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1 SUPPLEMENTARY DATA
1.1 Relationships between U∞ and fsp
1.1.1 Complete solution for θ(t)

Calculating fsp requires that one first solve for the threshold during steady-state firing, θ(t), which is
periodic at the spiking frequency. This condition is expressed as:

θ(0) = θ(0 + Tsp) = θ∗∞, (S1)

where θ∗∞ is the constant value of θ at the instant a spike occurs in steady-state and Tsp = 1/fsp. To
calculate θ∗∞, θ(t) is solved analytically, under the assumption that only one value of θ∗∞ will satisfy Eq.
S1, given the neuron’s properties and inputs.

θ has linear dynamics, so its response has a complementary and particular component, where

θ(t)− θ∞ = θcomp + θpart. (S2)

θ∞ is computed from Eq. 12. The complementary solution θcomp is simply

θcomp = A · e−t/τθ , (S3)

where A is an undetermined coefficient calculated based on the initial conditions of the total response.
The particular response θpart(t) is found by convolving f(t) (the transient part of U(t)) with θ’s impulse
response, g(t). These terms are:

f(t) = −m · U∞ · e−t/τmem (S4)

g(t) =
1

τθ
· e−t/τθ . (S5)

The definition of the convolution can be applied to compute

θpart(t) = f(t) ∗ g(t) =

∫ t

0
−m · U∞ · e−s/τmem ·

1

τθ
· e−(t−s)/τθ · ds. (S6)

Removing constant terms from the integrand,

θpart(t) =
−m · U∞

τθ
· e−t/τθ ·

∫ t

0
e−s/τmem · es/τθ · ds. (S7)

If τmem 6= τθ, then the exponentials in the integrand are combined, integrated, and reseparated such that

θpart(t) = m · U∞ ·
τmem

τθ − τmem
·
(
e−t/τmem − e−t/τθ

)
. (S8)
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If τmem = τθ, then Eq. S8 gives an undefined 0/0 result. This is rectified by consulting Eq. S7 and
recognizing that the integrand equals 1 in this case. Thus, the particular solution is

θpart(t) =

{
−m·U∞τθ · t · e−t/τθ , if τmem = τθ,

m · U∞ · τmem
τθ−τmem ·

(
e−t/τmem − e−t/τθ

)
, else.

(S9)

Now that θpart(t) is known, the initial condition is used to solve for A in Eq. S3. Recall that the initial
condition is the unknown value θ∗∞. Also, note that no matter the values of τmem and τθ, θpart(t = 0) = 0.
Evaluating Eq. S2 when t = 0 and substituting in Eq. 12,

A = θ∗∞ − (θ0 +m · U∞). (S10)

The total response of θ is found using Eq. S2. θ∞ is defined in Eq. 12. θcomp(t) is defined in Eq. S3, where
the value of A is calculated in Eq. S10. θpart(t) is the piecewise function in Eq. S9. Combining all of these
yields the full solution for the spiking threshold over time,

θ(t) = θ0 +m · U∞ + (θ∗∞ − θ0 −m · U∞) · e−t/τθ+{
−m·U∞τθ · t · e−t/τθ , if τmem = τθ,

m · U∞ · τmem
τθ−τmem ·

(
e−t/τmem − e−t/τθ

)
, else.

(S11)

1.1.2 Solving for θ∗∞
To solve for θ∗∞, the condition θ(Tsp) = θ∗∞ is applied to Eq. S11 and solved. Tsp = 1/fsp could be

simply substituted into Eq. S11; however, t usually appears in Eq. S11 in the form et. Therefore, let us
instead solve Eq. 13 for the following terms, to be substituted into Eq. S11:

e−Tsp/τmem = 1− θ∗∞
U∞

(S12)

e−Tsp/τθ =

(
1− θ∗∞

U∞

)τmem/τθ
. (S13)

Setting t = Tsp and substituting Eqs. 12, S12, and S13 into Eq. S11,

θ(Tsp) = θ∗∞ = θ∞ + (θ∗∞ − θ∞) ·
(

1− θ∗∞
U∞

)τmem/τθ
+ m · U∞ · τmemτθ · ln

(
1− θ∗∞

U∞

)
·
(
1− θ∗∞

U∞

)τmem/τθ , if τmem = τθ,

m · U∞ · τmem
τθ−τmem ·

(
1− θ∗∞

U∞
−
(
1− θ∗∞

U∞

)τmem/τθ), else.
(S14)

Equation S14 can be simplified by grouping like terms and simplifying τmem/τθ = 1 in the top line.
However, the result will be an implicit, transcendental function, which can only be solved numerically. One
method is to set Eq. S14 equal to 0 and use a root-finding algorithm to find θ∗∞ that satisfies the resulting
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function,

f(θ∗∞) = 0 =
(θ∞ − θ∗∞) · θ

∗
∞
U∞

+m · U∞ ·
(
1− θ∗∞

U∞

)
· ln
(
1− θ∗∞

U∞

)
, if τmem = τθ,

(θ∞ − θ∗∞) ·
(
1− (1− θ∗∞

U∞
)τmem/τθ

)
+

m·U∞·τmem
τθ−τmem ·

(
(1− θ∗∞

U∞
)− (1− θ∗∞

U∞
)τmem/τθ

)
, else.

(S15)

1.1.3 Uavg → θ∗/2 as fsp increases
As U∞ increases, Uavg → θ∗/2. This is because the neuron spikes when U = θ∗∞, and then its voltage is

reset to 0 (Fig. S1). In addition, the neuron voltage integrates more quickly when U∞ is large. Thus, the
neuron voltage over time approaches a sawtooth waveform with a maximum value of θ∗∞ as U∞ increases.
The mean value of such a waveform is θ∗∞/2.
1.1.4 fsp can be bounded by parallel lines

The spiking frequency of the GLIF neuron can be approximated by an affine function of Iapp, and can be
bounded by affine functions. A property of the natural logarithm is

x− 1

x
≤ lnx ≤ x− 1. (S16)

The center term is set equal to the spiking frequency fsp (Eq. 13) by substituting x = 1− θ∗∞/U∞, then
inverting the equation:

U∞ − θ∗∞
τmem · θ∗∞

≤ −1

τmem · ln (1− θ∗∞
U∞

)
≤ U∞
τmem · θ∗∞

(S17)

Note that the sense of the inequality does not change because the equation is made negative, and then
inverted.

The expression in the center is now equal to fsp. Equation S17 shows that the spiking frequency can be
bounded by parallel lines,

U∞ − θ∗∞
τmem · θ∗∞

≤ fsp(U∞, θ
∗
∞) ≤ U∞

τmem · θ∗∞
. (S18)

Substituting Eq. 3 for U∞ and setting Ḡs = 0, the spiking frequency is bounded by two affine functions of
the applied current Iapp,

Iapp+Ibias
Gmem

− θ∗∞
τmem · θ∗∞

≤ fsp(Iapp, θ
∗
∞) ≤

Iapp+Ibias
Gmem

τmem · θ∗∞
. (S19)

If
Ibias =

Gmem · θ∗∞
2

, (S20)

then

Iapp
Gmem · τmem · θ∗∞

− 1

2 · τmem
≤ fsp(Iapp, θ

∗
∞) ≤

Iapp
Gmem · τmem · θ∗∞

+
1

2 · τmem
. (S21)

For any U∞, the precise value of θ∗∞ can be calculated numerically with Eq. S11, or approximated with the
explicit function in Eq. 16. Then, Eq. S18 provides affine bounds on the spiking frequency, with a range of
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1/τmem. fsp approaches the mean of the bounds in Eq. S18, providing the approximation for fsp,

fsp,approx(Iapp, θ
∗
∞) =

Iapp
Gmem · τmem · θ∗∞

. (S22)

1.1.5 Solving for the evolution of the spiking threshold, θ∗(t)
Setting U = θ/2 in Eq. 9 and rearranging,

τθ ·
dθ∗

dt
+

(
1− m

2

)
· θ∗ = θ0. (S23)

Substituting in B from Eq. 16,

τθ ·B ·
dθ∗

dt
+ θ∗ = B · θ0. (S24)

The steady-state solution to Eq. S24, θ∗∞, is the solution when dθ∗/dt = 0,

θ∗∞ = B · θ0, (S25)

which is consistent with Eq. 16. Given the form of Eq. S24, the complementary response is

θ∗comp(t) = A · e−t/τθ∗ , (S26)

where τθ∗ = τθ ·B. Applying the initial condition θ∗(0) = θ0, the full solution is

θ∗(t) = B · θ0 + θ0 · (1−B) · e−t/τθ∗ . (S27)

Substituting Eq. S25 into Eq. S27,

θ∗(t) = θ∗∞ + (θ0 − θ∗∞) · e−t/τθ∗ . (S28)

1.1.6 Impact of reset noise on fsp
The impact of reset noise on fsp can be determined by modifying the analysis in the previous section.

Reset noise is one way to add stochasticity to a neuron’s firing frequency. In this paradigm, the neuron
voltage U is not reset to 0 after it spikes. Instead, it is reset toX , a random variable selected from probability
distribution fX(x), which has a mean of 0 and ||fX(x)|| → 0 as ||x|| → ∞. For simplicity, we assume
that ||X|| � θ.

Given the stochastic reset voltage X , the membrane voltage evolution after a spike from Eq. 5 becomes

U(t) = U∞ · (1− e−t/τmem) +X · e−t/τmem (S29)

It is immediately apparent from Eq. S29 that the effect of the reset noise decays over time from the reset
event, implying that reset noise will alter the spiking frequency predominantly when interspike intervals
are short, i.e. when fsp � 0.
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The effect of random reset on the spiking frequency is calculated by using Eq. S29 to compute the spiking
frequency,

fsp = Y =
−1

τmem · ln
(
1− θ−X

U∞−X
) , (S30)

where X is the randomly selected reset voltage after the previous spike and Y is the subsequent spiking
frequency, which is now a random variable. If we label this function in Eq. S30 Y = g(X), then the
distribution of spiking frequencies given the reset noise is

fY (Y = y) = fX
(
g−1(y)

)
·
∥∥∥∥ ∂∂yg−1(y)

∥∥∥∥. (S31)

Since g(·) monotonically increases when ln(·) is defined, g−1(·) is defined over the same interval,

g−1(y) = U∞ − (U∞ − θ) · e1/τmem·y. (S32)

Analytically carrying out the calculation in Eq. S31 is cumbersome. To demonstrate that the distribution
of possible spiking frequencies fsp increases as the applied current increases, Fig. S2 plots the result of
numerically computing Eq. S31 given the distribution of reset voltage used in Sec. 4 (Fig. S2A). One
can see that for particular values of applied current Iapp, the distribution of spiking frequencies widens as
the spiking frequency increases (Fig. S2B). Computing the range of spiking frequencies across the entire
continuum of applied current values further demonstrates this trend (Fig. S2C).

For a more detailed treatment of the effect of reset noise on an integrate-and-fire neuron’s spike timing,
see Sec. 2.2.2 of (Gerstner, 2000).
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1.2 Parameter values for neuromechanical simulation
1.2.1 Mechanical and muscular parameter values

The model and parameter values were taken from (Yu and Wilson, 2012). A human forearm, bicep
(flexor), and tricep (extensor) were simulated. Each muscle was modeled as a linear Hill muscle with no
length-tension relationship. The resulting system has 4 dynamical variables: The joint angle θ, the joint
angular velocity θ̇, the flexor tension Tflx, and the extensor tension Text. The system also has two inputs,
Fext and Fflx, which are activation of the extensor and flexor muscles, respectively. The dynamics are
described by the following state equations:

J · θ̈ = Mext −Mflx − cjoint · θ̇ (S33)

dText
dt

=
kse,ext
cext

·
(
kpe,ext · (‖~Lext‖−Lrest,ext) + cext ·

d

dt
‖~Lext‖−

(
1 +

kpe,ext
kse,ext

)
· Text +Fext

)
(S34)

dTflx
dt

=
kse,flx
cflx

·
(
kpe,flx · (‖~Lflx‖−Lrest,flx)+cflx ·

d

dt
‖~Lflx‖−

(
1+

kpe,flx
kse,flx

)
·Tflx+Fflx

)
. (S35)

The joint angle and muscle tension are related by the geometry of muscle attachments. When the joint
rotates, the muscle lengths change; when the muscle lengths change, the muscle moments Mext and Mflx

change; and when the muscle moments change, the joint rotates. Specifically, the positions of the muscle
attachments on the distal limb segment relative to the joint are calculated by:

~rext =

[
cos(θ) sin(θ)
− sin(θ) cos(θ)

]
·
[
−r
0

]

~rflx =

[
cos(θ) sin(θ)
− sin(θ) cos(θ)

]
·
[
r
0

]
.

The lines of action of the muscles are calculated by:

~Lext =

[
−r
L

]
+ ~rext

~Lflx =

[
r
L

]
+ ~rflx

The moment that each muscle applies to the limb is the cross product between that muscle’s moment arm r

and the muscle’s line of action, multiplied by the tension at that instant:

Mext =

∥∥∥∥~rext × ~Lext

‖~Lext‖

∥∥∥∥ · Text (S36)

Mflx =

∥∥∥∥~rflx × ~Lflx

‖~Lflx‖

∥∥∥∥ · Tflx. (S37)

When the inputs Fext = 0 and Fflx = 0, the system has a stable equilibrium point when all states equal 0.
Altering Fext and/or Fflx will change the equilibrium muscle tension and joint angle, but the equilibrium
point remains stable. This is because the muscles act like springs, passively applying a reaction torque to
correct small changes in joint angle. The parameter values of the model are listed in Tab. S1.
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For both of the pathways in Sec. 4, R = 20 mV, Fmax = 100 Hz,

Iapp = Lflexor ·
R

r
, (S38)

and

Fflexor = 15 N ·


0, if Ūmuscle ≤ 0,

Ūmuscle
R , if 0 < Ūmuscle < R,
1, if Ūmuscle >≥ R.

(S39)

The rest of the parameter values are listed in Tabs. S2 and S3.
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2 SUPPLEMENTARY TABLES AND FIGURES
2.1 Tables

Table S1. Table of muscular and mechanical parameter values

Parameter Description Value

L [m] forearm length 250× 10−3

cjoint [Nm(ms)/rad] joint damping 200
J [Nm(ms)2/rad] forearm mass moment of inertia 27.9× 103

r [m] muscle moment arm 45× 10−3

kpe,flx [N/m] flx. parallel elastic element stiffness 200
kse,flx [N/m] flx. series elastic element stiffness 10× 103

cflx [Nm(ms)/rad] flx. parallel element damping 39.5
Lrest,flx [m] flx. resting length 250× 10−3

kpe,ext [N/m] ext. parallel elastic element stiffness 126
kse,ext [N/m] ext. series elastic element stiffness 10× 103

cext [Nm(ms)/rad] ext. parallel element damping 1990
Lrest,ext [m] ext. resting length 250× 10−3
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Table S2. Table of neural and synaptic parameter values (accompanies Fig. 11)

Parameter Case 2 Case 3 Case 4
Sensory Neuron
N 1 10 1
τmem or τ̄mem [ms] 200 200 500
m 0 0 N/A
θ0 [mV] 1 1 N/A
τθ [ms] N/A N/A N/A
Ibias [nA] 0.5 0.5 0
Synaptic Connection
ksyn 0.2 0.2 0.2
Gmax or Ḡmax [µS] 118× 10−3 11.8× 10−3 25.6× 10−3

Es [mV] 160 160 160
τs [ms] 2.17 2.17 N/A
Motor Neuron(s)
N 1 10 1
τmem or τ̄mem [ms] 200 200 500
m 0 0 N/A
θ0 [mV] 1 1 N/A
τθ [ms] N/A N/A N/A
Ibias [nA] 0.5 0.5 0
Muscular Junction
ksyn 1 1 1
Gmax or Ḡmax [µS] 658× 10−3 65.8× 10−3 143× 10−3

Es [mV] 160 160 160
τs [ms] 2.17 2.17 N/A
Muscle Membrane
N 1 1 1
τmem or τ̄mem [ms] 1500 1500 1500
m N/A N/A N/A
θ0 [mV] N/A N/A N/A
τθ [ms] N/A N/A N/A
Ibias [nA] 0 0 0
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Table S3. Table of neural and synaptic parameter values (accompanies Fig. 12)

Parameter Case 2 Case 3 Case 4
Sensory Neuron
N 1 10 1
τmem or τ̄mem [ms] 700 700 500
m -5 -5 N/A
θ0 [mV] 1 1 N/A
τθ [ms] 1750 1750 N/A
Ibias [nA] 0.143 0.143 0
Synaptic Connection
ksyn 0.2 0.2 0.2
Gmax or Ḡmax [µS] 118× 10−3 11.8× 10−3 25.6× 10−3

Es [mV] 160 160 160
τs [ms] 2.17 2.17 N/A
Motor Neuron(s)
N 1 10 1
τmem or τ̄mem [ms] 700 700 500
m -5 -5 N/A
θ0 [mV] 1 1 N/A
τθ [ms] 1750 1750 N/A
Ibias [nA] 0.143 0.143 0
Muscular Junction
ksyn 1 1 1
Gmax or Ḡmax [µS] 658× 10−3 65.8× 10−3 143× 10−3

Es [mV] 160 160 160
τs [ms] 2.17 2.17 N/A
Muscle Membrane
N 1 1 1
τmem or τ̄mem [ms] 1500 1500 1500
m N/A N/A N/A
θ0 [mV] N/A N/A N/A
τθ [ms] N/A N/A N/A
Ibias [nA] 0 0 0
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2.2 Figures

ne
ur

on
 v

ol
ta

ge
 (U

/θ
*)

When fsp is high, the neuron voltage approaches a sawtooth wave
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Figure S1. At high firing frequencies, the neuron voltage time course resembles a sawtooth wave. Each
plot shows U(t) (blue) given a larger Iapp, and thus a higher fsp. Spikes are indicated by violet stars. The
average voltage Uavg is plotted in red.
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Figure S2. As the spiking frequency increases, the impact of reset noise increases. Given the uniform
random reset voltage after spikes A) and following Eq. S31, the likelihood of spiking frequency can be
calculated B). As the applied current increases, the distribution of possible spiking frequencies increases
C), as predicted in the Supplementary Document (S1.1.6).
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