Supplementary Materials

Recurrent acute liver failure in alanyl-tRNA synthetase-1 (AARS1) deficiency

Lara M. Marten^a, MD, Florian Brinkert^a, MD, Desirée E.C. Smith^b, Dr. ing., Holger Prokisch^c, PhD, Maja Hempel^{d*}, MD, René Santer^{a*}, MD

* These authors contributed equally to this work

Supplementary Table 1		
Summary of clinical symptoms of patients with		
autosomal recessive aaRS deficiencies and liver symptoms		
Legend to Supplementary Table 1 S3		
Supplementary Figure 1 S4		
Legend to Supplemental Figure 1		
Enzymatic and molecular genetic findings of the reported patient S5		
Supplementary References		

Table 1. Summary of clinical symptoms of patientswith autosomal recessive aaRS deficiencies and liver symptoms.

		cytosolic
		+ mt
	Ν	22 25 32 10 10 10
Central nervous	MRI abnormalities	
system	Psychomotor retardation	
	Microcephaly	
	Hypotonia	
	Seizures	
	Encephalopathy	
	Spasticity	
	Ataxia	
	Episodic excited states	
Senses	Sensorineuronal deafness	
Senses	Visual loss/retinal abnormalities	
	Strabismus	
	Nystagmus	
Dysmorphisms	Chubby cheeks	
Dyamorphiana	Facial dysmorphisms	
	Abnormalities hands/feet/fingers	
Growth	Dysmaturity	
	Failure to thrive	
Gastrointestinal tract	Poor feeding (tube/parenteral)	
	Diarrhea/constipation/vomiting	
Liver	Liver failure/hepatomegaly/cirrhosis	
	↓ albumin/protein	
1	Interstitial lung disease	
Lungs	Clubbing	
	Cystic lung disease	
	Oxygen dependency	
Bone marrow	Anemia	
Bone manow	Leukocytosis	
	Thrombocytosis/thrombocytopenia	
Kidneys	Tubulopathy	
- All and yo	Acute kidney failure	
	Anatomical/ultrasound abnormalities	
Spleen	Splenomegaly	
	Accessory spleen	
Heart	Cardiomyopathy/LVH	
	Anatomical abnormalities	
Muscles	Exercise intolerance/myalgia/weakness	
Other symptoms	Skin abnormalities	
	Hydrocele testis	
	Hernia inguinalis	
Laboratory findings	Endocrine abnormalities	
	Various	
	Mitochondrial dysfunction	
	Other metabolic abnormalities	
Periods of increased	First years of life	
symptom severity	Infections	
- symptom oovonty		

S2 reported for 1 patient reported for >1 patient

AARS1 This report

Ì l 1

Î I

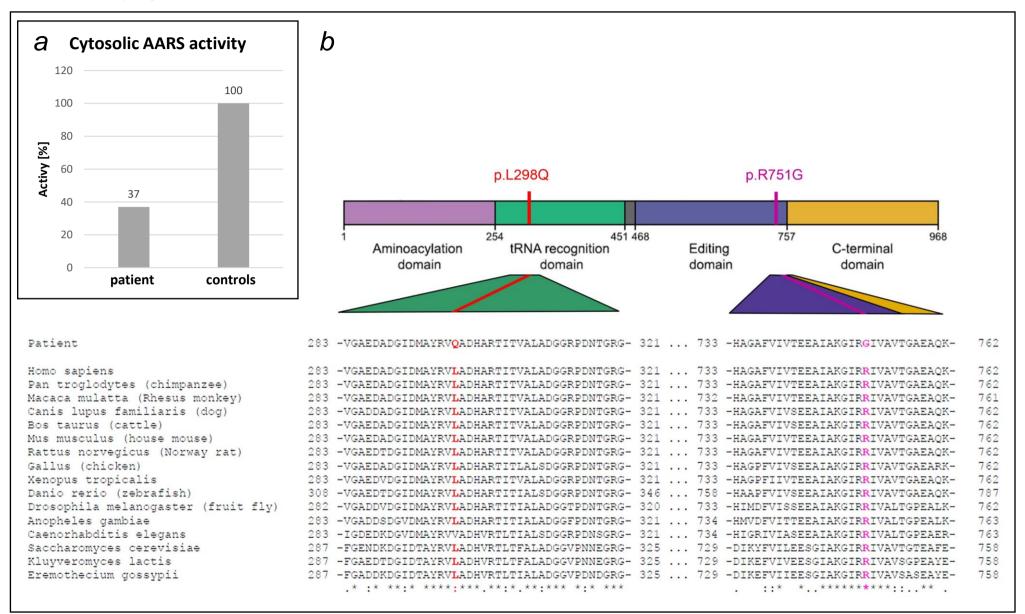
QARS IARS1 LARS1 MARS1 FARS1 YARS1 AARS1

Legend to Supplementary Table 1

Table 1. Summary of clinical symptoms of patients with autosomal recessive

aaRS deficiencies and liver symptoms. Presented are cases reported in literature and supplemented by the case of this report (last column).

Gray squares represent symptoms reported for 1 patient, black squares symptoms reported for >1 patient.


mt, mitochondrial;

MRI, magnetic resonance imaging;

LVH, left ventricular hypertrophy

(modified from Fuchs et al ^{S1} with additional data from Williams et al. ^{S2}, Tracewska-Siemiatkowska et al. ^{S3}, Xu et al. ^{S4}, Krenke et al. ^{S5}, Casey et al. ^{S6}, Lenz et al. ^{S7} and Johannesen et al. ^{S8})

Supplementary Figure 1

Legend to Supplementary Figure 1.

Enzymatic and molecular genetic findings of the reported patient.

a Cytosolic AARS activity in patient and control fibroblasts.

b Multiple alignment of amino acid sequences of AARS1 from different species. Presented are regions of the protein close to the sites where variants were found in the patient. The maternal AARS1 variant p.Leu298Gln (p.L298Q, LOVD variant ID 0000701819), affecting the tRNA recognition domain, is indicated in red; the paternal variant p.Arg751Gly (p.R751G, LOVD variant ID 0000701825), located in the editing domain is highlighted in pink (*modified from* Simons et al ^{S8}). The figure demonstrates the high conservation of the affected regions which indicates pathogenicity. This is further confirmed by the prediction '*disease-causing*' by MutationTaster software ^{S10} with high scores for both variants. Furthermore, p.Leu298Gln has neither been observed in the '1000 genomes' database nor in the Exome Aggregation Consortium (ExAC) and Genome Aggregation database (gnomAD). The AARS1 variant p.Arg751Gly (rs143370729) has been observed in one heterozygous individual listed in '1000 genomes' and 6 heterozygous individuals in the ExAC database (among 66446 European [non-Finnish] individuals) (data retrieval Nov 6, 2020). Moreover, it is known to be functionally relevant since it was found in homo- and compound heterozygosity in patients suffering from epileptic encephalopathy type 29 (EIEE29, OMIM #616339) and resulted in severe impairment of enzyme activity during in vitro expression. ^{S9,S11} Compound heterozygosity for the two variants in our patient resulted in the diminished cytosolic AARS activity depicted in panel a.

References to Supplementary Materials

S1. Fuchs, S.A., Schene, I.F., Kok, G., et al. Aminoacyl-tRNA synthetase deficiencies in search of common themes. *Genet Med.* 2019;21(2):319-330. doi: 10.1038/s41436-018-0048-y.

S2. Williams KB, Brigatti KW, Puffenberger EG, et al. Homozygosity for a mutation affecting the catalytic domain of tyrosyl-tRNA synthetase (YARS) causes multisystem disease.

Hum Mol Genet. 2019;28(4):525-538. doi:10.1093/hmg/ddy344.

- S3. Tracewska-Siemiątkowska A, Haer-Wigman L, Bosch DGM, et al. An expanded multi-organ disease phenotype associated with mutations in YARS. *Genes (Basel)*. 2017;8(12):381. doi:10.3390/genes8120381.
- S4. Xu Z., Lo W.S., Beck D.B., et al. Bi-allelic mutations in Phe-tRNA synthetase associated with a multi-system pulmonary disease support non-translational function.

Am J Hum Genet. 2018;103(1):100-114. doi: 10.1016/j.ajhg.2018.06.006.

- S5. Krenke K., Szczałuba K., Bielecka T., et al. FARSA mutations mimic phenylalanyl-tRNA synthetase deficiency caused by FARSB defects. *Clin Genet*. 2019;96(5):468-472. doi: 10.1111/cge.13614.
- S6. Casey J.P., Slattery S., Cotter M., et al. Clinical and genetic characterisation of infantile liver failure syndrome type 1, due to recessive mutations in LARS. *J Inherit Metab Dis.* 2015;38(6):1085-92. doi: 10.1007/s10545-015-9849-1.
- S7. Lenz D, Smith DEC, Crushell E, et al. Genotypic diversity and phenotypic spectrum of infantile liver failure syndrome type 1 due to variants in LARS1. *Genet Med.* 2020;22(11):1863-1873. doi:10.1038/s41436-020-0904-4.
- S8. Johannesen KM, Mitter D, Janowski R, et al. Defining and expanding the phenotype of QARS-associated developmental epileptic encephalopathy. *Neurol Genet.* 2019;5(6):e373. doi: 10.1212/NXG.00000000000373.
- S9. Simons, C., Griffin, L.B., Helman, G., et al. Loss-of-function alanyl-tRNA synthetase mutations cause an autosomal-recessive early-onset epileptic encephalopathy with persistent myelination defect. *Am J Hum Genet.* 2015;96(4):675-681. doi: 10.1016/j.ajhg.2015.02.012.
- S10. Schwarz, J.M., Cooper, D.N., Schuelke, M., et al. MutationTaster2: mutation prediction for the deep-sequencing age.

Nat Methods. 2014;11(4):361-362. doi: 10.1038/nmeth.2890.

S11. Nakayama, T., Wu, J., Galvin-Parton, P., et al. Deficient activity of alanyl-tRNA synthetase underlies an autosomal recessive syndrome of progressive microcephaly, hypomyelination, and epileptic encephalopathy. *Hum Mutat.* 2017;38(10):1348-1354. doi:10.1002/humu.23250