Supplementary Information

Cell geometry and the cytoskeleton

impact the nucleo-cytoplasmic localisation of the SMYD3 methyltransferase

David Pereira^{1, 2}, Alain Richert¹, Souhila Medjkane², Sylvie Hénon^{1*}, Jonathan B Weitzman^{2*}

[1] Université de Paris, CNRS, Matière et Systèmes Complexes (MSC), UMR 7057, F-75006 Paris, France

[2] Université de Paris, CNRS, Epigenetics and Cell Fate (EDC), UMR 7216, F-75006 Paris, France

[*] Corresponding authors: jonathan.weitzman@u-paris.fr , sylvie.henon@u-paris.fr

Figure S1: Cell geometry on fibronectin micropatterns regulates exogenous and endogenous SMYD3 distribution.

- a) Quantification of the nuclear:cytoplasmic (<I_{Nuc}>/<I_{Cyto}>) distribution ratio for exogenous SMYD3-HA-Flag on small pattern areas (500 and 700 μm²) and geometries: squares (1:1 aspect ratio, green), rectangles (1:5 aspect ratio, blue) and elongated rectangles (1:8 aspect ratio, grey). The median value of the ratio is about 15% higher on squares than on rectangle patterns. A Kruskal-Wallis test was performed for conditions with identical areas.
- b) Representation of the nuclear:cytoplasmic ratio of SMYD3-HA-Flag as a function of cell aspect ratio for cells spread on non-patterned substrates (red, n=202), squares (1:1 aspect ratio, green, n=395), rectangles (1:5 aspect ratio, blue, n=252) and elongated rectangles (1:8 aspect ratio, grey, n=163).
- c) Micrographs show the fibronectin (FN) patterning, the nuclear DNA staining (DAPI), and localization of control eGFP in C2C12 cells plated on square or rectangle patterns (1200 μ m²). See Figure 1e for quantification data.
- d) Non-transfected C2C12 cells were plated on different fibronectin micropatterns with the same area (1200 μ m²), but different aspect ratios; square (1:1, upper panels) or rectangle (1:5, lower panels). The micrographs show the fibronectin (FN) patterning, the nuclear DNA staining (DAPI), endogenous SMYD3 protein detected with a specific antibody (SMYD3) and F-actin.
- e) Quantification of the nuclear:cytoplasmic (<I_{Nuc}>/<I_{Cyto}>) distribution ratio for endogenous SMYD3 protein over a range of pattern areas (1200-1800 μm²) and geometries: squares (1:1 aspect ratio, green), rectangles (1:5 aspect ratio, blue) and elongated rectangles (1:8 aspect ratio, grey). The median value of the ratio is 48 to 67% higher on squares than on rectangle patterns. A Kruskal-Wallis test was performed for conditions with identical areas.
- f) Western blot analysis of exogenous SMYD3-HA-FLAG levels compared to endogenous SMYD3 in control C2C12 cells.

n = number of individual cells measured. *** p<0.001, n.s; = not statistically significant.

Figure S2: Cell geometry does not affect the total intensity of SMYD3

- a) Quantification of the total cell intensity of exogenous SMYD3-HA-Flag on pattern area (1500 μm²) of different geometries: squares (1:1 aspect ratio, green), rectangles (1:5 aspect ratio, blue) and elongated rectangles (1:8 aspect ratio, grey). n = number of individual cells measured. An ANOVA test was performed for conditions with identical areas (1500μm²). n.s; = not statistically significant
- **b)** Quantification of the nuclear:cytoplasmic ($<I_{Nuc}>/<I_{Cyto}>$) distribution ratio for exogenous SMYD3-HA-Flag on pattern area (1500 μ m²) compare to the total intensity for each cell.
- c) Quantification of the total cell intensity of endogenous SMYD3 on pattern area (1500 μ m²) of different geometries: squares (1:1 aspect ratio, green), rectangles (1:5 aspect ratio, blue) and elongated rectangles (1:8 aspect ratio, grey). n = number of individual cells measured.
- d) Quantification of the nuclear:cytoplasmic (<I_{Nuc}>/<I_{Cyto}>) distribution ratio for endogenous SMYD3 on pattern area (1500 μm²) compare to the total intensity for each cell. n = number of individual cells measured. An ANOVA test was performed for conditions with identical areas (1500μm²). n.s; = not statistically significant

- a) Average of recovery curves of the nuclear intensity of SMYD3-eGFP after photobleaching of the nucleus for cells spread on squares (1:1 aspect ratio, green) or rectangles (1:5 aspect ratio, blue).
- **b)** Average of decay curves of the nuclear intensity of SMYD3-eGFP after photobleaching of the cytoplasm for cells spread on squares (1:1 aspect ratio, green) or rectangles (1:5 aspect ratio, blue).

The data are presented with +/- S.E.M (standard error mean).

Figure S4: The amount of F-actin in cells spread on micropatterns is independent of cell shape or the SMYD3 distribution.

- a) Total amount of F-actin, quantified by the intensity of SiRactin staining for cells plated on micropatterns with different areas (1200 to 1800 μ m²) and shapes: squares (1:1 aspect ratio, green), rectangles (1:5 aspect ratio, blue) and elongated rectangles (1:8 aspect ratio, grey).
- b) Mean SiRactin intensity per pixel, under the same conditions.
- c) Nuclear:cytoplasmic ($<I_{Nuc}>/<I_{Cyto}>$) distribution ratio for exogenous SMYD3-HA-Flag on pattern area (1500 μ m²) as a function of SiRactin total intensity for each cell.
- d) Nuclear:cytoplasmic ($<I_{Nuc}>/<I_{Cyto}>$) distribution ratio for exogenous SMYD3-HA-Flag on pattern area (1500 μ m²) as a function of SiRactin mean intensity per pixel for each cell.

Micrographs of cells spread on square (1:1 aspect ratio), rectangular (1:5 aspect ratio) and elongated rectangular (1:8 aspect ratio) micropatterns show a different organization of the F-actin networks (orangish). Scale bars: 20 µm.

Figure S6: Cell geometry on fibronectin micropatterns regulates the localization of a range of regulatory factors.

- a) Quantification of the nuclear:cytoplasmic (<I_{Nuc}>/<I_{Cyto}>) distribution ratio for YAP/TAZ (anti-YAP antibody) in cells plated on different pattern areas (500-1800 μm²) or shapes: squares (1:1 aspect ratio, red), rectangles (1:5 aspect ratio, blue) and elongated rectangles (1:8 aspect ratio, grey). The median value of the ratio is 10 to 24% higher on squares than on rectangles. An ANOVA test was performed for conditions with identical areas (500μm², 700μm², 1200μm²). A Kruskal-Wallis test was performed for conditions with identical areas (1500μm², 1800μm²).
- **b)** Quantification of the nuclear:cytoplasmic ($<I_{Nuc}>/<I_{Cyto}>$) distribution ratio for YAP/TAZ (anti-TAZ antibody)in cells plated on different pattern areas (500-1800 μ m²) and shapes: squares (1:1 aspect ratio, red), rectangles (1:5 aspect ratio, blue) and elongated rectangles (1:8 aspect ratio, grey). A Kruskal-Wallis test was performed for conditions with identical aspect ratios.
- c) Quantification of the nuclear:cytoplasmic ($<I_{Nuc}>/<I_{Cyto}>$) distribution ratio for Setdb1 protein in cells plated on different pattern areas (500-1800 μ m²) and geometries: squares (1:1 aspect ratio, red), rectangles (1:5 aspect ratio, blue) and elongated rectangles (1:8 aspect ratio, grey). For areas 1500 and 1800 μ m², the median value of the ratio is 20-33% higher on squares than on rectangles. An ANOVA test was performed for cell spread on 500 μ m², 1500 μ m², 1800 μ m²).
- d) Quantification of the nuclear:cytoplasmic (<I_{Nuc}>/<I_{Cyto}>) distribution ratio for DNase1 for a single pattern area 1200 μm² and geometries: squares (1:1 aspect ratio, green), rectangles (1:5 aspect ratio, blue) and elongated rectangles (1:8 aspect ratio, grey). The median value of the ratio is about 30% higher on squares than on rectangle patterns. A Kruskal-Wallis test was performed between conditions.

n = number of individual cells measured. * p<0.05, ** p<0.01, *** p<0.001, n.s; = not statistically significant.

Figure		number of independent repeats
1.b		5
1.d		≥6
1.e		2
2.a-d		3
2.e		1
3.b,c,e	controls	≥5
3.b,c,e	LMB	2
3.h		3
3.i		1
4.b	control	5
4.b	Latrunculin A, B	2
4.c	control	9
4.c	drugs	≥2
5.b	700 μm ²	2
5.b,d	1500, 1800 μm²	2
S1.a		≥4
S1.b		≥5
S1.e	1200 μm²	2
S1.e	1500, 1800 μm ²	1
S6.a,c		1
S6.b	500, 700, 1500, 1800 μm ²	2
S6.b,d	1200 μm ²	1

 Table S1: Numbers of repeats of the different experiments.