PFS for all patients, such that patients in the TMB-high group had a significantly longer PFS 
compared to the TMB-low group (median PFS not reached vs 1.938 months, HR=0.263, 95% CI: 0.114-0.609, log 
rank p=0.02). (B) There was a trend towards longer OS for patients with TMB-high tumors compared to the TMB-
low group (median OS not reached for both groups, HR=0.334, 95% CI: 0.092-1.217, log rank p=0.078). (C) In the 
ipilimumab/nivolumab treatment group, high TMB conferred a favorable prognosis (median PFS for TMB-high and 
TMB-low patients not reached and 1.791 respectively, HR =0.171, 95% CI: 0.059-0.498, log rank p=0.0007). (D) A 
trend towards longer OS was observed for patients with TMB-high tumors in the ipilimumab/nivolumab treatment 
group (median OS not reached and 26.513 months for TMB-high and TMB-low tumors respectively, HR=0.291, 
95% CI: 0.072-1.171, log rank p=0.072). (E) Single base substitutions in expressed genes were evaluated as a 
representation of the expressed mutation load (eSBS). Expressed mutation load predicted PFS for all patients, such 
that patients in the eSBS-high group had a significantly longer PFS compared to the eSBS-low group (median PFS 
not reached vs 3.023 months, HR=0.307, 95% CI: 0.129-0.731, log rank p=0.008). (F) Patients with eSBS-high 
tumors had a longer overall survival compared to the eSBS-low group (median OS not reached for both groups, log 
rank p=0.028). (G) In the ipilimumab/nivolumab treatment group, high eSBS conferred a favorable prognosis 
(median PFS for eSBS-high and eSBS-low patients not reached and 2.793 months respectively, HR =0. 245, 95% 
CI: 0.087-0.693, log rank p=0.008). (H) Patients with eSBS-high tumors had a longer OS compared to eSBS-low 
patients in the ipilimumab/nivolumab treatment group (median OS not reached for both groups, log rank p=0.044).  
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Figure S3. Differential enrichment analysis involving genes in the PI3K/AKT/PTEN and Ras pathways in 
tumors from responding and non-responding patients. Related to Figure 1. (A) We did not identify any 
significant differences in genomic alterations in the PI3K/AKT/PTEN pathway in tumors from responders vs. non-
responders that could not be explained by the increased TMB of responding patients. Patient 40002, who achieved a 
radiographic response but had a short overall survival harbored biallellic inactivation of PTEN. In contrast, patient 
30050, who achieved a long-term response to therapy, harbored a homozygous deletion in PTEN, suggesting that 
PTEN inactivation is not always associated with resistance to immune checkpoint blockade. We investigated co-
occurrence of sequence and structural mutations in the Ras pathway and single base substitutions were characterized 
by consequence (missense, frameshift, nonsense, splice site, in-frame) and recurrence (hotspots). Loss of the wild 
type allele was considered in case of truncating mutations (biallellic inactivation, indicated as an “x”). We did not 
identify any significant differences in genomic alterations in the Ras pathway in tumors from responders vs non-
responders that could not be explained by the increased TMB of responding patients. Dots indicate hotspot 
mutations. 
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Figure S4. Gene expression of genes in the 11q14.1 locus. Related to Figure 1. Tumors from patients 20018, 
20038, 30012, 30019 and 30051 that harbored an amplification in 11q14.1, we are also found to overexpress 
AAMDC, CLNS1A, INTS4, NDUFC2, and RSF1. Gene expression is shown in transcripts per million (TPM).  
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Figure S5. High tumor aneuploidy and low TCR clonotypic density identify patients with inferior outcome to 
immune checkpoint blockade. Related to Figures 1, 2 and 5. (A) Patients with highly aneuploidy tumors showed 
a trend towards shorter PFS (median PFS of 3.023 vs 29.01 for aneuploidy-high vs low tumors, HR=1.958, 95% CI: 
0.818-4.689, log rank p=0.13). (B) A similar trend was observed for OS (median OS of 24.082 vs not reached for 
aneuploidy-high vs low tumors, HR=2.899, 95% CI: 0.919-9.152, log rank p=0.13). (C) Patients in the 
ipilimumab/nivolumab treatment group with highly aneuploidy tumors showed a trend towards shorter PFS (median 
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PFS of 1.544 vs 29.01 for aneuploidy-high vs low tumors, HR=2.749, 95% CI: 0. 0.773-9.777, log rank p=0.17). (D) 
Patients with highly aneuploidy tumors in the ipilimumab/nivolumab treatment group had a significantly shorter OS 
(median OS of 21.388 vs not reached for aneuploidy-high vs low tumors, HR=6.309, 95% CI: 1.5-26.538, log rank 
p=0.01). (E) An increased number of baseline intratumoral TCR productive clones predicted longer PFS for all 
patients (median PFS 29.01 vs 1.544 months for patients with TCR-high vs TCR-low tumors respectively, 
HR=0.215, 95% CI: 0.087-0.532, log rank p=0.0007) and (F) patients in the ipilimumab/nivolumab treatment group 
(median PFS for TCR-high and TCR-low patients 29.01 and 1.544 months respectively, HR =0.236, 95% CI: 0.086-
0.649, log rank p=0.005).  
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Figure S6. HLA class I genomic diversity in tumors of responding and non-responding patients. Related to 
Figure 2. A significantly higher expression of HLA-A (B-D), HLA-B (E-G) and HLA-C (H-J) was noted in baseline 
tumors from responding patients, which reflected a higher density of lymphocytic intratumoral infiltration. When 
HLA-A, HLA-B and HLA-C expression was normalized by LCA expression, there were no differences between 
tumors from responding and non-responding patients.  
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Figure S7. T and B cell features differentiate tumors from responding patients from non-responders. Related 
to Figures 3, 4 and 5. (A-B) Differential expression of TOX in tumors of responding and non-responding patients. 
A higher expression of TOX was identified in baseline tumors of responding patients (A; all patients and B; patients 
in the ipilimumab/nivolumab treatment group). (C-D) High number of immunoglobulin fusions is linked to a 
progression-free survival benefit on immune checkpoint blockade. (C) An increased number of baseline 
Immunoglobulin gene fusions, signifying an increased B cell density, predicted longer PFS for all patients (median 
PFS 29.01 vs 2.793 months for patients with Ig-high vs Ig-low tumors respectively, HR=0.217, 95% CI: 
0.078,0.601, -log rank p=0.0014) and (D) patients in the ipilimumab/nivolumab treatment group (median PFS for Ig-
high and Ig-low patients 29.01 and 2.793 months respectively, HR=0.180, 95% CI: 0.050-0.645, log rank p=0.003). 
(E-F) Differences in IgL and IgG abundance in tumors of patients with differential responses to immune checkpoint 
blockade. IgL and IgH chain CDR3 sequences were assembled from RNAseq data and we identified significantly 
higher clonal counts for both immunoglobulin light (E) and heavy (F) chains (Mann Whitney p=0.00023 and 
p=4.69e-05 respectively) in tumors from responding patients.  (G-J) Differential IgH CDR3 abundance analysis in 
baseline tumors. (G-H) A higher IgH CDR3 clonal count was noted in tumors from responding patients for all 
patients (FDR adjusted p=0.002) and patients in the ipilimumab/nivolumab treatment group (FDR adjusted 
p=0.002). (I-J) A trend towards a more clonal BCR repertoire was observed for all patients (FDR adjusted p=0.076) 
and patients in the ipilimumab/nivolumab group (FDR adjusted p=0.08). TPM; transcripts per million.   
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Figure S8. Expressed mutation dynamics during immune checkpoint blockade. Related to Figure 1. A 
Bayesian generalized linear multilevel mixed-effects model was implemented to interpret changes in mutant 
transcript levels between pre-treatment and on-treatment tumors. We fit a generalized linear mixed effects model 
with a fixed effect for the overall mean mutant allele fraction (MAF) pre-therapy and the overall slope describing 
the change in the average MAF pre- and on-therapy (dark black line with 95% confidence band shaded in purple). 
Mutations covered by at least 75 reads at both time points are shown and are colored orange if there is >0.99 
probability that their slope is positive relative to the overall slope, and blue is there is a >0.99 probability that their 
slope is negative relative to the overall slope. Panels A, D, E and I correspond to molecular responders with MAFs 
that uniformly decreased to undetectable levels post-therapy and molecular responses reflected clinical outcomes. 
Patient 30020 (I) showed a clear pattern of molecular response that was reflected in a long overall survival of 26.1 
months, but not captured by early radiographic assessments which showed disease progression at 1.4 months. 
Responding patient 20021 (C) showed a pattern of expressed mutation retention, most likely due to timing of tumor 
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biopsy that may have preceded tumor clearance. Panels F, G and H show molecular non-responders, denoted as 
retention of expressed mutations, with evidence of both positive- and negative- selective pressures of therapy 
(orange and blue lines respectively) that cannot be explained by overall difference in mean MAFs (black line). 
Patient 20001 (F) showed a molecular progression pattern that was reflective of a short OS of 10.2 months, despite a 
radiographic response assessment of partial response.  
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Figure S9. Predictive accuracy of TMB and PD-L1 expression. Related to Figure 6. (A) TMB and (B) PD-L1 
expression demonstrated a moderate prediction accuracy with an AUC of 0.583 (95% CI: 0.377-0.79) and 0.726 
(95% CI: 0.552-0.9) respectively. (C) The TIDE algorithm was not predictive of outcome in this cohort 
(AUC=0.506).  
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