
Reviewers' Comments: 

 

Reviewer #1: 

Remarks to the Author: 

<Summary of review> 

 

This paper proposes confounder-free neural networks, especially considering medical applications. 

In my understanding, this paper holds two main claims: 

 

(1) The standard CNN trained over medical images is substantially influenced by con-founder. 

 

(2) The issues can be alleviated by adversarial training over the y-conditioning cohort. 

 

While the experimental results seem extensive and proposed methods have some methodological 

novelty, several technical details need to be clarified. 

 

<Major comments / questions> 

 

(1) Technical detail of the proposed method. 

 

In my understanding, the main technical advance in this paper is the introduction of y-conditioning 

technique (while using correlation measurements is also somewhat new), which helps adversarial 

training to focus on removal of direct influences between c and F and ignoring the relationships 

between c and y 

 

Q1-1. When and how does y-conditioning apply? Does it applied once before training, or do we 

select a y-conditioned subset for each mini-batch during training? Besides, when the c is 

continuous multivariate variable as assumed in 4.2, exact y-conditioning is difficult. How exactly 

conduct y-conditioning? How does the performance on y-conditioning affect the performance? 

 

Q1-2. Why do you choose the correlation scores instead of the log-likelihood, which is commonly 

used in prior works, e.g., [4, 54]? How does the performance changes if we change the 

optimization metrics? 

 

(2) Experimental design. 

 

From my viewpoints, the main strength of the paper is extensive experimental results on various 

medical image datasets. However, many experimental design are unclear for me. Please clarify 

below. 

 

Q2-1. Why do you compare the performance on (a) c-dependent cohorts and (b) c-independent 

cohorts? 

 

For example, authors claim that 

"While the accuracy, prediction and recall of CF-Net were similar to therst experiment, the 

balanced accuracy of 3D ConvNet reduced to 68.4%, which now was signicantly lower (p = 0:035, 

DeLong's test) than the BAcc of CF-Net (74.2%)" in page 4. 

 

However, the performance degradation is natural since the number of training datasets is 

decreased. So, I don't think that the performance drop directly indicates the CNN is substantially 

biased by confounder. 

 

Q2-2. Related to the Q2-1, I do not fully understand what metric the paper try to 

maximize/minimize, and what application scenario they are considering. In other words, it is not 

clear to me why the authors chose the specific metrics reported in this paper. As discussed in the 



fair representation learning articles, which tackle related technical problems, there are many 

possible metrics to compare the performance. As the different metrics measure the different 

aspects, I strongly recommend adding a discussion about why we need to focus on the metrics 

reported in this paper. 

 

Ref: "21 fairness definitions and their politics", 

[https://fairmlbook.org/tutorial2.html](https://fairmlbook.org/tutorial2.html) 

 

Related to the above comments, some statements in the introduction needs to be clarified. For 

example, "These different methods, however, fail to provide the means to understand the potential 

effect of the confounder on the outcome" => why does it a problem? 

 

Q2-3. While the author only compares vanilla CNN and the proposed method, [54] can be applied 

for continuous variable settings. Why don't you compare it besides? 

 

Q2-4. How does the weighing parameter \lambda is selected? How the choice of hyperparameter 

affect the results? The article describes that they used 5-fold cross-validation thorough out the 

paper, but never mentioned the validation procedures. 

 

<Minor comments> 

- Reference on page 2 contains "?". 

- Some parts of section 2 discuss the balance between precision and recall. However, the balance 

can be controlled by changing the thresholds, and therefore I'm not sure what can be said from 

the balance itself. Instead, PR-curve is a better metric in the case. 

- Why the performance on the c-independent cohort does not drop for the proposed method, even 

though the number of total examples is decreased? 

- While the authors claim that "CF-Net could alleviate the confounding effect in the prediction 

according to the higher accuracy measured on a `c-independent' sub-cohort compared to the 

ConvNet" (on the top of page 7), I do not think we can make this conclusion only from this results, 

as there is no confounding effect when we use the c-independent sub-cohort. Please clarify the 

statements. 

- p9, line 280 needs a comma after c_\rho. 

- While the equations do not contain expectations over the batch, I think the proposed method 

also uses mini-batch training. Please correct the equations. 

- Section 4.3 should contain optimization detail for reproduction. 

 

 

 

Reviewer #2: 

Remarks to the Author: 

Zhao and colleagues present a very interesting manuscript on the important topic of statistical 

confounders in deep learning models in medical imaging. They offer a novel adversarial approach 

to remove confounding effects from end-to-end classification and regression models by directly 

modelling the link between the confounding and the input features in sub-samples of the data 

where there is no dependence between the confounder and the outcome of interest. 

The study has a strong rationale and is very well-considered in the design of the confounder-free 

network, which I found compelling. They have cleverly updated classical statistical principles for 

the context of deep learning and supported their ideas with three separate experiments, which is a 

real strength. The application of the CF-Net to continuous variables is particularly interesting. 

However, when it comes to the reporting of the Results, I began to get a rather confused and I 

couldn’t properly evaluate just how effective their new approach is relative to the ConvNet 

baseline. There is a lack of consistency between the three experiments in terms of exactly what 

results are reported. The don’t include the whole-cohort result from the NCANDA experiment in 

Table 2, and there isn’t even a results table for the bone-age experiment. For example, I think it 

would be important to know whether the differences in MAE reported in Figure 5d are significant. 



Also, the t-SNE and distance correlation results are only reported for the HIV experiment. To me, it 

makes sense that all three experiments are reported in a consistent way, unless there’s a clear 

rationale for omitting some metrics in certain cases. 

More fundamentally, I’m not sure I understood the logic of the Results. My initial assumption was 

that the CF-Net was designed to be beneficial (i.e., should outperform the ConvNet) when using 

confounded data, and that the performance would be equivocal when using the confound-

independent data (in other words, when there is no confound, the CF-Net isn’t necessary). 

However, the authors’ logic seems to be the opposite of that, as in the Discussion (line #189) they 

say “CF-Net could alleviate the confounding effect in the prediction according to the higher 

accuracy measured on a ‘c-independent’ sub-cohort compared to the ConvNet.” Perhaps I’m 

getting the wrong end of the stick here. Is the idea that the performance in the whole cohort and 

confound-independent cohorts should be the same if confounds are properly accounted for? But if 

not controlled for (i.e., ConvNet results), the performance in whole cohort is artificially high 

because of the confound? I think it is essential this should be clarified (both to me and in the text), 

as the key results hinge on this point. 

Results. In the confounded HIV dataset (i.e., the whole cohort), presumably the DeLong’s test was 

not significant? This should be reported as it suggested that CF-Net did not outperform the 3D 

ConvNet in this instance. Perhaps add 4 DeLong test results to Table 1 so that it’s clear when 

there’s a difference between the CF-Net and the 3D ConvNet. Would it be worthwhile using the 

DeLong test for all three experiments in fact? 

In the Abstract, it says that the authors’ method results “in superior prediction accuracy compared 

to the baseline and recent invariant feature learning frameworks”. The results of the comparison 

with recent invariant feature learning frameworks seems to only appear in the Supplementary 

material and are not mentioned in the main text, unless I missed it. I recommend that anything 

that is mentioned in the Abstract should also appear (even if only briefly) in the main text. Also, 

on scrutiny of Table S1, I’m not convinced that the CF-Net significantly outperforms the methods 

by Zafar et al., or Sadeghi et al., in HIV classification, so this claim requires some further 

information to back it up. 

Figure 3 f and g. The authors interpret these patterns of saliency and as being age-related and 

HIV-related respectively. I’m not sure that I agree with this interpretation as both age and HIV 

affect brain structure in a more distributed way than is apparent in the figure. Furthermore, the 

regions mentioned in the Results section (e.g., cerebellum) are not visible at in the figure. To 

make a more convincing argument that the saliency maps for the different networks do indeed 

resemble ageing or HIV I think at the very least they need to include several more brain slices. To 

go further, it would be straightforward to conduct a VBM analysis of group age and of HIV group 

using the same data, then see whether the voxels where volumetric differences are associated 

with these factors are similar to the saliency maps. 

In the Discussion they mention that they ran an SVM on FreeSurfer features on the HIV dataset 

and achieved 69.5%. They say that this is significantly lower than the deep models, but it’s not 

that much lower than the ConvNet (accuracy = 71.6%) and they can only really say ‘significant’ if 

they tested that difference explicitly (e.g., DeLong’s test). Moreover, I contend that this is not 

really a fair comparison. FreeSurfer ROIs are by design reductive, and it’s quite possible to use 

whole brain voxelwise data (e.g., VBM maps) as input in an SVM. My guess is that this would 

achieve better performance as more of the original signal has been retained. I realise that the 

authors’ statement in the Discussion is something of an aside, but it really should be backed up by 

more substantive evidence or removed. 

Methods – the MRI volumes for the HIV dataset were re-scaled to 64^3. This will naturally reduce 

the amount of information contained in each image. How did the authors arrive at 64^3 as the 

right input, and what sort of interpolation was done? Presumably they did the same re-scaling to 

the NCANDA data? 

Figure 5c – I’m not clear what exactly has been plotted here. Can the authors please clarify? 

Generally, I suggest not to use bar plots for anything other than count data and I think the y-axis 

is continuous here. 

Did the authors consider visualising the confounding effects from the adversarial component of the 

network (i.e., CP)? 



To what extent does the data augmentation scheme (especially the left-right flipping) influence the 

saliency maps? 

The precise construction of the Feature Extraction (FE) network is likely to have a big impact on 

exactly what features get used in the model. For bone age they used VGG, but for the MRI 

experiments the FE network was trained from scratch. How did they decide on the specific 

configuration on the network? 

On a more philosophical note, I think some discussion of the following would be informative for 

readers. If this network can remove the influence of confounders, does this mean that there is less 

need to match samples for confounders (e.g., age) when recruiting? Or are we not at that stage 

yet? 

 

 

 

Reviewer #3: 

Remarks to the Author: 

General Comments: 

 

In the manuscript "Training Confounder-Free Deep Learning Models for Medical Applications", Zhao 

et al. propose a deep learning approach to learn features that are invariant to pre-specified 

confounding factors. The authors evaluated the method on three problems, diagnosing of HIV from 

MRIs, identifying morphological sex differences in adolescence, and determining the bone age from 

X-ray images of children. The authors demonstrated that the proposed approach shows robust 

while doing subgroup analysis on the confounding factors. Suggesting the potential for the trained 

model to perform the desired tasks using less information from the confounding factors. 

 

Major comments: 

 

1. The authors proposed Confounder-Free Neural Network with a GAN-like formulation of a min-

max game between the classification prediction network and the confounder prediction network. 

The formulation seems straightforward. It will be helpful if the authors can draw connections and 

highlight the differences between the proposed method and the existing methods in the literature. 

2. Is the proposed method CF-Net the same as the BR-Net in the authors'authors' prior publication 

titled " Representation learning with statistical independence to mitigate bias"? If so, this work's 

contribution might be at the lighter end as the novel part of this manuscript is applying the 

previously proposed methods on three medical image applications. If not, it will be helpful to make 

this clear in the paper and highlight the distinctions. 

3. Since this paper's main contribution is the proposal of the CF-Net method, further discussion on 

the design choices is needed, especially the choices of L_{cp} and the training of CP only on a y-

conditioned cohort. These choices should be justified and compared with alternative methods. For 

example, why only train on a single y-conditioned cohort instead of having some training scheme 

that utilizes all possible y-conditioned cohorts. And why using squared correlation as the loss 

function instead of other alternatives. 

4. Please describe how the operating points were selected for results in Tables 1 and 2. 

5. Please describe the approach to select the confounder-independent cohort. 

6. Please provide confidence intervals for the results in Tables 1 and 2. 

7. L89: "Only 36.3% of the young HIV subjects were correctly labeled." With this context, how 

should we understand the evaluation metrics in Table 1 given these incorrect labels? 

8. Section 2.2: Why are there asymmetric results such that conditioning on boys has different 

results from conditioning on girls? 

9. Discussion: it will be great if the authors can comment on how this method can be extended to 

scenarios without knowing the confounding variables of interest. 

10. I don't quite understand the training approach of only training CP on a cohort of the same y. 

Given a binary dataset with balanced y=0 and y=1, this is essentially only using half of the dataset 

to train CP. Why can't we train with both? 

11. For this GAN-like min-max training, it will be informative for providing the loss functions with 



breakdowns of L_p and L_{cp} over the train and tune set in the Supplementary. I'mI'm also 

curious of how CP performs in predicting confounding variables after the model converges, this will 

highlight to what extent can the confounding information be removed in F. 

 

Minor comments: 

1. L95: upper left region 

2. Section 2.1: If I understand correctly, the proposed CF-Net is compared against the same 

architecture but without the CP part. It might be easier to make this clear and rename the 3D 

ConvNet as ConvNet. 3D isn't the focus, and if you need to add 3D to the name, you might also 

want to update CF-Net to 3D CF-Net. 

3. L160: Can you elaborate a bit more on why a more localized saliency map is preferred in 

predicting age from X-ray? 

 

 



Response Letter (NCOMMS-20-23428) August 2020

Submission ID: NCOMMS-20-23428

Training Confounder-Free Deep Learning Models
for Medical Applications

We appreciate the valuable comments and feedback from the reviewers. To address the comments

while keeping the focus of the article, we explained in further detail the main novelty of the

proposed approach (i.e., ‘y-conditioning’) and moved other relevant analysis to the supplement.

Point-to-point responses to the reviewers’ comments and the modifications in the manuscript

are listed in the following. We also provide a version of the revised manuscript, in which all the

modified text are typeset in blue.

Response to Comments from Reviewer #1:

We thank the reviewer for the positive feedback on the idea of our paper. We carefully addressed

the comments. Please see the responses below

Q1-1a. How exactly conduct y-conditioning?

Response: The ‘y-conditioning’ refers to training CP on a ‘y-conditioned’ cohort, i.e., subjects

of the training data with y values being the same (e.g., controls) or confined to an interval (e.g.,

age range). This revision clarified this point in Section Introduction

“We therefore specifically train CP on a ‘y-conditioned’ cohort, i.e., samples of the

training data whose y values are confined to a specific range”

In the HIV experiment, we conducted ‘y-conditioning’ by

“On the four folds used for training, we used data augmentation to generate two

cohorts of equal size and confined the predictions of age by CP to controls (i.e., the

y-conditioned cohort was defined by y = 0).”

In the NCANDA experiment, we stated

“the modelling of the PDS effect could be conditioned on y = 0 (boys) or y = 1

(girls)”

In the bone-age experiment, we clarified

“the y-conditioned cohort could not be defined with respect to a fixed prediction out-

come. Instead, we applied the CP component to a matched dataset, where the 3,914

boys had the same age range as the 3,518 girls (i.e., y ∈ [75 months, 175 months])”

Q1-1a. When and how does y-conditioning apply? Does it applied once before training, or do

we select a y-conditioned subset for each mini-batch during training?

Response: In line with the prior response, we simply defined the y-conditioned cohort once

from all the training data. During training, we sampled mini-batches from the predefined y-

conditioned cohort. Note, while we did not perform y-conditioning for each mini-batch, these
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two approaches result in similar models as the mini-batch gradient descent is simply a numerical

algorithm that optimizes the objective function defined on the whole cohort. We clarified this

point in Section 4.3

“With θfe fixed, we then minimize Lcp to update θcp by computing the correlation of

Eq. (2) over subjects of a mini-batch sampled from the y-conditioned cohort. Finally,

with θcp fixed, Lcp is maximized by updating θfe with respect to the correlation loss

defined on a mini-batch from the y-conditioned cohort.”

How does the performance on y-conditioning affect the performance?

Response: In the revision, we further clarified the impact of y-conditioning on prediction

accuracy with respect to the NCANDA study (see Table 2, Fig. 4) and bone-age study (Fig.

5). In the NCANDA experiment (Section 2.2), we emphasize that CF-Net conditioned on boys

was superior than CF-Net without conditioning

“Confining the training of CP to boys resulted in more accurate predictions (see

Fig. 4(c-e)). In doing so, CF-Net recorded the highest balanced accuracy on the

c-independent subset, had the smallest gap in accuracy across subjects at different

pubertal stages, was significantly more accurate in prediction at the early pubertal

stage (two-tailed p = 0.039 DeLong’s test), and produced features significantly less

predictive of PDS (p < 0.001 one-sample t333 = 12.2, Supplement Fig. S7, S8) than

ConvNet .”

In the bone-age study (Section 2.2), we clarified that

“the prediction accuracy of CF-Net with y-conditioning was significantly higher (ab-

solute error 11.2±8.7 months) than that of the baseline ConvNet and CF-Net without

y-conditioning (two-tailed p < 0.001, one-sample t3152 = 14.2, two-sample t-test, Fig.

5(d)).”

Q1-1b. Besides, when the c is continuous multivariate variable as assumed in 4.2, exact y-

conditioning is difficult.

Response: This comment by the reviewer points out a weakness in our original formulation

for the case that y is continuous and correlates with multiple c (confounders) regardless of c

being continuous or discrete. In the revision, we improved the notation in Section 4.2, kept the

focus of each experiment on a single confounder, and discussed this potential weakness in the

new limitation section.

We clarified in Section 4.2 that when c is multivariate, the y-conditioned cohort is constructed

with respect to all confounders

“We train CP only on a y-conditioned cohort consisting of subjects whose target y

values are uncorrelated with all k confounders.”

This clarification does not impact experiments where the y is binary (or multinominal) as y

can be conditioned within one group such as in the HIV and NCANDA experiments. In the
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case that y is continuous (such as bone age), the y-conditioned cohort needs to be assembled

in such a way that their y values are uncorrelated with respect to the confounder, a procedure

described in Section 2.3

“the y-conditioned cohort could not be defined with respect to a fixed prediction out-

come. Instead, we applied the CP component to a matched dataset, where the 3,914

boys had the same age range as the 3,518 girls (i.e., y ∈ [75 months, 175 months])”

When performing this procedure with respect to multiple confounders, the sample size of the

resulting y-conditioned cohort is likely to reduce significantly, which reduces the quality of

training of CP. A potential solution to this issue is to define a separate y-conditioned cohort for

each confounding variable assuming that two confounders are conditionally independent with

respect to y. We added this point to the limitation section:

“In case predictions are biased by multiple confounders, we would need to extend CP
to predict multiple outputs (one for each confounder) or add for each confounder a

CP component to CF-Net. In the simple scenario that the confounding variables are

conditionally independent with respect to y, each CP component can be trained on

a separate y-conditioned cohort uniquely defined for each confounder. However, the-

oretical and practical ways in modeling high-order interactions between confounders

require further investigation.”

Q1-2. Why do you choose the correlation scores instead of the log-likelihood, which is com-

monly used in prior works, e.g., [4, 54]? How does the performance changes if we change the

optimization metrics?

Response: We clarified in the Discussion that log-likelihood as the adversarial loss only works

for binary or categorical variables [4,54] while the correlation loss also works for continuous ones.

“Another important property of CF-Net is its ability to model continuous con-

founders (e.g. age) whereas most existing fair machine learning methods [9, 7, 4,

14, 61, 48] are confined to binary or discrete confounders (e.g., gender).”

Specifically, the log-likelihood for continuous variables is defined by the Mean-Squared Error

(MSE), which is an ill-posed objective according to [3]. This was also supported by Supplement

Table S1, Table S2, Fig. S3, and Fig. S8 that include the results based on Sadeghi et al. 2019,

which used MSE as the adversarial loss. Those results indicated that MSE was less effective

in removing the confounding effect in the feature space as the distance correlation and mutual

information reported for Sadeghi et al. 2019 were higher than those for the correlation loss. As

it is an important point of discussion but not the focus of the main article, we briefly mention

the statistical properties of the correlation loss in the Discussion:

“This improvement is achieved by our novel loss function based on squared correla-

tion (see Methods section). As discussed in our technical report [3], our adversarial

loss theoretically achieves statistical mean independence between confounder and the

learned features [3] and outperformed other state-of-the-art deep models in learning

impartial features and unbiased model interpretation”
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Q2-1. Why do you compare the performance on (a) c-dependent cohorts and (b) c-independent

cohorts? The performance degradation is natural since the number of training datasets is de-

creased. So, I don’t think that the performance drop directly indicates the CNN is substantially

biased by confounder.

Response: As we now clarify in the method section, a drop in accuracy is not natural as we first

trained the model on the training data set and then used the same trained model to produce

two accuracy scores on the testing data: one on the whole testing data and one on a subset

where the y values were matched with respect to c (we renamed it as c-independent subset in

this revision). We clarified this point in Section 2.1

“The prediction accuracy on the testing folds was measured by balanced accuracy

(BAcc) [38] (to account for different numbers of subjects in each cohort), and pre-

cision and recall rates according to the uninformative operating point of 0.5. To

investigate if the prediction of the models was confounded by age, we also recorded

the three accuracy scores of the approaches (without re-training) on a ‘confounder-

independent’ subset (c-independent).”

With respect to the motivation behind comparing the accuracy on the whole cohort to the

c-independent subset, the manuscript now clarifies in the Discussion section that we use this

comparison to quantify the severity of confounding effects in a model

“by measuring the difference between the testing accuracy recorded on the whole

(confounded) cohort and on the c-independent (unconfounded) subset. We viewed

this difference as a metric for the severity of the confounding effects: the larger the

difference, the more confounded the model.”

Q2-2a. Related to the Q2-1, I do not fully understand what metric the paper try to max-

imize/minimize, and what application scenario they are considering. In other words, it is

not clear to me why the authors chose the specific metrics reported in this paper. As dis-

cussed in the fair representation learning articles, which tackle related technical problems,

there are many possible metrics to compare the performance. As the different metrics mea-

sure the different aspects, I strongly recommend adding a discussion about why we need to

focus on the metrics reported in this paper. Ref: “21 fairness definitions and their politics”,

[https://fairmlbook.org/tutorial2.html](https://fairmlbook.org/tutorial2.html)

Response: In line with the previous comment, we deliberate on the concept of ‘fairness’ in the

Discussion. As pointed out in the reference provided by the reviewer, there is no consensus on

the strict definition of fairness. One common strategy in fair learning is to inspect whether the

prediction outcomes systematically differ with respect to various validation groups (i.e., concept

of ‘group fairness’ or ‘demographic parity’). These validation groups can be defined based on

whether the cohort is confounded or not (group fairness, e.g., whole cohort vs. c-independent),

or can be defined with respect to subjects of different confounder values (demographic parity,

e.g., young vs. old). These points were added to the Discussion

“training models on confounded data now requires evaluating the ‘fairness’ of model

predictions with respect to confounders. In line with the concept of ‘group fairness’ or
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‘demographic parity’ [59, 6], one can do so by examining whether the predictive power

of the model varies across different ‘validation subsets’. We did so by measuring the

difference between the testing accuracy recorded on the whole (confounded) cohort

and on the c-independent (unconfounded) subset. We viewed this difference as a

metric for the severity of the confounding effects: the larger the difference, the

more confounded the model. Another way of defining validation subsets is to group

testing subjects according to their confounder values (see Fig. 3(b,c), 4(b-e)). In

all three experiments, CF-Net achieved more balanced prediction accuracies across

those subsets than ConvNet, further highlighting the fairness of the CF-Net model.”

Moreover, our evaluation extended beyond the commonly used fairness metrics that are specifi-

cally designed for binary variables and inspect confounding effects in prediction outcomes (pre-

dictive parity, equalized odds, etc). Experiments in the supplement directly quantify the con-

founding effects in the underlying features learned by models based on dcor2, mutual information,

and prediction accuracy of CP (Supplement Fig. S2, S3, S7, S8, S10). We clarified this in the

discussion

“our adversarial loss theoretically achieves statistical mean independence between

confounder and the learned features [3] and outperformed other state-of-the-art deep

models in learning impartial features and unbiased model interpretation (see experi-

ments in Supplement Sections A through D). These complementary tests thoroughly

assessed the confounding effects in the underlying feature space and extended beyond

the aforementioned fairness evaluation defined on prediction outcomes.”

Q2-2b. Related to the above comments, some statements in the introduction needs to be clarified.

For example, “These different methods, however, fail to provide the means to understand the

potential effect of the confounder on the outcome” why does it a problem?

Response: To clarify, we improved the overview of traditional approaches for controlling con-

founding effects in the introduction:

“Traditionally, studies control for the impact of confounding variables by eliminat-

ing their influences on either the output or the input variables. With respect to the

output variables, one can reduce the dependency to confounders by matching con-

founding variables across cohorts (during data collection) [1] or through analytical

approaches, such as standardization and stratification [5, 43]. Associations between

confounders and input variables are frequently removed by regression analysis [2,

43], which produces residualized variables that are regarded as the confounder-free

input to the prediction models.”

Q2-3. While the author only compares vanilla CNN and the proposed method, [54] can be

applied for continuous variable settings. Why don’t you compare it besides?

Response: In line with the response to Q1-2, [54] only applies to binary confounders, and Xie

et al. acknowledged in [54] that “... But in this paper, we focus mainly on instances where s is a

discrete label with multiple choices. We plan to extend our framework to deal with continuous s
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and structured s in the future.” Therefore, we performed comparison to [54] only in the bone age

prediction experiment, where the confounder sex is a binary variable. The results were included

in Supplement Section D and Fig. S11, S12. In a brief summary, using binary cross-entropy as

in [54] produced higher prediction error than CF-Net (p = 0.0006, two-sample t-test).

Q2-4. How does the weighing parameter λ is selected?

Response: In the revision, we conducted additional experiments on assessing the impact of the

weighing parameter λ. We first clarified in Section 4.3 that in all experiments λ was set to 1:

“We set λ to 1 (see Supplement Fig. S5)”

How the choice of hyperparameter affect the results? We performed a posthoc analysis in the

HIV experiment to examine the impact of λ on classification accuracy and statistical properties

of the learned features. These results were included in Supplement Section B.4 and Fig. S5.

“For each candidate λ ∈ [0, 25], we performed 5-fold cross validation to record the

classification accuracy on the c-independent subset and trained CF-Net on all sub-

jects to measure dcor2 on the control cohort. According to Fig. S5, small λ resulted

in high dcor2 values with age (large confounder effect) and low HIV classification

accuracy. When using a large λ, CF-Net did not further reduce the dcor2 metric but

negatively impacted the accuracy of HIV classification as the model overemphasized

the age prediction task in the feature-learning process. The range of λ ∈ [0.5, 5] bal-

anced classification accuracy with the constraint of conditional independence with

respect to the confounder.”

We added these experiments to the supplement as we regard the hyperparameter tuning as a

topic orthogonal to the study objective of examining the impact of ‘y-conditioning’ on removing

confounding effects.

Q2-4. The article describes that they used 5-fold cross-validation thorough out the paper, but

never mentioned the validation procedures.

Response: In the revision, we added to Section 2.1 that

“The prediction accuracy of the models was determined via 5-fold cross-validation.

On the four folds used for training, we used data augmentation to generate two

cohorts of equal size ... The prediction accuracy on the testing folds was measured

by balanced accuracy (BAcc) [38] (to account for different numbers of subjects in

each cohort), and precision and recall rates according to the uninformative operating

point of 0.5.”

- Minor comments:

- Reference on page 2 contains “?”

Response: We fixed the typo in the resubmission.

- Some parts of section 2 discuss the balance between precision and recall. However, the balance

can be controlled by changing the thresholds, and therefore I’m not sure what can be said from

the balance itself. Instead, PR-curve is a better metric in the case.
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Response: We clarified in Section 2.1 that we set the threshold

“according to the uninformative operating point of 0.5. ”

and complemented analysis with violin plots (Fig. 3 and Fig. 4). We are of the opinion

that such qualitative and quantitative description of the balance between precision and recall

is scientifically rigorous. First, we avoided the need to set a data-specific threshold by creating

a training set that was balanced across cohorts (by means of data augmentation). It allowed

us to use a fair and non-informative threshold of 0.5 for defining precision and recall during

testing. Next, we also included the violin plots in Fig. 3 and Fig 4 that reflected the balance

between precision and recall more intuitively than the PR-curve. For the results of ConvNet,

we highlighted the imbalance with black circles, which comprehensively outlined the skewed

distribution of ConvNet prediction scores. In particular, we can see that the prediction scores

of HIV subjects (or girls in the NCANDA experiment) falsely ‘leaked’ into the lower portion of

the plots, supporting our discussion on the imbalanced precision and recall in the tables. For

example, in Section 2.1 of the revision, we clarified

“As indicated by the black circles in Fig. 3(b), most of the young HIV subjects were

falsely labelled as controls by ConvNet (only 36.3% recall rate according to Table 1)

as the control cohort was significantly younger than the HIV positive subjects.”

- Why the performance on the c-independent cohort does not drop for the proposed method,

even though the number of total examples is decreased?

Response: In line with the comment in Q2-1, the prediction accuracy does not drop as the

c-independent subset is only used in the testing stage as clarified in Section 2.1

“To investigate if the prediction of the models was confounded by age, we also

recorded the three accuracy scores of the approaches (without re-training) on a

‘confounder-independent’ subset (c-independent).”

One would expect a drop in accuracy if the number of training samples would decrease, which

was not the case in our experiments. In other words, accuracy scores on the c-independent

subset and whole cohort were derived by the same trained model.

- While the authors claim that “CF-Net could alleviate the confounding effect in the prediction

according to the higher accuracy measured on a ‘c-independent’ sub-cohort compared to the

ConvNet” (on the top of page 7), I do not think we can make this conclusion only from this

results, as there is no confounding effect when we use the c-independent sub-cohort. Please

clarify the statements.

Response: As mentioned in the prior response, we reworded this statement in the Discussion.

We wanted to highlight that while CF-Net resulted in similar accuracy on the whole cohort and

c-independent subset, a confounded model (ConvNet) would show reduced testing accuracy on

the c-independent subset compared with the whole cohort.
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“training models on confounded data now requires evaluating the ‘fairness’ of model

predictions with respect to confounders. In line with the concept of ’group fairness’ or

‘demographic parity’ [59, 6], one can do so by examining whether the predictive power

of the model varies across different ‘validation subsets’. We did so by measuring the

difference between the testing accuracy recorded on the whole (confounded) cohort

and on the c-independent (unconfounded) subset. We viewed this difference as a

metric for the severity of the confounding effects: the larger the difference, the more

confounded the model.”

- p9, line 280 needs a comma after cρ.

Response: We fixed the typo in the resubmission.

- While the equations do not contain expectations over the batch, I think the proposed method

also uses mini-batch training. Please correct the equations.

Response: We view the mini-batch gradient descent algorithm as a numerical optimization

approach that does not affect the formulation of the objective function. In line with most

existing deep learning works, we define the objective function with respect to the whole cohort

and use mini-batches only during optimization. We clarify this point in Section 4.3 that

“In each iteration, we first train Lp on a mini-batch sampled from all available

training data. The loss of Lp was back-propagated to update θfe and θp. With

θfe fixed, we then minimize Lcp to update θcp by computing the correlation of Eq.

(2) over subjects of a mini-batch sampled from the y-conditioned cohort. Finally,

with θcp fixed, Lcp is maximized by updating θfe with respect to the correlation loss

defined on a mini-batch from the y-conditioned cohort.”

Section 4.3 should contain optimization detail for reproduction.

Response: In addition to the above optimization procedure added to Section 4.3, we also

specified

“We set λ to 1 (see Supplement Fig. S5) and use a batch size of 64 subjects and

Adam optimizer with a learning rate of 0.0002.”
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Response to Comments from Reviewer #2:

We thank the reviewer for the positive feedback. We carefully addressed the comments. Please

see the responses below

There is a lack of consistency between the three experiments in terms of exactly what results are

reported. The don’t include the whole-cohort result from the NCANDA experiment in Table 2,

and there isn’t even a results table for the bone-age experiment. For example, I think it would

be important to know whether the differences in MAE reported in Figure 5d are significant.

Also, the t-SNE and distance correlation results are only reported for the HIV experiment. To

me, it makes sense that all three experiments are reported in a consistent way, unless there’s a

clear rationale for omitting some metrics in certain cases.

Response: While in the original submission we chose different representation styles to focus

on the unique aspects of each experiment, we understand now that this might make the article

harder to follow. In the revision, we unified the results between HIV and NCANDA experiments

by adding the ’whole-cohort’ results to Table 2, adding the t-SNE and saliency-map results to

Figure 4, adding the comparison with the two other baseline approaches in the supplement (see

Fig. S3, Fig. S8, Table S1, and Table S2). However, the setup of the bone age experiment was

substantially different from the HIV and NCANDA experiments (classification vs. regression,

binary vs. continuous confounder), thereby requiring the presentation of the results to differ from

the previous two experiments. For instance, while the classification results can be summarized in

a table of BAcc, precision and recall scores, a more intuitive way of reporting regression results

are boxplots of absolute errors.

More fundamentally, I’m not sure I understood the logic of the Results. My initial assumption

was that the CF-Net was designed to be beneficial (i.e., should outperform the ConvNet) when

using confounded data, and that the performance would be equivocal when using the confound-

independent data (in other words, when there is no confound, the CF-Net isn’t necessary).

However, the authors’ logic seems to be the opposite of that, as in the Discussion they say “CF-

Net could alleviate the confounding effect in the prediction according to the higher accuracy

measured on a ‘c-independent’ sub-cohort compared to the ConvNet.” Perhaps I’m getting the

wrong end of the stick here. Is the idea that the performance in the whole cohort and confound-

independent cohorts should be the same if confounds are properly accounted for? But if not

controlled for (i.e., ConvNet results), the performance in whole cohort is artificially high because

of the confound? I think it is essential this should be clarified (both to me and in the text), as

the key results hinge on this point.

Response: The reviewer’s understanding is correct. If the confounder was correctly mod-

eled during training, the network would record similar testing accuracy on the whole and c-

independent subset (as in the CF-Net results). If improperly modeled, the prediction accuracy

would substantially drop for the c-independent subset (as in the ConvNet results). This finding

is discussed in Section 2.1

“Compared to the whole cohort, CF-Net recorded a similar BAcc of 74.2% on the

c-independent subset, which was significantly higher (two tailed p = 0.035, DeLong’s
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test) than the BAcc of ConvNet (BAcc: 68.4%).”

and Section 2.2

“Based on 5-fold cross-validation, the accuracy of ConvNet in predicting sex dropped

from 90.3% across all samples to 87.3% on a c-independent subset.”

To further clarify the underlying logic, we also rephrased the Discussion:

“training models on confounded data now requires evaluating the ‘fairness’ of model

predictions with respect to confounders. In line with the concept of ’group fairness’ or

‘demographic parity’ [59, 6], one can do so by examining whether the predictive power

of the model varies across different ‘validation subsets’. We did so by measuring the

difference between the testing accuracy recorded on the whole (confounded) cohort

and on the c-independent (unconfounded) subset. We viewed this difference as a

metric for the severity of the confounding effects: the larger the difference, the more

confounded the model.”

Results. In the confounded HIV dataset (i.e., the whole cohort), presumably the DeLong’s test

was not significant? This should be reported as it suggested that CF-Net did not outperform

the ConvNet in this instance. Perhaps add 4 DeLong test results to Table 1 so that it’s clear

when there’s a difference between the CF-Net and the ConvNet. Would it be worthwhile using

the DeLong test for all three experiments in fact?

Response: According to the reviewer’s suggestion, we computed p-values for all three experi-

ments, which included adding DeLong’s test results to Table 1 (HIV experiment) and Table 2

(NCANDA experiment). The improvement of CF-Net compared with ConvNet on the whole

cohort of the HIV experiment was at a trend-level (p=0.068). We added in Section 2.1 that

“Although this improvement was only on a trend-level according to DeLong’s test

(two tailed p = 0.068), CF-Net recorded a more balanced precision (73.4%) and

recall scores (75.4%) than ConvNet.”

Furthermore, CF-Net was significantly more accurate than ConvNet on the c-independent subset

“CF-Net recorded a similar BAcc of 74.2% on the c-independent subset, which was

significantly higher (two tailed p = 0.035, DeLong’s test) than the BAcc of ConvNet

(BAcc: 68.4%).”

On the NCANDA experiment, CF-Net conditioned on boys recorded significantly more accurate

prediction than ConvNet during the early pubertal stage. As stated in Section 2.2:

“...was significantly more accurate in prediction at the early pubertal stage (two-

tailed p = 0.039 DeLong’s test)...”
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Note, the bone-age prediction task was a regression problem, so we report two-sample t-test

results of the absolute prediction errors, i.e., Section 2.3

“the prediction accuracy of CF-Net with y-conditioning was significantly higher (ab-

solute error 11.2±8.7 months) than that of the baseline ConvNet and CF-Net without

y-conditioning (two-tailed p < 0.001, one-sample t3152 = 14.2, Fig. 5(d))”.

In the Abstract, it says that the authors’ method results “in superior prediction accuracy com-

pared to the baseline and recent invariant feature learning frameworks”. The results of the

comparison with recent invariant feature learning frameworks seems to only appear in the Sup-

plementary material and are not mentioned in the main text, unless I missed it. I recommend

that anything that is mentioned in the Abstract should also appear (even if only briefly) in the

main text.

Response: We agree with this comment and removed the part “and recent invariant feature

learning frameworks” in the abstract. The revised main manuscript focuses on discussing the

y-conditioning strategy in handling the inherent correlation between features and confounders

encountered in some medical applications. We also kept the comparison between our correlation

loss and losses proposed by other invariant-feature-learning approaches in the supplement.

Also, on scrutiny of Table S1, I’m not convinced that the CF-Net significantly outperforms the

methods by Zafar et al., or Sadeghi et al., in HIV classification, so this claim requires some

further information to back it up.

Response: To clarify what we mean by the ‘superiority’ of a model with respect to our exper-

iments, we now state in the Discussion that it

“Therefore, the superiority of a prediction model for medical imaging applications

should be defined with respect to its predictive power and impartiality to con-

founders.”

In line with the previous comment, we also clarified in the abstract that we aimed to show that

“our method can accurately predict while reducing biases associated with confounders.”

We also added the comparison to the Zafar and Sadeghi papers to the NCANDA experiment

(These two approaches do not apply to the bone-age experiment). While the prediction accu-

racies recorded for CF-Net in the HIV and NCANDA experiments were not significantly higher

than those of the two other approaches, its features were significantly less confounded (p < 0.001

two-sample t-tests) than the other two approaches according to the dcor2 and MI metrics re-

ported in Table S1 and S2, Fig. S3 and S8 of the supplement.

Figure 3 f and g. The authors interpret these patterns of saliency and as being age-related and

HIV-related respectively. I’m not sure that I agree with this interpretation as both age and HIV

affect brain structure in a more distributed way than is apparent in the figure. Furthermore, the

regions mentioned in the Results section (e.g., cerebellum) are not visible at in the figure. To

make a more convincing argument that the saliency maps for the different networks do indeed
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resemble ageing or HIV I think at the very least they need to include several more brain slices.

To go further, it would be straightforward to conduct a VBM analysis of group age and of

HIV group using the same data, then see whether the voxels where volumetric differences are

associated with these factors are similar to the saliency maps.

Response: We added both sagittal and axial view of the saliency map in Fig. 3 and Fig. 4.

We also added the lightbox view (multiple axial slices) of the saliency maps to the Supplement

Fig. S4 and Fig. S9. Lastly, we conducted a VBM analysis to identify the HIV effect within

the c-independence subset. The test procedure were described in the Supplement Section B3

“To put these results in perspective, we identified significant tissue loss in HIV

patients by conducting voxel-based morphometry analysis [5]. Based on the MR

preprocessing pipeline described in the main article, tissue classification was per-

formed by Atropos [2] resulting in Gray-Matter (GM), White-Matter (WM), and

CerebroSpinal Fluid (CSF) masks for each T1w-MRI. The GM and WM masks were

non-rigidly aligned to the SRI24 atlas space by registering the T1W image to a

template, corrected by Jacobian determinant of the resulting deformation, and un-

derwent Gaussian smoothing with an FWHM of 10mm. The HIV effect was tested

on each voxel in the GM masks of the c-independent subset by a General Linear

Model implemented in Permutation Analysis of Linear Models (PALM, with 5,000

permutations) [10]. Covariates of GLM included sex, age and the diagnosis label.

The resulting one-tailed voxel-wise p-values associated with the diagnosis label were

corrected for spatial coherence by FSL Threshold-Free Cluster Enhancement (TFCE)

[8] and for family-wise error at the 5% level across space. This test procedure was

then repeated on the white-matter masks. Fig. S4c displayed voxels with significant

GM (blue) and WM loss (yellow).”

and the results in Section 2.1

“Other regions with high average saliency according to CF-Net are located in the

temporal lobe, inferior frontal gyrus, and subcortical regions including the amygdala

and hippocampus. These regions (except for the amygdala) also exhibited signif-

icant white-matter tissue loss due to HIV according to a traditional voxel-based

morphometry analysis [35] (Supplement Fig. S4)”

While findings from group statistical test (VBM) and machine learning might overlap, they

generally will differ as they essentially ask different questions. VBM is a univariate analysis

that answers the question of ‘whether there is a difference between groups at each voxel’, while

learning models focus on multivariate patterns with large effect size to accurately infer group

assignment on an individual level. Due to their distinct nature, these two approaches often

result in complementary findings [Adeli et al. 2019].

[Adeli et al. 2019] Adeli, Ehsan, Natalie M. Zahr, Adolf Pfefferbaum, Edith V. Sullivan, and

Kilian M. Pohl. “Novel machine learning identifies brain patterns distinguishing diagnostic

membership of human immunodeficiency virus, alcoholism, and their comorbidity of individu-

als.” Biological Psychiatry: Cognitive Neuroscience and Neuroimaging 4, no. 6 (2019): 589-599.
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In the Discussion they mention that they ran an SVM on FreeSurfer features on the HIV dataset

and achieved 69.5%. They say that this is significantly lower than the deep models, but it’s not

that much lower than the ConvNet (accuracy = 71.6%) and they can only really say ‘significant’

if they tested that difference explicitly (e.g., DeLong’s test).

Response: While the prediction accuracy scores associated with SVM were lower than the

deep learning models, we agree with the reviewer that the accuracy improvement from 69%

(best results from SVM methods) to 71% (ConvNet) were not statistically significant, so that

we omitted that word from that sentence:

“For example, the ConvNet baseline reported a higher accuracy (BAcc: 71.6%) in

the HIV experiment than applying a traditional SVM classifier to the 298 brain

regional measurements extracted by FreeSurfer [18] (BAcc: 69.5%).”

Moreover, I contend that this is not really a fair comparison. FreeSurfer ROIs are by design

reductive, and it’s quite possible to use whole brain voxelwise data (e.g., VBM maps) as input in

an SVM. My guess is that this would achieve better performance as more of the original signal

has been retained. I realise that the authors’ statement in the Discussion is something of an

aside, but it really should be backed up by more substantive evidence or removed.

Response: According to the suggestion, we performed SVM analysis on VBM maps. We tested

both linear and non-linear SVM on 4 types of voxel-wise brain maps: WM and GM maps (input

to VBM analysis), Jacobian determinant maps measuring the volume change of the non-rigid

deformation from the T1W space to SRI24 atlas space, raw image intensities (z-scores) of T1W

images non-rigidly registered to the SRI24 atlas without downsampling, and the raw intensities of

images affinely registered and downsampled (input to deep models). We found that linear SVM

resulted in higher prediction accuracy than non-linear SVM. The BAcc scores for the 4 input

types were 63.6%, 69.4%, 60.1%, and 63.4%, which were all lower than the BAcc reported in the

manuscript (including SVM based on Freesurfer Scores). This was to be expected because SVM

and other traditional machine learning approaches are more often applied to brain measurements

and rarely applied to raw brain intensities (or brain maps) due to the curse of dimensionality.

Therefore, we chose to not include these new results in the manuscript, but are happy to add

them if reviewers or the editor are of a different opinion.

Methods – the MRI volumes for the HIV dataset were re-scaled to 643. This will naturally

reduce the amount of information contained in each image. How did the authors arrive at 643

as the right input, and what sort of interpolation was done? Presumably they did the same

re-scaling to the NCANDA data?

Response: The specific resolution of 64× 64× 64 was also chosen in other studies [Louis et al.

2019] and had been evaluated in our own prior study on 3 other neuroimaging applications [37].

The downsampling was based on spline interpolation, and the preprocessing of the NCANDA

images was the same. Note, downsampling the input resolution is a common strategy in medical

imaging studies to increase training batch sizes (especially for the memory-demanding 3D im-

ages) and reduce the chance of overfitting given limited training samples in this domain. These

insights are now part of the Method section

“The registered images were then down-sampled to a 64× 64× 64 volume [65] based
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on spline interpolation to reduce the potential overfitting during training and to

enable a large batch size”

and

“Procedures for preprocessing, downsampling, and classifying the MRI were con-

ducted according to the HIV experiment.”

[Louis et al. 2019] Louis M., Couronné R., Koval I., Charlier B., Durrleman S. (2019) Riemannian

Geometry Learning for Disease Progression Modelling. In: Information Processing in Medical

Imaging. IPMI 2019.

Figure 5c – I’m not clear what exactly has been plotted here. Can the authors please clarify?

Generally, I suggest not to use bar plots for anything other than count data and I think the

y-axis is continuous here.

Response: We changed the bar plot to a curve plot. We also clarified in Section 2.3

“The model tended to overestimate the age of girls compared to boys (Fig. 5(b)),

and this discrepancy was more pronounced in the age range of 110 to 200 months.”

and in the caption of Fig. 5

“ConvNet tended to predict higher age for girls than boys indicating a confounding

effect of sex; (c) This prediction gap between boys and girls was more pronounced

in the age range of 110 to 200 months but was significantly reduced by CF-Net”

Did the authors consider visualising the confounding effects from the adversarial component of

the network (i.e., CP)?

Response: As stated in the new limitation section, visualizing confounding effects within the

proposed CF-Net is a topic of research. As shown in Supplement Fig. S2, S7 and S10, the learned

features in CF-Net are no longer predictive of confounder values, so the CP component could not

be used as a valid predictor (i.e., CP was already ‘fooled’ by the adversarial training). Therefore,

the saliency visualization based on back-propagation [29] is not sensible. We acknowledged this

in the limitation section

“While we were able to visualize the HIV and sex effect by computing saliency maps

[29] inferred from the predictor P, the same technique is not directly applicable to

visualize confounding effects from CP due to the adversarial training. An alternative

could be deriving saliency maps from CP retrained on the features learned by the

baseline ConvNet (e.g., Supplement S2), i.e., a model that substantially captures the

confounding effect.”

.

To what extent does the data augmentation scheme (especially the left-right flipping) influence

the saliency maps?
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Response: As described in the Supplement Section B.3, we only used data augmentation and

flipping during training, and the saliency maps were derived from raw images based on the

learned model. This procedure is now detailed in Section 4.1

“Lastly, a saliency map was computed [29] for the right hemisphere of each test

image quantifying the importance of each voxel to the final prediction.”

and in Supplement B.3

“After each training run, we computed the saliency map for the right hemisphere of

each test image (without augmentation and flipping) based on the model learned on

the training folds.”

We chose to perform left-right flipping during training based on the understanding that the

HIV effects and sex differences in the adolescent brain were bilateral [41,1]. This assumption

was supported by the similar accuracy scores when training models on images without flipping

(ConvNet: 71.6%, CF-net: 74.1%) compared to those of Table 1. We did not included these

numbers in the manuscript as they were only marginally relevant. However, not flipping will

result in the model randomly focusing on one hemisphere more than the other, as learning

algorithms tend to discard redundant information when correlated features (such as from left

and right hemispheres) are present. Interpreting the outcome of the model will thus be more

complicated.

The precise construction of the Feature Extraction (FE) network is likely to have a big impact

on exactly what features get used in the model. For bone age they used VGG, but for the MRI

experiments the FE network was trained from scratch. How did they decide on the specific

configuration on the network?

Response: We clarified in Section 4.3 that we used VGG which is one of the most widely used

architectures for 2D images.

“For the 2D X-ray experiment, the FE and P components complied with the feature

extractor and predictor defined in [34]”

For the MRI experiments, we clarified in Section 4.3 that

“With respect to the network architecture used in the experiments, we followed the

design of FE in [37,65] ...”

It is conceivable that incorporating more advanced network components could potentially fur-

ther improve the prediction accuracy. However, we aimed to conduct experiments based on

simple network architectures in this study to ensure generalizability of the results. 2 × 2 × 2

convolution/max-pooling, batch-normalization and ReLu activation are some of the most fun-

damental and commonly used blocks in ConvNets. Similar network architectures achieved rea-

sonable results in our prior studies [37] on three different neuroimaging applications. The ex-

ploration of network architecture is now briefly discussed in the limitation section as a future

direction.
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“Finally, we abstained from determining the optimal implementation of the proposed

confounder-free modelling strategy by performing extensive exploration of network

architectures. Instead, we relied on some of the most fundamental network compo-

nents used in deep learning. This rather basic implementation still recorded reason-

able prediction accuracies so the findings discussed here are likely to generalize to

more advanced network architectures.”

On a more philosophical note, I think some discussion of the following would be informative for

readers. If this network can remove the influence of confounders, does this mean that there is

less need to match samples for confounders (e.g., age) when recruiting? Or are we not at that

stage yet?

Response: Thank you for this relevant comment. To address this, we added the following text

in the discussion section:

“As discussed, the proposed CF-Net permits training deep models on cohorts not

strictly matched with respect to confounders and avoids discarding unmatched sam-

ples. However, this does not mean that there is no need to keep the confounders in

mind when recruiting participants for medical imaging studies. For learning mod-

els and statistical group tests, performing analysis on confounder-matched cohorts

with sufficient samples (c-independent subsets) remains a fundamental strategy to

disentangle biomarkers of interest from effects of confounders. For instance, when

training a classifier to distinguish two groups that are completely biased by an age

effect (e.g., one has participants with strictly larger age than the other), there is no

guarantee that any method, including ours, can remove the extraneous effects of age

in a purely data-driven fashion.”
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Response to Comments from Reviewer #3:

We thank the reviewer for the positive feedback on the idea of our paper. We carefully addressed

the comments. Please see the responses below

1. The authors proposed Confounder-Free Neural Network with a GAN-like formulation of a min-

max game between the classification prediction network and the confounder prediction network.

The formulation seems straightforward. It will be helpful if the authors can draw connections

and highlight the differences between the proposed method and the existing methods in the

literature.

Response: In response to the comment, we further deliberate on the connection and differ-

ences between CF-Net and other invariant-feature-learning approaches in the introduction and

discussion.

Introduction:

“Possible alternatives could be unbiased [14, 31, 56, 28, 50] and invariant feature

learning approaches 61, 19, 7], which rely on end-to-end training to study the invari-

ance (independence) between the learned features F and a bias factor ( 1○ in Fig.

2(b)). Despite the similarity in the problem setup, ignored by these methods yet

of great importance to medical imaging studies is selecting features F predictive of

the outcome y (i.e., 3○ in Fig. 2(b)), while accounting for the intrinsic relationship

between y and the confounder c (i.e., 2○ in Fig. 2(b)).”

“Instead of enforcing marginal independence between F and c as we propose in

[3], a more principled way of correcting confounding effects is to only remove the

direct association between F and c ( 1○ in Fig. 2(b)) while preserving their indirect

association with respect to y ( 2○ & 3○ in Fig. 2(b)). We therefore specifically train

CP on a ‘y-conditioned’ cohort, i.e., samples of the training data whose y values are

confined to a specific range (referenced as ρ in Fig. 2(a)). In doing so, the features

learned by CF-Net are predictive of y while being conditionally independent of c

(F ⊥⊥ c|y).”

Discussion:

“While recent advances in adversarial learning have shed light on this problem, ex-

isting deep models were only designed to tackle specific confounding effects such as

scanner difference or dataset harmonization [27, 32, 8].”

“Another important property of CF-Net is its ability to model continuous con-

founders (e.g., age) whereas most existing fair machine learning methods [9, 7, 4,

14, 61, 48] are confined to binary or discrete confounders (e.g., gender).”

“general fair/invariant feature learning frameworks could potentially be harmful in

this situation as it is impossible to derive features that are simultaneously discrim-

inative with respect to y and independent with respect to c. ... To address this
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issue, we proposed here to learn the direct link between F and c by modeling their

conditional independence in a y-conditioned cohort”

2. Is the proposed method CF-Net the same as the BR-Net in the authors’ prior publication

titled “Representation learning with statistical independence to mitigate bias”? If so, this work’s

contribution might be at the lighter end as the novel part of this manuscript is applying the

previously proposed methods on three medical image applications. If not, it will be helpful to

make this clear in the paper and highlight the distinctions.

Response: The short answer is that the proposed CF-Net differs from BR-Net described in

[3]. [3] is an unpublished (in a non peer-reviewed venue) technical report written by us, which

presents a method for mitigating the effects of biases in deep learning models. In comparison

with [3] and other prior work for mitigating biases, we argue in the Introduction:

... unbiased [14,31,56,28,50] and invariant feature learning approaches [61,19,7,3]

... rely on end-to-end training to study the invariance (independence) between the

learned features F and a bias factor ( 1○ in Fig. 2(b)). Despite the similarity in the

problem setup, ignored by these methods yet of great importance to medical imaging

studies is selecting features F predictive of the outcome y (i.e., 3○ in Fig. 2(b)), while

accounting for the intrinsic relationship between y and the confounder c (i.e., 2○ in

Fig. 2(b)). An example of such an intrinsic relationship with respect to the age-

confounded MRI dataset is to distinguish the healthy aging of the brain in controls

from aging accelerated by a disease, such as HIV infection [13,12,39].

As a result, all prior models for militating bias (including [3] and others referenced above) are

generally incapable of removing effects of confounders, which our experiments verified.

Here, we further advance the invariant-feature-learning approach of [3] by proposing to enforce

conditional independence based on learning confined to y-conditioned cohorts. This innovation is

critical for applying the approach to medical images. We have clarified these novel contributions

in the revised manuscript, which is the focus of the remainder of this response.

First, instead of repeating the details presented in [3] we highlighted the advantage of that novel

loss function in the Introduction

“ Beyond that, the supplement summarizes additional experiments on the three data

sets (Section B through D) and on a synthetic data set (Section A). These results

converge with the theoretical advantages of our novel adversarial loss function (over

state-of-the-art invariant feature learning schemes). As we systematically studied in

the technical report [3], these advantages include the ability to handle continuous

confounding variables and guaranteeing mean independence between F and c.”

and in the Discussion

“As discussed in our technical report [3], our adversarial loss theoretically achieves

statistical mean independence between confounder and the learned features [3] and
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outperformed other state-of-the-art deep models in learning impartial features and

unbiased model interpretation (see experiments in Supplement Sections A through

D).

With respect to motivating the need for introducing conditional independence, we point out

in the Introduction that confounding variables in medical images play a different role than the

protected bias variables of invariant-feature-learning discussed in [3]:

“Instead of enforcing marginal independence between F and c as we propose in

[3], a more principled way of correcting confounding effects is to only remove the

direct association between F and c ( 1○ in Fig. 2(b)) while preserving their indirect

association with respect to y ( 2○ & 3○ in Fig. 2(b)). We therefore specifically train

CP on a ‘y-conditioned’ cohort, i.e., samples of the training data whose y values are

confined to a specific range (referenced as ρ in Fig. 2(a)). In doing so, the features

learned by CF-Net are predictive of y while being conditionally independent of c

(F ⊥⊥ c|y).”

Finally, modelling confounders is still under-explored in deep learning so we state in the Intro-

duction:

“To the best of our knowledge, this is the first attempt to design an end-to-end,

confounder-free prediction model for medical images, in which the goal is not only

to learn features invariant to a bias variable but also to properly model interactions

among all three variables in a confounded situation.”

and in the Discussion

“general fair/invariant feature learning frameworks could potentially be harmful in

this situation as it is impossible to derive features that are simultaneously discrim-

inative with respect to y and independent with respect to c. ... To address this

issue, we proposed here to learn the direct link between F and c by modeling their

conditional independence in a y-conditioned cohort”

3. Since this paper’s main contribution is the proposal of the CF-Net method, further discussion

on the design choices is needed, especially the choices of Lcp and the training of CP only on a

y-conditioned cohort. These choices should be justified and compared with alternative methods.

Response: We now further justify the design choices and discuss alternative methods in the

response to the proceeding comments by the reviewer. Specifically, the design choice of Lcp is

clarified in the following places:

As stated in the introduction, we offered the first solution in training end-to-end deep learning

models to handle inherent correlation between the confounder c and prediction outcome y. We

motivated the need for ‘y-conditioning’ by emphasizing the challenge that
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“Despite the similarity in the problem setup, ignored by these methods yet of great

importance to medical imaging studies is selecting features F predictive of the out-

come y (i.e., 3○ in Fig. 2(b)), while accounting for the intrinsic relationship between

y and the confounder c (i.e., 2○ in Fig. 2(b)).”

To resolve this issue, we now clarify the proposal in the Introduction

“Instead of enforcing marginal independence between F and c as we propose in

[3], a more principled way of correcting confounding effects is to only remove the

direct association between F and c ( 1○ in Fig. 2(b)) while preserving their indirect

association with respect to y ( 2○ & 3○ in Fig. 2(b)). We therefore specifically train

CP on a ‘y-conditioned’ cohort, i.e., samples of the training data whose y values are

confined to a specific range (referenced as ρ in Fig. 2(a)). In doing so, the features

learned by CF-Net are predictive of y while being conditionally independent of c

(F ⊥⊥ c|y).”

In all three experiments, we explore different strategies of defining the y-conditioned cohort. In

the HIV experiment, we clarified in Section 2.1 that

“... confined the predictions of age by CP to controls (i.e., the y-conditioned cohort

was defined by y = 0).”

and explained in the Discussion section that

“In the HIV experiment, the relation between F and c was supposed to capture

normal aging, which could only be studied on the control group (fixing y = 0) as

HIV accelerates brain aging [13, 12, 39].”

In the NCANDA experiment, we defined the y-conditioned cohort separately with respect to

boys and girls.

“For CF-Net, the accuracy depended on the set of subjects used for training the

component CP, which, unlike in the HIV experiment, was not uniquely defined as

the modelling of the PDS effect could be conditioned on y = 0 (boys) or y = 1

(girls).”

We found the model performed the best when conditioned on boys, and the conditioning with

respect to girls negatively affected the performance. We explained this finding in the Discussion

that

“In the NCANDA experiment, boys (y = 0) or girls (y = 1) would have been

theoretically suitable to train CP being impartial to PDS. Of the two cohorts, training

conditioned on boys resulted in more impartial predictions as this cohort covered the

full range of PDS values, while lower PDS scores were not well represented in the

girl-conditioned cohort as adolescent girls are generally more mature than boys of

the same age.”
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In the bone age experiment, we also explored y-conditioning with respect to a continuous y

variable in Section 2.3, the results of which outperformed CF-Net without conditioning (Fig. 5)

“we applied the CP component to a matched dataset, where the 3,914 boys had the

same age range as the 3,518 girls (i.e., y ∈ [75 months, 175 months])”

For example, why only train on a single y-conditioned cohort instead of having some training

scheme that utilizes all possible y-conditioned cohorts.

Response: As pointed out in the prior response, using all possible y-conditioned cohorts can

lead to suboptimal results such as in the case of the NCANDA experiment when modelling the

PDS effect specific to girls. This was stated in Section 2.2

“Note, conditioning the modeling between F and c on girls not only reduced the

overall balanced accuracy in each sub-group but also enlarged the discrepancy in

precision and recall rates (Fig. 4(d)).”

And why using squared correlation as the loss function instead of other alternatives.

Response: We clarified that most existing adversarial losses only work for binary or categorical

variables while the correlation loss also work for continuous ones. This is now clarified in the

Discussion

“Another important property of CF-Net is its ability to model continuous con-

founders (e.g. age) whereas most existing fair machine learning methods [9, 7, 4,

14, 61, 48] are confined to binary or discrete confounders (e.g., gender).”

We also added new experiments to show that our squared correlation loss outperforms two

other loss functions proposed in ‘Zafar et al. 2017’ and ‘Sadeghi et al’ that are applicable

to continuous variables. These results were included in the Supplement for the HIV study in

the initial submission (Table S1, Figure S3) and replicated for the NCANDA study in this

revision (Table S2, Figure S8). In both experiments, the correlation loss produced features more

impartial to confounders. We explained this finding in the Discussion

“This improvement is achieved by our novel loss function based on squared correla-

tion (see Methods section). As discussed in our technical report [3], our adversarial

loss theoretically achieves statistical mean independence between confounder and the

learned features [3] and outperformed other state-of-the-art deep models in learning

impartial features and unbiased model interpretation”

Moreover, we also added experiments in the bone-age study to show that the squared correlation

loss has the potential to outperform state-of-the-art invariant-feature-learning methods even if

the confounder is binary. Specifically, the comparison to the loss function proposed in “Xie

2017” was given in Supplement Fig. S10.

4. Please describe how the operating points were selected for results in Tables 1 and 2.

Response: We now clarified in Section 2.1 that
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“The prediction accuracy on the testing folds was measured by balanced accuracy

(BAcc) [38] (to account for different numbers of subjects in each cohort), and preci-

sion and recall rates according to the uninformative operating point of 0.5.”

We chose this fair and non-informative threshold as the sample size in the training set was

balanced across cohorts (by means of data augmentation). We complemented the metrics derived

from this threshold by the violin plots (Fig. 3 and 4), which intuitively outlined the whole

distribution of prediction scores for each cohort.

5. Please describe the approach to select the confounder-independent cohort.

Response: As requested, we extended the description of the matching algorithm in Section 4.1

“Construction of the c-independent subset was based on the matching algorithm [1]

that extracted the maximum number of subjects from each group in such a way that

they were equal in size and identically distributed with respect to the confounder val-

ues. For each HIV subject, we selected a control subject with minimal age difference

and repeated this procedure until all HIV subjects were matched or the two-tailed

p-value of the two-sample t-test between the two age distributions dropped to 0.5.”

6. Please provide confidence intervals for the results in Tables 1 and 2.

Response: Instead of reporting on the confidence interval directly, we added the p-value of

DeLong’s test to Table 1 and Table 2 as we found them more informative. The most stringent

way of defining confidence intervals is based on bootstrapping [16], which is computationally

impractical with respect to our deep learning model as it requires at least hundreds of cross-

validation runs to properly define the empirical distribution of the accuracy score (200 runs of

5-fold cross-validation correspond to 1,000 training runs). Alternative approaches are based on

parametric models, such as proposed in [Witten et al. 2005], which are inferred from the sample

size. As we explain in the next paragraph, these confidence intervals seem not very informative.

We are happy to add them if the reviewer or editor is of a different opinion.

Following the procedure in [Witten et al. 2005], each prediction is a binary decision that can

be regarded as a Bernoulli trial. The number of successful trials (correct classification) in a

Bernoulli process follows a binomial distribution, which can be approximated by Gaussian for

large N (for N > 30). In this situation, the 95% interval can be directly derived from the BAcc

score and sample size: c = 1.96
√

BAcc(1− BAcc)/N . For instance, in the HIV experiment, the

confidence interval on the c-independent subset is 68.4%±5.8% for ConvNet and 74.2%±5.4%

for CF-Net. In the NCANDA experiment, the confidence interval on the c–independent cohort is

87.8%±3.3% for ConvNet, 83.3%±3.7% for CF-Net conditioned on all, 84.3%±3.6% for CF-Net

conditioned on girls, and 88.5%±3.1% for CF-Net conditioned on boys.

[Witten et al. 2005] Data Mining: Practical Machine Learning Tools and Techniques, Second

Edition (Morgan Kaufmann Series in Data Management Systems), Ian H. Witten, Eibe Frank

(June 22, 2005)

7. L89: “Only 36.3% of the young HIV subjects were correctly labeled.” With this context, how

should we understand the evaluation metrics in Table 1 given these incorrect labels?
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Response: This result indicates that the prediction of ConvNet was confounded and largely

based on age. Since the CTRL cohort was younger, ConvNet tended to label young HIVs also as

CTRLs. Further supporting this observation was the low recall rate in Table 1 (c-independent

young) and the skewed distribution of prediction scores produced by ConvNet (circled in Fig.

3(b)). We clarified in Section 2.1 that

“As indicated by the black circles in Fig. 3(b), most of the young HIV subjects were

falsely labelled as controls by ConvNet (only 36.3% recall rate according to Table 1)

as the control cohort was significantly younger than the HIV positive subjects.”

8. Section 2.2: Why are there asymmetric results such that conditioning on boys has different

results from conditioning on girls?

Response: We now explain this finding in further detail in the Discussion. In the NCANDA

experiment, the PDS effect could only be effectively modeled in boys (fixing y = 0) as they

offered a wide distribution of PDS enabling a robust regression learning by CP. Conversely,

most girls attained maturity during the age span of NCANDA, so the narrow distribution of the

plateaued PDS prevented further stratification by CP.

“In the NCANDA experiment, boys (y = 0) or girls (y = 1) would have been

theoretically suitable to train CP being impartial to PDS. Of the two cohorts, training

conditioned on boys resulted in more impartial predictions as this cohort covered the

full range of PDS values, while lower PDS scores were not well represented in the

girl-conditioned cohort as adolescent girls are generally more mature than boys of

the same age. ”

9. Discussion: it will be great if the authors can comment on how this method can be extended

to scenarios without knowing the confounding variables of interest.

Response: We thank the reviewer for this valuable suggestion. Handling unknown confounders

is an open research topic for both traditional learning models and statistical analysis approaches,

and is scarcely explored in deep learning. In the revision, we added the following discussion to

the Section of Limitations:

“A limitation of our experiments was the focus on single confounders that were

known a priori. To model unknown confounders, we aim to explore coupling CF-Net

with causal discovery algorithms (such as [58, 21, 52]).”

10. I don’t quite understand the training approach of only training CP on a cohort of the same

y. Given a binary dataset with balanced y=0 and y=1, this is essentially only using half of the

dataset to train CP. Why can’t we train with both?

Response: In line with the response to Comment 3, the reasons for using only one group

were different between the HIV and NCANDA experiments. We now clarify this point in the

discussion:

“However, the specific group chosen to model the conditional dependency is application-

specific.”

23



Response Letter (NCOMMS-20-23428) August 2020

With respect to the HIV experiment, we explained in the Discussion section that

“In the HIV experiment, the relation between F and c was supposed to capture

normal aging, which could only be studied on the control group (fixing y = 0) as

HIV accelerates brain aging [13, 12, 39]”

With respect to the NCANDA experiment, we explained in the Discussion section that

“In the NCANDA experiment, boys (y = 0) or girls (y = 1) would have been

theoretically suitable to train CP being impartial to PDS. Of the two cohorts, training

conditioned on boys resulted in more impartial predictions as this cohort covered the

full range of PDS values, while lower PDS scores were not well represented in the

girl-conditioned cohort as adolescent girls are generally more mature than boys of

the same age. ”

In Section 2.2 and Table 2, the lower prediction accuracy of ‘CF-Net conditioned on girls’ than

ConvNet also justified not to use both y-conditioned cohorts for the NCANDA experiment.

“Note, conditioning the modeling between F and c on girls not only reduced the

overall balanced accuracy in each sub-group but also enlarged the discrepancy in

precision and recall rates (Fig. 4(d)).”

11. For this GAN-like min-max training, it will be informative for providing the loss functions

with breakdowns of Lp and Lcp over the train and tune set in the Supplementary.

Response: As requested by the reviewer, we added the loss curves for the HIV experiment in

Supplement Fig. S6, and briefly discussed the curves in Supplement Section B.5

“Both loss curves approximately converged after training with 1,000 mini-batches

indicating the model simultaneously achieved accurate HIV classification (low pre-

diction loss) and confounding effect removal (low correlation loss). The slight oscil-

lation of Lcp after 1,000 iterations was likely to be the result of the competing game

underlying the min-max objective (Eq. 3, main article).”

I’m also curious of how CP performs in predicting confounding variables after the model con-

verges, this will highlight to what extent can the confounding information be removed in F.

Response: As requested, in all three experiments, we trained CP to predict the confounder value

from the learned features upon the model converges. The testing procedure was summarized

in Supplement Section B.1 and the results were given in Fig. S2, S7, and S10. These results

indicate that in all three experiments the confounding effects were significantly reduced by CF-

Net in the feature space. Further, in the HIV experiment the prediction accuracy of CP was not

significantly better than that of the null classifiers (that produce random or uniform predictions),

indicating that the confounding effects were fully removed from the feature space (Supplement

Fig. S2). This result is summarized in Section 2.1
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“To assess that the unbiased prediction of CF-Net was the result of extracting fea-

tures impartial to normal aging, we performed a post-hoc analysis, in which we

trained CP to predict age from the learned features. Upon convergence of the train-

ing loss in each run of the 5-fold cross-validation, the post-hoc analysis re-trained

CP from scratch on the features extracted from the controls in the training folds

and recorded the predicted age of the controls in the testing fold. According to

Supplement Fig. S2, the features learned by CF-Net no longer contained aging in-

formation as the prediction of age was nearly random (Pearson’s r = 0.12, two tailed

p = 0.17). However, training CP on the features learned by 3D ConvNet resulted in

age prediction of significant accuracy (Pearson’s r = 0.95, two tailed p < .0001).”

Minor comments:

1. L95: upper left region

Response: We fixed this typo in the revision.

2. Section 2.1: If I understand correctly, the proposed CF-Net is compared against the same

architecture but without the CP part. It might be easier to make this clear and rename the

ConvNet as ConvNet. 3D isn’t the focus, and if you need to add 3D to the name, you might

also want to update CF-Net to 3D CF-Net.

Response: As requested, we now refer to the baseline as ConvNet instead of 3D ConvNet.

L160: Can you elaborate a bit more on why a more localized saliency map is preferred in

predicting age from X-ray?

Response: To address this comment, we modified and clarified the sentence in Section 2.3 as:

“The saliency maps of CF-Net were more localized on anatomical structures than

those of ConvNet indicating that the widespread pattern leveraged by ConvNet might

be redundant and relate to confounder-related cues.”
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Reviewers' Comments: 

 

Reviewer #1: 

Remarks to the Author: 

Thank you for providing detailed response. I took a look at the revised paper, author response, 

and comments from other reviewers. As a whole, the revision makes the manuscripts clearer. 

However, I still have several concerns and questions. 

 

(1) Regarding the y-conditioning procedures for regression task. 

According to the revision, the authors define y-conditioning cohort for continuous prediction tasks 

as data confined to an interval (e.g., age range). However, the confounder effect could be 

remaining after this process because it does not necessarily ensure the decorrelation between c 

and y, without carefully selecting the interval. 

 

(1-1) How the selection quality effect the performance? 

(1-2) As the strict range selection possibly significantly decrease the sample size, there are 

tradeoff between sample size and the quality of cohort. For example, when picking up only one 

values, the cohort is strictly y-conditioned, but sample size might be small. How can we select the 

proper interval in practice? 

 

 

(2) > our adversarial loss theoretically achieves statistical mean independence between 

confounder and the learned features [3] 

This claim is very weird for me, because [3] does not give any theoretical guarantee when y-

conditioning techniques are incorporated. Please clarify the sentence. 

 

(3) > we used data augmentation to generate two cohorts of equal size and conned the predictions 

of age by CP to controls (i.e., they-conditioned cohort was defined by y = 0)." 

 

(3-1) Why do we need to generate two cohorts of equal size? 

(3-2) What data augmentation did you use (for reproducibility) ? 

 

<Recommendations> 

Below are several recommendations for authors to make a paper strength or clear, while it it not 

requirements for acceptance. 

 

(3) Methodological perspectives. 

(3-1) Baseline methods 

The main manuscripts compare the ConvNet and CF-Net, however, the outperforming the convnets 

is somewhat trivial as suggested by many other invariant feature learning papers. In other words, 

from the current main manuscripts, the contribution of y-conditioning itself, which is the main 

methodological contributions, is not clear. On the other hands, the supplemental materials contain 

several comparisons with more reasonable baselines, which might be more interesting for potential 

readers. I recommend authors to move some comparison between more reasonable methods into 

main manuscripts. 

 

(3-2) Regarding [54]. 

As, the authors clarified, [54] did not apply the method the case where the confounders are 

continuous. However, the formulation of [54] itself is general enough for continuous case. This is 

also clearly mentioned in [54] as below (and as the authors may acknowledge). 

 

“Note that under our framework, in theory, s can be any type of data as long as it represents an 

attribute of x. For example, s can be a real value scalar/vector, which may take many possible 

values, or a complex sub-structure such as the parse tree of a natural language sentence. But in 

this paper, we focus mainly on instances where s is a discrete label with multiple choices.”. 



 

As the authors mentioned in the response, the log-likelihood of continuous variables is defined by 

the mean squared error, and the [54] can be easily applied for continuous case. Thereby, the 

extensive comparison with [54] is possible, and the results might strengthen the paper. 

 

 

(4) The impact for medical practitioners. 

In my opinion, the potential impact for medical practitioners are not clear from the current 

manuscripts. For example, when the practitioner should use the proposed method? How can we 

incorporate the domain knowledge (if possible)? To make the broader impact, such a discussion is 

preferable. 

 

 

 

Reviewer #2: 

Remarks to the Author: 

The authors have done a good job responding to the comments from myself and the other 

reviewers and the manuscript is markedly improved as a result. I have no further comments or 

suggestions. 

 

 

 

Reviewer #3: 

Remarks to the Author: 

Thanks for the detailed response to my previous comments. I have one remaining comment. For 

the added DeLong tests in Tables 1 and 2, please provide the p-values in the Supplementary 

materials. The authors used 0.05 as the significance threshold for p-values. However, given the 

number of tests the authors performed, the authors should correct for multiple hypothesis testing. 

In Tables 1 and 2, 3 out of 8 tests with p-values slightly less than 0.05 are precisely the scenario 

where a correction is needed. 
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Submission ID: NCOMMS-20-23428A

Training Confounder-Free Deep Learning Models
for Medical Applications

We appreciate the valuable comments and feedback from the reviewers. Point-to-point responses

to the reviewers’ comments and the modifications in the manuscript are listed in the following.

We also provide a version of the revised manuscript, in which all the modified text are typeset

in blue.

Response to Comments from Reviewer #1:

We thank the reviewer for the positive feedback on our revision. We carefully addressed the new

comments. Please see the responses below

Thank you for providing detailed response. I took a look at the revised paper, author response,

and comments from other reviewers. As a whole, the revision makes the manuscripts clearer.

However, I still have several concerns and questions.

(1) Regarding the y-conditioning procedures for regression task. According to the revision,

the authors define y-conditioning cohort for continuous prediction tasks as data confined to an

interval (e.g., age range). However, the confounder effect could be remaining after this process

because it does not necessarily ensure the decorrelation between c and y, without carefully

selecting the interval.

Response: We further clarify in Section 2.3 and Section 4.1 of the revised manuscript that the

decorrelation between age and sex was not due the specific interval selection but guaranteed by

a bootstrapping procedure performed on the interval.

In Section 2.3, we clarified

“Instead, we applied the CP component to a bootstrapped training set of 10,000

boys and 10,000 girls whose age was confined to the interval from 75 months to

175 months and had strictly matched distributions between the two genders (see

Methods section).”

In Section 4.3, we expanded the description of the bootstrapping procedure

“3,914 boys and 3,518 girls, or 80% of the training subjects (Fig. 5a), had bone ages

between 75 months and 175 months (the Full Width at Half Maximum of the age

distribution, Supplement Fig. S10). Confined to this age range, we used bootstrap-

ping [18] to generate 1,000 boys and 1,000 girls within each 10-month interval. This

procedure resulted in a y-conditioned cohort of 10,000 boys and 10,000 girls strictly

matched with respect to bone age (p = 0.19, two-tailed two-sample t-test).”

(1-1) How the selection quality effect the performance?
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(a) (b)

Figure R1: Extension of Fig. 5 of the main text: (a) Prediction accuracy of CF-Net based

on interval-based or matching-based y-conditional cohorts; (b) Discrepancy in predicted age

between boys and girls (sex effect) for each approach.

Response: To address the reviewer’s concern, we compared the results of CF-Net based on

two constructions of the y-conditional cohort. The first one, denoted here as “interval-based

CF-Net”, was the y-conditioned cohort defined in the main text, which was derived from a pre-

determined age interval. The second y-conditioned cohort, denoted here as “matching-based

CF-Net”, was derived by an entirely data-driven matching procedure applied to all ages of the

data. We found that the two CF-Nets performed similarly with respect to prediction accuracy

and confounding effect removal. We now describe this finding in more detail:

For matching-based CF-Net, the data-driven matching [1] first constructed a bipartite graph

such that the first set of nodes represented 5,415 boys and the second set of nodes represented

4,313 girls. An edge was created between any girl and boy with an age gap smaller than 6

months. A Ford-Fulkerson algorithm [2] was then applied to select the maximum number of

matching pairs. This process resulted in an age-matched dataset of 3,730 boys and 3,730 girls

(age difference: p = 0.21 two-sample t-test).

Trained with respect to this y-conditioned cohort, the prediction accuracy of CF-Net (absolute

error 11.2 ± 9.3 months) was similar to the interval-based CF-Net (absolute error 11.2 ± 8.7

months; see Section 2.3 of the main text) according to a two-sample t-test (p = 0.15). Compared

to the three baselines, both CF-Nets were significantly more accurate (p < 0.001, Figure R1a)

and reduced the discrepancy in predicted age between boys and girls (Figure R1b).

Given the similar performance between the two constructions of the y-conditional cohort, we

briefly discussed the new finding in the discussion section:

“When predicting a continuous variable, we proposed to define the y-conditioned co-
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Figure R2

hort by selecting samples whose y was confined to a fixed interval and decorrelating

y and c via bootstrapping. In the bone age experiment, the interval was selected as

the Full Width at Half Maximum (FWHM) [60] of the overall age distribution, which

approximately encompassed 80% of the training subjects and focused only on the

age range with sufficient samples (Supplement Fig S10). This well-represented age

interval facilitated the decorrelation with respect to gender and resulted in a large

y-conditioned cohort for training CP. Another strategy for defining the interval (not

explored in this article) is to model the interval as a hyperparameter, whose opti-

mal setting is determined via parameter exploration during nested cross-validation.

Alternatively, one can bypass the need of selecting interval by using data-driven

matching procedures (e.g., a bipartite graph matching [51] or greedy algorithm [1]),

which in our experiments produced similar accuracy scores as the one based on the

FWHM criteria and bootstrapping. ”

[1] Rosenbaum PR. Optimal Matching for Observational Studies. Journal of the American

Statistical Association. 1989;84(408):1024–1032.

[2] Ford LR, Fulkerson DR. Maximal flow through a network. Canadian Journal of Mathematics.

1956;8:399-404.

(1-2) As the strict range selection possibly significantly decrease the sample size, there are

tradeoff between sample size and the quality of cohort. For example, when picking up only one

values, the cohort is strictly y-conditioned, but sample size might be small. How can we select

the proper interval in practice?

Response: As we discuss below and in the revised discussion, there are several strategies for

selecting the proper interval.

With respect to the strategy chosen in this manuscript, the y-conditioned cohort was determined

by first selecting an age interval according to the Full Width at Half Maximum (FWHM) [60]

of the age distribution (Figure R2) to balance between the size of the y-conditioned cohort
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(width of age interval) and quality of decorrelation (bootstrapping). Choosing a smaller interval

(e.g., the ‘one sample’ example mentioned by the reviewer) increases the risk of overfitting.

On the other hand, if one aims to maximize the sample size by using the whole age span, the

quality of bootstrapping would most likely be lower for the bins belonging to the tails of the age

distribution (e.g., < 75 or > 175) compared to the center bins (e.g., age within [75, 175]). In

other words, if a bin has too few subjects, an extensive resampling is unlikely to approximate the

true distribution of image data for that age bin. Based on the age distribution outlined in Figure

R2, the interval [75 months, 175 months] defined according to FWHM is a compromise between

those extremes. The interval encompassed 80% of the subjects and each age bin contained a

sufficient number of samples. In other words, this interval resulted in a large y-conditioned

cohort for which accurate bootstrapping in each bin was possible. We now add this point to the

Discussion section:

“In the bone age experiment, the interval was selected as the Full Width at Half

Maximum (FWHM) [60] of the overall age distribution, which approximately en-

compassed 80% of the training subjects and focused only on the age range with

sufficient samples (Supplement Fig S10). This well-represented age interval facili-

tated the decorrelation with respect to gender and resulted in a large y-conditioned

cohort for training CP.”

Moreover, we also added several alternative strategies for defining the interval to the Discussion

section:

“Another strategy for defining the interval (not explored in this article) is to model

the interval as a hyperparameter, whose optimal setting is determined via parameter

exploration during nested cross-validation. Alternatively, one can bypass the need of

selecting interval by using data-driven matching procedures (e.g., a bipartite graph

matching [51] or greedy algorithm [1), which in our experiments produced similar

accuracy scores as the one based on the FWHM criteria and bootstrapping.”

(2) “our adversarial loss theoretically achieves statistical mean independence between confounder

and the learned features [3]” This claim is very weird for me, because [3] does not give any the-

oretical guarantee when y-conditioning techniques are incorporated. Please clarify the sentence.

Response: We rephrase this sentence in the Discussion section.

“This improvement is achieved by our novel loss function based on squared correla-

tion (see Methods section), which encourages statistical mean independence between

the derived high-dimensional features and a scalar extraneous variable (in our case, a

confounder). When applying this adversarial loss to subjects from the y-conditioned

cohort, CF-Net outperformed other state-of-the-art deep models in learning impar-

tial features and unbiased model interpretation.”

(3) “we used data augmentation to generate two cohorts of equal size and conned the predictions

of age by CP to controls (i.e., they-conditioned cohort was defined by y = 0).” (3-1) Why do we

need to generate two cohorts of equal size?
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Response: We favor balanced training data sets to avoid the risk of the learning model biasing

its decision towards the cohort with the larger number of samples. When the sizes of cohorts

are unbalanced, one way for the algorithm to lower the training loss is to assign subjects to the

larger cohort. To avoid this from happening, a variety approaches have been suggested such as

creating cohorts of equal sizes via bootstrapping (our method), weighing the two cohorts so that

they are of equal importance within the learning objective function, and sampling equal number

of subject from each cohort within each mini-batch. We now briefly mention the rationale of

balancing cohorts in Section 2.1:

“On the four folds used for training, two cohorts of equal size were generated by data

augmentation (see Methods section) to ensure the model would not bias predictions

towards the larger cohort, i.e., the control cohort.”

Note, the augmentation was only applied to the training set. During testing, the prediction

accuracy was measured on raw testing subjects, and we used Balanced Accuracy (BAcc) to

account for different numbers of testing subjects in each cohort.

“The prediction accuracy on the testing folds was measured by balanced accuracy

(BAcc) [40] (to account for different numbers of testing subjects in each cohort...”

(3-2) What data augmentation did you use (for reproducibility) ?

Response: To answer this question, we added a pointer “(see Methods section)” in the Results

section:

“On the four folds used for training, two cohorts of equal size were generated by data

augmentation (see Methods section) to ensure the model would not bias predictions

towards the larger cohort, i.e., the control cohort.”

The Method section provides a detailed description of the data augmentation:

“As in [4], data augmentation produced new synthetic 3D images by randomly shift-

ing each MRI within one voxel and rotating within 1◦ along the three axes. The

augmented dataset included a balanced set of 1,024 MRIs for each group (control

and HIV). Assuming that HIV affects the brain bilaterally [43, 1], the left hemi-

sphere was flipped to create a 2nd “right” hemisphere. During testing, the right and

“flipped” left hemispheres of the raw test images were given to the trained model,

and the prediction score averaged across both hemispheres was used to predict the

individual’s diagnosis group.”

Recommendations Below are several recommendations for authors to make a paper strength

or clear, while it it not requirements for acceptance.

(3) Methodological perspectives.

(3-1) Baseline methods
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The main manuscripts compare the ConvNet and CF-Net, however, the outperforming the

convnets is somewhat trivial as suggested by many other invariant feature learning papers. In

other words, from the current main manuscripts, the contribution of y-conditioning itself, which

is the main methodological contributions, is not clear. On the other hands, the supplemental

materials contain several comparisons with more reasonable baselines, which might be more

interesting for potential readers. I recommend authors to move some comparison between more

reasonable methods into main manuscripts.

Response: While we agree with the reviewer that the comparison is of great interest to readers

with a technical background, we left it in the supplement as we do not want to disengage

less technical inclined readers of the journal. Fully appreciating the comparison requires in-

depth familiarity with the topic of invariant feature learning. To attract both technical and

non-technical readers, the main text focuses on the concept and proper use of invariant-feature-

learning schemes in medical imaging applications, while the supplement highlights the technical

advantage of CF-Net (the squared-correlation-based adversarial loss) over existing methods.

(3-2) Regarding [54]. As, the authors clarified, [54] did not apply the method the case where the

confounders are continuous. However, the formulation of [54] itself is general enough for contin-

uous case. This is also clearly mentioned in [54] as below (and as the authors may acknowledge).

“Note that under our framework, in theory, s can be any type of data as long as it represents an

attribute of x. For example, s can be a real value scalar/vector, which may take many possible

values, or a complex sub-structure such as the parse tree of a natural language sentence. But

in this paper, we focus mainly on instances where s is a discrete label with multiple choices.”.

As the authors mentioned in the response, the log-likelihood of continuous variables is defined

by the mean squared error, and the [54] can be easily applied for continuous case. Thereby, the

extensive comparison with [54] is possible, and the results might strengthen the paper.

Response: Please note that the baseline “Sadeghi et al. 2019 [7]” in the HIV and NCANDA

experiments was an extension of [54] based on the mean squared error (MSE). Therefore, we

note in the Supplement Section B:

“First, Sadeghi et al. [7] proposed to use the MSE loss between the predicted and

ground-truth confounder value as the adversarial loss for invariant feature learning.

Their implementation was confined to the scenario where the prediction network was

a logistic regression (linear classifier). To translate that method to our application,

we simply replaced the correlation loss of CP with the MSE loss. Note, in the

binary case, MSE could be replaced with the binary cross-entropy resulting in an

implementation that is very similar to the one proposed in [54].”

(4) The impact for medical practitioners.

In my opinion, the potential impact for medical practitioners are not clear from the current

manuscripts. For example, when the practitioner should use the proposed method? How can we

incorporate the domain knowledge (if possible)? To make the broader impact, such a discussion

is preferable.

Response: We now add the following paragraph to the discussion:
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“Based on these different y-conditioning strategies, medical researchers can use CF-

Net to train deep models on cohorts not strictly matched with respect to confounders

without discarding unmatched samples. However, this does not mean that there is

no need to keep the confounders in mind when recruiting participants for medi-

cal imaging studies. For all learning models, performing analysis on confounder-

matched cohorts with sufficient samples remains a fundamental strategy to disen-

tangle biomarkers of interest from effects of confounders. For example, in the bone

age experiment, recruiting enough age-gender-matched samples resulted in a large

y-conditioned cohort that reduce the risk of overfitting during the training of CP.

Conversely, if two cohorts have completely different distributions with respect to a

confounder (e.g., one has participants with strictly larger age than the other), there

is no guarantee that any method, including ours, can remove the bias in a purely

data-driven fashion. Therefore, in the study design stage, defining potential con-

founders for a specific medical application may require domain-specific knowledge to

maximize the power of CF-Net in practice.”

Response to Comments from Reviewer #2:

The authors have done a good job responding to the comments from myself and the other

reviewers and the manuscript is markedly improved as a result. I have no further comments or

suggestions.

Response: We thank the reviewer for the positive feedback.

Response to Comments from Reviewer #3:

Thanks for the detailed response to my previous comments. I have one remaining comment.

For the added DeLong tests in Tables 1 and 2, please provide the p-values in the Supplementary

materials. The authors used 0.05 as the significance threshold for p-values. However, given

the number of tests the authors performed, the authors should correct for multiple hypothesis

testing. In Tables 1 and 2, 3 out of 8 tests with p-values slightly less than 0.05 are precisely the

scenario where a correction is needed.

Response: As requested, we provided uncorrected p-values of the DeLong’s test in Table S1 and

S2 in the supplement. Furthermore, we discuss the outcome of this analysis in the Supplement

Section B:

“None of the p-values met the significance threshold after Bonferroni correction (p <

0.05/3 = 0.017). However, based on the uncorrected threshold (two-tailed p < 0.05),

CF-Net resulted in trend-level improvement (p = 0.069) in prediction accuracy over

ConvNet on the whole cohort. Moreover, only CF-Net resulted in significantly higher

accuracy on the c-independent subset (p = 0.035) and on the younger participants

from the c-independent subset (p = 0.045).”
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Reviewers' Comments: 

 

Reviewer #1: 

Remarks to the Author: 

Thank you for the detailed comments. All my concerns have been addressed, and I have no further 

comments and questions. 

 

 

 

Reviewer #3: 

Remarks to the Author: 

Thanks for addressing my previous comments and incorporating the corrected p-values in the 

Supplement. Preferably, the authors can point out or discuss the results after correction for 

multiple hypothesis testing in the discussion section of the main text. Besides this, I have no 

future comments/questions. 
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We address the last comment from the reviewer “Thanks for addressing my previous comments

and incorporating the corrected p-values in the Supplement. Preferably, the authors can point

out or discuss the results after correction for multiple hypothesis testing in the discussion section

of the main text.” by adding the following text in the Discussion section:

“When applying this adversarial loss to subjects from the y-conditioned cohort,

CF-Net outperformed other state-of-the-art deep models in classification accuracy.

Although this improvement did not meet the significance level after multiple com-

parison correction, CF-Net resulted in impartial features and unbiased model inter-

pretation according to the experiments in Supplement Sections A through D.”
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