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Supplementary Methods and Notes

Synthetic Experiments. We generated a synthetic dataset comprised of two groups of data,

each containing 512 images of resolution 32× 32 pixels. Each image was generated by 4 Gaussians

(see Supplementary Figure 1(a)), the magnitude of which was controlled by σ and c. For each

image from Group 1, we sampled σ and c from a uniform Gaussian distribution U(1, 4) while we

generated images of Group 2 with stronger intensities by sampling both variables from U(3, 6)

(Supplementary Figure 1(b-c)). Gaussian noise was added to the images with standard deviation

0.01. Now we assume the difference in σ between the two groups is associated with the true

discriminative cues that should be learned by a classifier, whereas c is a confounder variable. In

other words, an unbiased model should predict the group label purely based on the two diagonal

Gaussians and not dependent on the two off-diagonal ones. Due to the overlap in the sampling

range of σ, the optimal classification accuracy for the two groups was 90% (Supplementary Figure

1(b)). To show that the CF-Net can result in such models by controlling for c, we trained it on

the whole dataset of 1,024 images with binary labels y and the corresponding confounder values c

as the input.

Network Architecture. FE produced 32 features by 3 convolutional stacks, where each stack was

composed of a 2× 2 convolution, ReLU, and max-pooling layer. Both the CP and P networks had

one hidden layer of dimension 16 with tanh as the non-linear activation function. Two implemen-

tations of CF-Net were tested. The first implementation only employed CP to Group 1 (modeling

conditional dependency between F and c w.r.t y = 0), and the second employed CP to all training

samples (modeling full dependency between F and c, without conditioning on y).

Evaluation. Beyond recording the classification accuracy after each iteration, we quantified the

conditional dependency between the learned features F and the confounder c by measuring their

squared distance correlation (dcor2) [9] and mutual information (MI) [1]. By separately computing

those metrics for each group, we accounted for the conditional dependency between F and c

(conditioned on y = 0 or y = 1). We not only computed these scores for the baseline ConvNet

and the proposed CF-Net but also for implementations of CF-Net replacing the adversarial loss

function (Eq. 2 in main article) with the losses proposed in the state-of-the-art invariance learning
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Supplementary Figure 1: (a) An example synthetic image, in which the 4 Gaussians were controlled

by their magnitude σ and c; (b,c) Sampling of σ and the confounder c across the 1024 synthetic

images; (d) Training accuracy of ConvNet and CF-Net with respect to number of iterations; (e,f)

Distance correlation (dcor) and mutual information (MI) measured between the learned features

and the confounder c within each group (solid curves for Group 1, dashed curves for Group 2);

(g,h) dcor and MI measured for CF-Net and two other invariant feature approaches; (i) t-SNE

visualization of the learned feature spaces; (j) Average saliency maps derived for the ConvNet and

CF-Net.

frameworks by Sadeghi et al. [7] and Zafar et al. [12]. Note, the majority of invariant or unbiased

feature learning approaches (see [1] for review) focus on binary bias variables so that they cannot

be applied to this experiment.

Beyond this quantitative assessment, we visualized the impact of c on the high-dimensional

feature space via t-SNE [4], which projected the features F of each training sample into 2D and

color-coded the projection point with the value of c. Lastly, we computed the “saliency map” for

each training sample [3], which provided a voxel-wise measure quantifying the importance of each

voxel in the final prediction. We visualized the average saliency maps over all 1,024 images.

Results. The training accuracy of the baseline ConvNet went beyond the theoretical optimum

of 90% (Supplementary Figure 1(d)), indicating that the model falsely leveraged the off-diagonal

Gaussians (linked to c) in the image for prediction. This observation was supported by the following

three findings: 1) the relatively high statistical dependency between F and c according to MI and

dcor metrics (Supplementary Figure 1(e-f)); 2) a strong correlation between c and the projections

of the features in the 2D space (Supplementary Figure 1(i)); 3) all fours Gaussians had high
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Supplementary Figure 2: HIV experiment: After each training run of the 5-fold cross-validation,

CP of ConvNet and CF-Net was further trained on the features extracted by the model to predict

age. Only the features extracted by ConvNet were predictive of age indicated by the (a) high

correlation and (b) low MSE loss recorded on the testing folds.

importance for the prediction according to the saliency map (Supplementary Figure 1(j)). Only the

implementation of CF-Net with y-conditioning matched the training accuracy of 90%, indicating

that the model only leveraged the two diagonal Gaussians for prediction. This was supported by

reduced dcor and MI scores, t-SNE visualization, and the saliency map. Despite that the modelling

of confounding effect was specifically conditioned on Group 1, the conditional dependency between

F and c was removed in both groups (solid and dashed curves in Supplementary Figure 1(e-f)) by

CF-Net.

Note, CF-Net without y conditioning (that applied CP to all samples) achieved suboptimal

results. This implementation essentially aimed to remove full dependence between F and c re-

gardless of their indirect link caused by the intrinsic correlation between y and c. In other words,

CP not only removed the direct association between F and c (link 1○), but also minimized the

dependency between F and y to reduce the indirect association between F and c (link 2○ & 3○).

This contradicted the objective of P that aimed to maximize the dependency between F and y.

Therefore, the contradictory objectives simultaneously resulted in comprised prediction accuracy

(Supplementary Figure 1(d)), dcor (Supplementary Figure 1(e)), and MI results (Supplementary

Figure 1(f)).

Lastly, the adversarial loss of CF-Net outperformed loss functions from other state-of-the-art

methods in deriving high-dimensional features impartial to confounders (Supplementary Figure

1(g-h)). This was due to the fact that our adversarial objective was specifically designed for

pursuing statistical mean independence between the features and confounder. We refer reader to

our technical report [1] for an extensive discussion on the theoretical properties of our method,

statistical analysis on the high-dimensional features, and comparison with other baseline methods.

Additional Results on HIV Diagnosis from MRIs. This subsection outlines additional

results and analysis of model hyperparamerters for the HIV diagnosis experiment.

Age prediction by CP. After fully training CF-Net and ConvNet (i.e., the training loss in each run

of the 5-fold cross-validation converged), we measured the accuracy of CP in predicting confounding
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Supplementary Table 1: Top: Classification of HIV diagnosis: Balanced accuracy, precision, recall,

and F1-score of HIV diagnosis prediction. Best results in each column are typeset in bold; Bottom:

Uncorrected p-value of DeLong’s test associated with the improvement of each method over the

ConvNet baseline.

Whole Cohort c-independent subset c-independent Young c-independent Old

Method
BAcc

(%)

Pre

(%)

Rec

(%)

F1-

Score
BAcc Pre / Rec BAcc Pre / Rec BAcc Pre / Rec

ConvNet 71.6 78.2 59.8 0.68 68.4 84.4 / 52.5 59.7 85.0 / 36.3 75.3 85.0 / 65.7

Zafar et al. 73.7 73.8 73.6 0.73 72.9 72.1 / 73.8 68.1 76.7 / 60.0 80.5 76.7 / 85.1

Sadeghi et al. 73.6 78.3 68.9 0.73 71.3 74.4 / 68.9 63.7 73.3 / 54.4 76.5 73.3 / 80.6

CF-Net 74.1 73.4 75.4 0.74 74.2 73.0 / 75.4 69.0 76.7 / 62.7 82.4 88.1 / 76.4

Method Whole Cohort c-independent subset c-independent Young c-independent old

Num of Subjects N=357 N=244 N=115 N=129

Zafar et al. 0.213 0.105 0.072 0.661

Sadeghi et al. 0.233 0.295 0.442 0.572

CF-Net 0.069 0.035∗ 0.045∗ 0.317

∗ denotes significant higher prediction accuracy than ConvNet by DeLong’s test (uncorrected p < 0.05).

variables from the features derived from each approach. For each approach, we extracted and fixed

the features F of the control cohort in the training set, randomly initialized the confounder predictor

CP, and then (post-hoc) trained CP to predict the z-scored age c from the recorded features. The

objective function of this posthoc training of CP was to maximize the squared correlation between

predicted and ground-truth age. For each training epoch, we recorded the predicted age for the

controls in the testing fold and then computed the absolute value of Pearson correlation with

respect to the ground-truth age. Supplementary Figure 2a shows the average curve of Pearson

correlation over the 5 testing folds, which indicates that CP accurately predicted age from the

features learned by ConvNet resulting in a high correlation close to 1. On the other hand, the

correlation associated with CF-Net remained close to 0 supporting the claim that the features

learned by CF-Net were conditionally independent of the confounder variable. This observation

remained valid if we replaced the squared correlation loss by the MSE loss, which was significantly

lower for ConvNet. To put the MSE loss in perspective, we view the z-scores of age as samples

drawn from a normal distribution and then define the theoretical MSE loss values for two ‘null’

classifiers. The first classifier always predicts the mean age of the cohort resulting in a theoretical

loss of 1, i.e., the variance of normal distribution. The second classifier predicts the age of a

randomly sampled subject so the theoretical loss is 2, i.e., the variance of the difference between

two normally distributed variables. According to Supplementary Figure 2b, the features learned

by ConvNet were predictive of age indicated by an MSE lower than the null losses, whereas the

MSE associated with CF-Net fell in the range of null losses indicating that the features learned by

CF-Net were not predictive of confounder values.

Extension of HIV Classification and Feature Space Analysis. We extended the model comparison

to the loss functions of invariant-feature-learning approaches proposed by Sadeghi et al. [7] and
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Zafar et al. [12]. First, Sadeghi et al. [7] proposed to use the MSE loss between the predicted

and ground-truth confounder value as the adversarial loss for invariant feature learning. Their

implementation was confined to the scenario where the prediction network was a logistic regression

(linear classifier). To translate that method to our application, we simply replaced the correlation

loss of CP with the MSE loss. Note, in the binary case, MSE could be replaced with the binary

cross-entropy resulting in an implementation that is very similar to the one proposed in [11].

Second, the loss function of Zafar et al. [12] consisted of the loss of P and the magnitude of

correlation between the prediction score and the confounder value. Table 1 lists the classification

results from the 5-fold cross-validation and the uncorrected p-value of Delong’s test associated

with the accuracy improvement of each approach over the ConvNet baseline. None of the p-values

met the significance threshold after Bonferroni correction (p < 0.05/3 = 0.017). However, based

on the uncorrected threshold (two-tailed p < 0.05), CF-Net resulted in trend-level improvement

(p = 0.069) in prediction accuracy over ConvNet on the whole cohort. Moreover, only CF-Net

resulted in significantly higher accuracy on the c-independent subset (p = 0.035) and on the

younger participants from the c-independent subset (p = 0.045).

Next, we investigated the impact of normal aging on the feature spaces by first training each

model on the entire dataset and then computing dcor and MI between the age and learned features

on the control group. Note, computing dcor and MI with respect to the features cannot be based

on cross-validation as each training run will result in a different feature space. Instead, we repeated

the computations 20 times by training each implementation with different random initialization.

Supplementary Figure 3(a,b) shows that the metrics associated with CF-Net were significantly

lower than those of other approaches (two-tailed p < 0.001, t-test). Taken together, these results

indicate that CF-Net achieved the optimal balanced accuracy on the c-independent subset while

simultaneously demonstrating the most unbiased feature space with respect to normal aging.

Model Visualization. To compute saliency maps associated with the models, we applied the keras-vis

visualization package [3] within a 5-fold cross-validation setting. After each training run, we com-

(a) (b)

Supplementary Figure 3: HIV experiment: (a) Distance correlation between the learned features

F and subject age c recorded on the control subjects; (b) Mutual information between F and c

recorded on the control subjects.
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(a) ConvNet

(b) CF-Net

(c) VBM

Supplementary Figure 4: Brain regions associated with HIV effects identified by (a) ConvNet; (b)

CF-Net; (c) Voxel-Based Morphometry.

puted the saliency map for the right hemisphere of each test image (without augmentation and flip-

ping) based on the model learned on the training folds. We then visualize the group-level saliency

map averaged over all subjects (Supplementary Figure 4(a,b). According to the SRI24 atlas [6],

the top 10 regions with the highest average saliency identified by CF-Net were amygala, temporal

pole (superior and middle), hippocampus, parahippocampus, orbital inferior frontal gyrus, inferior

temporal gyrus, insula, olfactory, and putamen. To put these results in perspective, we identified

significant tissue loss in HIV patients by conducting voxel-based morphometry analysis [5]. Based

on the MR preprocessing pipeline described in the main article, tissue classification was performed

by Atropos [2] resulting in Gray-Matter (GM), White-Matter (WM), and CerebroSpinal Fluid

(CSF) masks for each T1w-MRI. The GM and WM masks were non-rigidly aligned to the SRI24

atlas space by registering the T1W image to a template, corrected by Jacobian determinant of

the resulting deformation, and underwent Gaussian smoothing with an FWHM of 10mm. The

HIV effect was tested on each voxel in the GM masks of the c-independent subset by a General

Linear Model implemented in Permutation Analysis of Linear Models (PALM, with 5,000 permuta-

tions) [10]. Covariates of GLM included sex, age and the diagnosis label. The resulting one-tailed

voxel-wise p-values associated with the diagnosis label were corrected for spatial coherence by FSL

Threshold-Free Cluster Enhancement (TFCE) [8] and for family-wise error at the 5% level across

space. This test procedure was then repeated on the white-matter masks. Supplementary Figure
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Supplementary Figure 5: The 5-fold classification accuracy and distance correlation (dcor2) mea-

sures with respect to different λ in CF-Net.

Supplementary Figure 6: Training losses of Lp and Lcp averaged over 5-fold cross-validation.

4c displayed voxels with significant GM (blue) and WM loss (yellow). All the aforementioned 10

regions identified by CF-Net except for the amygala showed WM loss.

Selection of λ. For each candidate λ ∈ [0, 25], we performed 5-fold cross validation to record the

classification accuracy on the c-independent subset and trained CF-Net on all subjects to measure

dcor2 on the control cohort. According to Supplementary Figure 5, small λ resulted in high

dcor2 values with age (large confounder effect) and low HIV classification accuracy. When using

a large λ, CF-Net did not further reduce the dcor2 metric but negatively impacted the accuracy

of HIV classification as the model overemphasized the age prediction task in the feature-learning

process. The range of λ ∈ [0.5, 5] balanced classification accuracy with the constraint of conditional

independence with respect to the confounder.

Loss Curves. Supplementary Figure 6 represents the losses of Lp and Lcp of CF-Net along train-

ing iterations. Both loss curves approximately converged after training with 1,000 mini-batches

indicating the model simultaneously achieved accurate HIV classification (low prediction loss) and

confounding effect removal (low correlation loss). The slight oscillation of Lcp after 1,000 iterations

was likely to be the result of the competing game underlying the min-max objective (Eq. 3, main

article).
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Additional Results on Sex Differences in Adolescent Brains of the NCANDA Study.

Similar to the HIV experiment, we inspected the statistical dependence between the learned fea-

tures and the confounder by evaluating the prediction accuracy of CP on the features. The features

of CF-Net seemed to be less predictive of PDS than those of ConvNet as they recorded lower cor-

relations and higher MSE measures between predicted and ground-truth PDS (see Supplementary

Figure 7). Unlike the HIV experiment, the MSE loss of CF-Net plotted in Fig 7b was signifi-

cantly higher than that of ConvNet ((p < 0.001 one-sample t333 = 12.2) but was marginally lower

than the null losses. This indicates that the features learned by CF-Net still contained predictive

information for PDS; that is, although CF-Net significantly alleviated the PDS effect in the sex

prediction, it might not fully remove the effect.

Next, we extended the classification and feature space analysis with respect to the loss functions

defined in Zafar et al. [12] and Sadeghi et al. [7]. For both approaches, the modeling between

Supplementary Figure 7: NCANDA experiment: After each training run of the 5-fold cross-

validation, CP was (re-)trained to predict PDS based on the features extracted by each imple-

mentation.

Supplementary Table 2: Top: BAcc (precision/recall) on predicting sex from MRIs of NCANDA;

Bottom: Uncorrected p-value of DeLong’s test associated with the improvement of each method

over the Convnet baseline.

Whole Cohort c-independent PDS<3.2 PDS>3.2

Method BAcc Pre / Rec F1-Score BAcc Pre / Rec BAcc Pre / Rec BAcc Pre / Rec

ConvNet 90.3 95.5/85.2 90.5 87.3 92.5/82.5 79.5 92.8/68.1 90.6 91.0/90.0

Zafar et al. 88.6 91.4/85.6 88.4 86.7 90.5/83.0 82.6 95.6/69.5 92.9 95.6/89.8

Sadeghi et al. 86.7 92.8/80.9 86.5 82.8 90.6/75.0 79.1 89.8/69.4 85.3 92.9/77.8

CF-Net 88.8 93.6/84.1 88.6 88.5 83.8/94.0 87.8 88.4/87.0 93.0 88.4/97.0

Method Whole Cohort c-independent subset PDS<3.2 PDS>3.2

Num of Subjects N=674 N=400 N=138 N=262

Zafar et al. - - 0.667 0.533

Sadeghi et al. - - - -

CF-Net - 0.512 0.039∗ 0.201

∗ denotes significant higher prediction accuracy than ConvNet by DeLong’s test (uncorrected p < 0.05).

- denotes no accuracy improvement compared to ConvNet.
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(a) (b)

Supplementary Figure 8: NCANDA experiment: (a) Distance correlation between the learned

features F and PDS (c) recorded on boys; (b) Mutual information between F and c recorded on

boys.

(a) ConvNet

(b) CF-Net

Supplementary Figure 9: Morphological differences between the sexes of the NCANDA cohort

according to ConvNet and CF-Net (conditioned on boys).

features and PDS was confined to the boys according to the analysis summarized by Table 2 (of the

main article). In doing so, CF-Net achieved the highest BAcc on the c-independent subset and the

smallest gap between the BAcc recorded for the early pubertal stage and for the late pubertal stage.

Compared with the results of ConvNet, only CF-Net was significantly more accurate (two tailed

p = 0.039, DeLong’s test, Table 2) for subjects at early pubertal stage (PDS < 3.2). Meanwhile,

CF-Net recorded dcor2 and MI measures that were significantly lower (two-tailed p < 0.0001, t-

test) than those reported for each of the other approaches (Supplementary Figure 8). This indicates

features learned by CF-Net were more impartial to the effect of PDS.

We end the description of the results by reviewing Supplementary Figure 9, which highlights

the regions with high saliency according to ConvNet and CF-Net. ConvNet relied primarily on the

parietal inferior lobe, supramarginal region, cerebellum and sub-cortical regions. CF-Net, on the
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other side, only focused on sub-cortical regions.

Bone Age Prediction from Hand X-Ray Images. Similar to the HIV and NCANDA experi-

ments, we first investigated the capability of CP in predicting confounder values from the learned

features. Since the confounder sex was a binary variable in this application, we replaced the cor-

relation loss of CP with a standard binary cross-entropy (BCE). Note, this prediction task was a

post-hoc analysis that did not involve adversarial training, so the standard BCE loss could directly

be applied. Supplementary Figure 11 shows that the features learned by ConvNet resulted in a

76% classification accuracy of sex, which was significantly higher than the 61% achieved by CF-Net

(two-tailed p < 0.01, DeLong’s test).

Next, we extended the analysis of the bone age prediction to the feature-invariant-learning

approach by Xie et al.[11], whose adversarial loss is defined by the binary cross-entropy. To enable

a fair comparison, we kept all settings the same as in CF-Net other than the adversarial loss,

whose training was confined to the y-conditioned cohort (Section 2.3, main article). According

to Supplementary Figure 12b, Xie et al. [11] recorded significantly higher prediction error than

CF-Net (two-tailed p = 0.0006, two-sample t-test), and it produced larger discrepancy between the

predicted bone age in boys and girls (Supplementary Figure 12a). This sex-related discrepancy was

visually confirmed in Supplementary Figure 13, which revealed the confounding effect was more

pronounced in the age range of 100 months and 150 months.
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