Cell Reports Medicine, Volume 1

Supplemental Information

Targeting Mitochondrial Complex I

Overcomes Chemoresistance in

High OXPHOS Pancreatic Cancer

Rawand Masoud, Gabriela Reyes-Castellanos, Sophie Lac, Julie Garcia, Samir Dou, Laetitia Shintu, Nadine Abdel Hadi, Tristan Gicquel, Abdessamad El Kaoutari, Binta Diémé, Fabrice Tranchida, Laurie Cormareche, Laurence Borge, Odile Gayet, Eddy Pasquier, Nelson Dusetti, Juan Iovanna, and Alice Carrier

SUPPLEMENTAL INFORMATION

Targeting mitochondrial Complex I overcomes chemoresistance in high OXPHOS pancreatic cancer

Rawand Masoud¹^{†*}, Gabriela Reyes-Castellanos¹[†], Sophie Lac¹[‡], Julie Garcia¹, Samir Dou¹, Laetitia Shintu², Nadine Abdel Hadi¹, Tristan Gicquel¹, Abdessamad El Kaoutari¹, Binta Diémé²§, Fabrice Tranchida², Laurie Cormareche¹, Laurence Borge¹, Odile Gayet¹, Eddy Pasquier¹, Nelson Dusetti¹, Juan Iovanna¹, Alice Carrier¹*#

Affiliations:

¹Aix Marseille Université, CNRS, INSERM, Institut Paoli-Calmettes, Centre de Recherche en Cancérologie de Marseille (CRCM), F-13009 Marseille, France.

²Aix Marseille Université, CNRS, Centrale Marseille, ISM2, F-13013 Marseille, France

*To whom correspondence should be addressed: Alice Carrier and Rawand Masoud, Centre de Recherche en Cancérologie de Marseille (CRCM), Campus de Luminy Case 915, 163 Avenue de Luminy, 13288 Marseille Cedex 9, France. Phone : +33 491828829 ; Fax : +33 491826083. Email: alice.carrier@inserm.fr and rawand.masoud@inserm.fr.

† These authors contributed equally

‡ Current address: Innate Pharma, F-13009 Marseille

§ Current address: Institut de Chimie de Clermont-Ferrand, PlateForme d'Exploration du Métabolisme (PFEM), Université Clermont-Auvergne, F-63000 Clermont-Ferrand, France # Lead contact

List of supplementary data:

Supplementary Figures: 9

Supplementary Tables: 2

Supplementary Figure 1. Mitochondrial metabolism is efficient in pancreatic cancer cells (related to Figure 1A - C). (A, B) Quantification of representative profiles obtained for OXPHOS (A) and glycolysis (B) experiments for the six classical PDAC cell lines. (A) The rates of OCR (mean of triplicates \pm SEM) for basal respiration, mitochondrial ATP production, maximal respiration and spare capacity were quantified as described in the Materials and Methods section, and normalized to 10,000 seeded cells. This graph is representative of at least three independent experiments. (B) The rates of ECAR (mean of triplicates \pm SEM) for glycolysis, glycolytic capacity, and glycolytic reserve were quantified as described in the Materials and Methods section, and normalized to 10,000 seeded cells. This graph is representative of at least three independent experiments. (C) Ratio of basal OCR to basal ECAR. Statistically significant differences between Panc-1 cells with the 5 others *** p<0.001. (D) ATP production by OXPHOS and glycolysis was determined by the OCR and proton production rate, respectively. Statistically significant differences between the Panc-1 cell line with the 5 other cell lines: ** and *** p<0.01 and p<0.001 respectively. (E-F) Two different representations of cell metabolic plasticity. (E) OCR versus ECAR plot showing for each cell line basal OCR and ECAR linked by a line with maximal OCR and ECAR. (F) Fold change levels of maximal respiration to basal respiration and fold change levels of glycolytic capacity to basal glycolysis were determined for each PDAC cell line. (G) Pancreatic cancer cells demonstrate different degrees of dependency and flexibility towards essential TCA fuels. OCR was measured when cells were challenged with fuel pathway inhibitors: UK5099, BPTES, and Etomoxir, targeting Glucose (GLC), Glutamine (GLN), and Fatty Acids (FA) pathways, respectively. The dependency and flexibility of cells to oxidize these three critical mitochondrial fuels were determined as described in the Supplementary Materials and Methods section. Data are presented as the mean of triplicates \pm SEM. Data are representative of three independent experiments.

Supplementary Figure 2. The metabolic status of PDAC cells is unrelated to their proliferation rate (related to Figure 1). The replication rate in 72 hours was monitored by PrestoBlue labelling of cells seeded in 96-well plate the day after the seeding (D0) and 3 days later (D3), as described in Gayet *et al.*, 2015. The scatterplots display the replication rate and the corresponding basal OCR or basal ECAR, of both classical PDAC cell lines (left) and the 21 primary PDAC cells (right). High and low OXPHOS primary PDAC cells are in red and blue dots, respectively, and identified with a short version of the anonymized name of patients. The horizontal dotted line indicates the threshold that we selected in Figure 1C and D between high and low OCR or ECAR. Spearman's correlation coefficient and p values are shown, indicating none or very weak association between the two variables, with non-statistically significant values in any of the cases.

DAPI Mitotracker

Supplementary Figure 3. Abundance of respiratory Complex I reflects respiration activity (related to Figure 2A - F). (A) Representative confocal microscopy images of stained cells with MitoTracker DeepRed (red) and DAPI (blue) are shown. (**B**) Mitochondrial complexes protein levels were quantified on WB by Image J, normalized to BxPC-3 cell line, and the mean of 3 different WB was calculated (*, ** and *** p<0.05, p<0.01 and p<0.001 respectively). The last graph (NDUFB8-I) corresponds to the Western blot using the anti-NDUFB8 antibody alone.

Supplementary Figure 4. High OXPHOS Panc-1 cells show metabolic specificities (related to Figure 2G). (A) Representative profile of metabolic analysis by HRMAS-NMR. OPLSDA predictive component loading plot showing the weights of each NMR variable in the discrimination in OXPHOS Panc-1 cells (Top part) versus glycolytic BxPC-3/ MIA PaCa-2 cells (Bottom part). The NMR variables are color-coded according to their correlation coefficients with the predictive component. Significantly discriminant metabolites were annotated on the loading plot. 1: unsaturated fatty acids; 2: lactate; 3: myo-inositol; 4: proline/taurine; 5: scyllo-inositol; 6: glycerophosphocholine/phosphocholine; 7: choline; 8: glutamate; 9: fatty acids; 10: alanine. (B) CPT1A Western blotting for the classical PDAC cell lines. Ponceau coloration is shown as control of equal protein loading.

Probability survival

0.25

0.00

ò

100-Low OXPHOS High OXPHOS Percent survival 80 60 40p = 0.32 20 n=14 n=7 0-Ó 20 40 60 80 Months

Α

В

С

Biopsy patients only (N=36)

n=17

40

7

Supplementary Figure 5. Enrichment of mitochondrial respiratory chain Complex I in high OXPHOS PDAC patients (related to Figure 3 and Supplementary Table 2). (A) Schematic overview of the mammalian mitochondrial Complex I composed of 4 functional modules and 44 subunits, inspired by the review of Giachin *et al.* 2016 (Giachin G. Front Mol Biosci 2016, 3:43). The 24 Complex I-subunits genes that were found enriched in the high OXPHOS compared to low OXPHOS PDAC patients are represented in black font. (B) Kaplan-Meier survival curve for high and low OXPHOS patient groups (n=7 and n=14, respectively). p value was calculated by the log-rank (Mantel-Cox) statistic test. (C) Kaplan-Meier survival curves using transcriptomic analysis on patient-derived xenografts, divided into high and low NDUFB8 subunit expression (cutpoint 13.22) for PDAC patients with resectable tumors (left; n = 39) and biopsy patients only (right; n = 36). p values from the log-rank statistic test.

В

Metabolites	¹ H chemical shift (in ppm), multiplicity and	High oxphos/	P-value	
	assignment	Low oxphos ^a		
Choline	3.21 (s) CH ₃ , 4.05 (m) CH ₂	1.97	< 0.001	
Phosphocholine	3.22 (s) CH ₃ , 3.59 (m) CH ₂ , 4.16 (m) CH ₂	5.31	< 0.001	
Glucose	4.64 (d) CH, 3.90 , 3.83, 3.47, 3.40 unresolved signals	0.52	< 0.001	
Glutamate	2.34 (m) γCH ₂ , 2.04 (m) βCH ₂ , 2.11 (m) βCH ₂	1.63	< 0.001	
Glutathione	4.58 (m) CH, 3.77 (m) CH, 2.56 (m) CH ₂ , 2.17 (m)	2.68	< 0.001	
	CH_2			
Unknown	2.98, 1.66, 1.44 broad	0.55	< 0.001	

s = singlet; d = doublet; m = multiplet

Supplementary Figure 6. High OXPHOS PDAC cells show metabolic specificities compared to low OXPHOS (related to Figure 3E). (A) Representative profile of metabolic analysis by HRMAS-NMR of primary cells from 3 High OXPHOS PDAC patients versus 3 low OXPHOS. OPLSDA predictive component loading plot showing the weights of each NMR variable in the discrimination in High OXPHOS (Top part) versus Low OXPHOS (Bottom part). The NMR variables are color-coded according to their correlation coefficients with the predictive component. Significantly discriminant metabolites were annotated on the loading plot. Abbreviations : Cho = choline, Glu = glutamate, Gluc = Glucose, Gsh = Glutathione, Pcho = Phosphocholine. (B) Metabolites that contributed significantly to the discrimination between the High OXPHOS and Low OXPHOS in the OPLS-DA model from the ¹H NMR data. ^aFold change in metabolite level followed by P-value (t-test).

Supplementary Figure 7. Classical PDAC cells are sensitive to drugs targeting mitochondrial respiratory Complex I, and Phenformin synergizes with Gemcitabine in high OXPHOS PDAC cells (related to Figure 4A - C). (A-B) Dose-response curves to treatment of the six classical PDAC cell lines with Metformin and Rotenone, respectively. Live cells are indicated as a % of the control (vehicle treated). Data are means of triplicates \pm SEM. (C) Representative dose-response curves for the six PDAC cell lines treated with different concentrations of Gemcitabine alone (blue curves) and Gemcitabine in combination with 0.5 mM Phenformin (red curves) for 72h. Cell viability is indicated as a % of the control (vehicle treated). Data are means of triplicates \pm SEM. (D) Combination indexes (CI) for Phenformin 0.5 mM treatment with Gemcitabine at different concentrations, according to the Chou and Talalay method: additive effects ($0.8 \le CI \le 1.2$), synergism (CI<0.8) and antagonism (CI>1.2) in drug combinations.

Supplementary Figure 8. Phenformin treatment synergizes with Gemcitabine in high OXPHOS primary PDAC cells (related to Figure 4D). (A) Dose-response curve to Phenformin treatment (left) of six primary PDAC cells: 3 high OXPHOS patients (27, 74, and 84) and 3 low OXPHOS (22, 32, and 85). Live cells are indicated as a % of the control (vehicle treated). Data are means of triplicates \pm SEM. The IC50 values of Phenformin (Right) were calculated from the dose-response curve. (B) Representative dose-response curves of the six primary PDAC cells treated with different concentrations of Gemcitabine alone (blue curves) and Gemcitabine in combination with 0.5 mM Phenformin (red curves) for 72h. Cell viability is indicated as a % of the control (vehicle treated). Data are means of triplicates \pm SEM. (C) Combination indexes (CI) for Phenformin 0.5 mM treatment with Gemcitabine at different concentrations, according to the Chou and Talalay method. Combination treatment specifically sensitizes high OXPHOS cells (27, 74, and 84) to Gemcitabine, with combination indexes lower than 0.5 that means strong synergy.

Supplementary Figure 9. Phenformin enhances Gemcitabine antitumoral activity in high OXPHOS murine PDAC cells (related to Figure 6D and E). (A) Seahorse data. Left: basal OCR versus basal ECAR plot. Middle and Right: two different representations of cell metabolic plasticity, as described in the legend of Supplementary Figure 1E-F. The data are representative of 6 independent experiments (B) Representative *in vivo* bioluminescence imaging data at different times after orthotopic implantation of KPC luc2 cells.

Supplementary Table 1 (**related to Figure 1 and S9A**). Cell density and FCCP concentration used in Seahorse experiments, and KRAS and p53 genetic status for each PDAC cell line: 6 classical human cell lines, 21 from patients of the PaCaOmics cohort for which the name was anonymized, and the murine KPC luc2 cell line. The genetic information for the PaCaOmics patients is available in Nicolle R. *et al.*, 2017. NA = not available. All PaCaOmics tumors are KRAS mutated except one (PDAC012T) and all PaCaOmics tumors for which the p53 status was investigated (12 over 21) are mutated or lost except one (PDAC032T).

Cell line	Cellular density	[FCCP] µM	KRAS status	p53 mutated/loss
BxPC-3	40 000	0.25	WT	Mut
Capan-1	40 000	0.5	Mut	Mut
Capan-2	40 000	0.25	Mut	WT
MIA PaCa-2	40 000	0.125	Mut	Mut
Panc-1	40 000	0.5	Mut	Mut
SOJ-6	40 000	0.25	Unknown	Unknown
PDAC001T	30 000	0.5	G12D (homo)	Mut
PDAC003T	30 000	0.5	G12D (hetero)	Mut/loss
PDAC012T	50 000	0.5	12-13 WT	Mut/loss
PDAC014T	40 000	0.5	G12V (hetero)	Mut/loss
PDAC015T	20 000	1	G12D (hetero)	Mut/loss
PDAC018T	15 000	1	G12D (hetero)	Mut/loss
PDAC021T	30 000	0.5	G12V (hetero)	Mut/loss
PDAC022T	40 000	1	G12R (hetero)	Mut/loss
PDAC024T	30 000	0.5	G12D (homo)	Mut/loss
PDAC027T	20 000	0.5	G12V (hetero)	Mut/loss
PDAC028T	40 000	0.5	G12V (homo)	Mut/loss
PDAC032T	40 000	1	G12D (hetero)	WT
PDAC074T	20 000	0.25	G12D (hetero)	NA
PDAC079T	30 000	0.5	G12D (homo)	NA
PDAC081T	40 000	0.5	G12D (hetero)	NA
PDAC082T	30 000	1	G12V (hetero)	NA
PDAC084T	20 000	0.5	G12V (hetero)	NA
PDAC085T	40 000	0.5	G12V (hetero)	NA
PDAC087T	30 000	0.5	G12D (hetero)	NA
PDAC088T	40 000	0.5	G12V (hetero)	NA
PDAC089T	50 000	1	G12D (hetero)	NA
KPC luc2	30 000	1	G12D (hetero)	Mut

Supplementary Table 2 (related to Figure 3B and Supplementary Figure 5A). Pathways enriched in the high OXPHOS PDAC patients (PDAC027T, PDAC074T, PDAC084T) compared to low OXPHOS PDAC patients (PDAC022T, PDAC032T, PDAC085T).

Reactome Pathways	Proteins	FDR
Mitochondrial translation initiation_Homo sapiens_R-HSA- 5368286	MRPL12, MRPS26, MRPL40, MRPL46, ICT1, MRPS34, MRPL38, MRPL43, MRPS7, GADD45GIP1, MRPL11, MRPL42, MRPS11, MRPS23, MRPL20, MRPL16, MRPL51, MRPS5, MRPS15, MRPS33, CHCHD1, AURKAIP1, MRPL27, MRPL17, MRPS16, PTCD3, MRPL10, MTFMT, MRPL34, MRPS25, MTIF2, MRPS28, MRPS24, MRPL54, MRPL37, MRPL39, MRPL9, MRPL52, MRPL36, MRPL53, MRPS9, MRPL18, MRPS12, MRPL28, MRPL23, MRPL21, MRPL35	0.02851
Mitochondrial translation_Homo sapiens_R-HSA- 5368287	MRPL12, MRPS26, MRPL40, MRPL46, ICT1, MRPS34, MRPL38, MRPL43, MRPS7, GADD45GIP1, MRPL11, MRPL42, MRPS11, MRPS23, MRPL20, MRPL16, MRPL51, MRPS5, MRPS15, MRPS33, CHCHD1, AURKAIP1, TSFM, MRPL27, MRPL17, MRPS16, PTCD3, MRPL10, MTFMT, MRPL34, MRPS25, MTIF2, MTRF1L, MRPS28, MRPS24, MRPL54, TUFM, MRPL37, MRPL39, MRPL9, MRPL52, MRPL36, MRPL53, MRPS9, MRPL18, MRPS12, MRPL28, MRPL23, MRPL21, MRPL35	0.02851
Mitochondrial translation termination_Homo sapiens_R-HSA- 5419276	 MRPL12, MRPS26, MRPL40, MRPL46, ICT1, MRPS34, MRPL38, MRPL43, MRPS7, GADD45GIP1, MRPL11, MRPL42, MRPS11, MRPS23, MRPL20, MRPL16, MRPL51, MRPS5, MRPS15, MRPS33, CHCHD1, AURKAIP1, MRPL27, MRPL17, MRPS16, PTCD3, MRPL10, MRPL34, MRPS25, MTRF1L, MRPS28, MRPS24, MRPL54, MRPL37, MRPL39, MRPL9, MRPL52, MRPL36, MRPL53, MRPS9, MRPL18, MRPS12, MRPL28, MRPL23, MRPL21, MRPL35 	0.02851
Mitochondrial translation elongation_Homo sapiens_R-HSA- 5389840	MRPL12, MRPS26, MRPL40, MRPL46, ICT1, MRPS34, MRPL38, MRPL43, MRPS7, GADD45GIP1, MRPL11, MRPL42, MRPS11, MRPS23, MRPL20, MRPL16, MRPL51, MRPS5, MRPS15, MRPS33, CHCHD1, AURKAIP1, TSFM, MRPL27, MRPL17, MRPS16, PTCD3, MRPL10, MRPL34, MRPS25, MRPS28, MRPS24, MRPL54, TUFM, MRPL37, MRPL39, MRPL9, MRPL52, MRPL36, MRPL53, MRPS9, MRPL18, MRPS12, MRPL28, MRPL23, MRPL21, MRPL35	0.02851
Respiratory electron transport, ATP synthesis by	UCP1, SLC25A27, NDUFA12, ATP5I, COX6A1, NDUFB9, UQCR10, ECSIT, ATP5G2, NDUFAF3, COX5A, COX14, NDUFV2, SCO2, ATP5H, NDUFB8,	0.02851

chemiosmotic coupling, and heat production by uncoupling proteinsHomo sapiens_R-HSA- 163200	NDUFS5, NDUFA7, TACO1, NDUFAF5, NDUFA9, NDUFAB1, ATP5D, NDUFA13, ATP5E, NDUFS3, NDUFAF1, COX6B1, COX4I1, NUBPL, NDUFB10, NDUFC2, COX7A2L, COX16, NDUFA11, ATP5G3, UQCR11, ATP5C1, NDUFB7, TIMMDC1, UCP2, NDUFB6, UQCRH, ETFA, NDUFC1, COX11, COX5B, NDUFS8, NDUFAF7, UQCRC1, COX8A, COX6C, NDUFA10, ETFDH, COX18, UQCRB, ATP5J, NDUFA1	
Complex I biogenesis_Homo sapiens_R-HSA- 6799198	NDUFA12, NDUFB9, ECS11, NDUFAF3, NDUFV2, NDUFB8, NDUFS5, NDUFA7, NDUFAF5, NDUFA9, NDUFAB1, NDUFA13, NDUFS3, NDUFAF1, NUBPL, NDUFB10, NDUFC2, NDUFA11, NDUFB7, TIMMDC1, NDUFB6, NDUFC1, NDUFS8, NDUFAF7, NDUFA10	0.04947
GO Biological Process Term	Proteins	FDR
mitochondrial translational elongation (GO:0070125)	MRPL12, MRPS26, MRPL40, MRPL46, MRPS34, MRPL38, MRPL43, MRPS7, GADD45GIP1, LARS2, MRPL11, MRPL42, MRPS11, MRPS23, NDUFA7, MRPL20, MRPL16, MRPL51, ERAL1, MRPS5, MRPS15, GATC, MRPS33, CHCHD1, PTRH1, AURKAIP1, TSFM, MRPL27, MRPL17, MRPS16, PTCD3, EEF1B2, MRPL10, NOA1, MRPL34, MRPS25, EEF2K, MRPS28, MRPS24, MRPL54, TUFM, MRPL37, MRPL39, MRPL9, MRPL52, MRPL36, MRPL53, MRPS9, MRPL18, MRPS12, MRPS2, MRPL28, MRPL23, MRPL21, MRPL35	0.02243
mitochondrial translational termination (GO:0070126)	MRPL12, MRPS26, MRPL40, MRPL46, MRPS34, MRPL38, MRPL43, MRPS7, GADD45GIP1, LARS2, MRPL11, MRPL42, MRPS11, MRPS23, NDUFA7, MRPL20, MRPL16, MRPL51, ERAL1, MRPS5, MRPS15, GATC, MRPS33, CHCHD1, PTRH1, AURKAIP1, MRPL27, MRPL17, TRMT112, MRPS16, PTCD3, MRPL10, NOA1, MRPL34, MRPS25, N6AMT1, MTRF1L, MRPS28, MRPS24, MRPL54, MRPL37, APEH, MRPL39, MRPL9, MRPL52, MRPL36, MRPL53, MRPS9, MRPL18, MRPS12, MRPS2, MRPL28, MRPL23, MRPL21, MRPL35	0.02718
GO Cell	Proteins	P value
mitochondrial respiratory chain complex I, membrane segment (GO:0042653)	NDUFA12, NDUFB9, NDUFV2, NDUFB8, NDUFS5, NDUFA7, SNCA, MT-ND2, NDUFA9, NDUFAB1, NDUFA13, NDUFS3, NDUFAF1, NDUFB10, MT-ND1, MT-ND5, NDUFC2, NDUFA11, NDUFB7, NDUFB6, NDUFC1, NDUFS8, NDUFA10, MT-ND3, NDUFA1, PARK7, FOXRED1	0.00739

mitochondrial respiratory chain complex I, peripheral segment (GO:0042652)	NDUFA12, NDUFB9, NDUFV2, NDUFB8, NDUFS5, NDUFA7, SNCA, MT-ND2, NDUFA9, NDUFAB1, NDUFA13, NDUFS3, NDUFAF1, NDUFB10, MT-ND1, MT-ND5, NDUFC2, NDUFA11, NDUFB7, NDUFB6, NDUFC1, NDUFS8, NDUFA10, MT-ND3, NDUFA1, PARK7, FOXRED1	0.00739
mitochondrial respiratory chain complex I (GO:0005747)	NDUFA12, NDUFB9, NDUFV2, NDUFB8, NDUFS5, NDUFA7, SNCA, MT-ND2, NDUFA9, NDUFAB1, NDUFA13, NDUFS3, NDUFAF1, NDUFB10, MT-ND1, MT-ND5, NDUFC2, NDUFA11, NDUFB7, NDUFB6, NDUFC1, NDUFS8, NDUFA10, MT-ND3, NDUFA1, PARK7, FOXRED1	0.00739
mitochondrial large ribosomal subunit (GO:0005762)	MRPL12, MRPL40, MRPL46, MRPL38, MRPL43, MRPL11, MRPL42, MPV17L2, MRPL20, MRPL16, MRPL51, MRPL27, MRPL17, MRPL10, MRPL34, MRPL54, MRPL37, MRPL39, MRPL9, MRPL52, MRPL36, MRPL53, MRPL18, MRPL28, MRPL23, MRPL21, MRPL35, MRPL48	0.00747