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transparent peer review scheme. This document only contains reviewer comments and rebuttal letters 

for versions considered at Nature Communications. Mentions of prior referee reports have been 

redacted. 

Reviewers' Comments: 

 

Reviewer #1: 

Remarks to the Author: 

Li et al are presenting a deep learning platform including multiple convolutional neural networks for 

the diagnosis of human diffuse large B cell lymphoma (DLBCL) from histopathology slides of the 

lymph. Using data from three different hospitals, their method achieved diagnostic rate of 100% for 

hospital A, 99.71% for hospital B and 100% for hospital C respectively. However, none of the three 

models is generalizable, which significantly limits the impact and novelty of this work. Previous studies 

have shown that deep learning models for histologic diagnosis can be generalized in several cancer 

types. 

 

 

Major Comments 

1. Combining multiple classifiers is not a novel idea, and also the authors need to compare the 

performance of their approach to each individual CNN. Also, how robust are the results to the data 

split (training, validation, testing)? 

2. The authors can build a model using the data from Hospitals A and C together since the images are 

obtained with the same method. This could address the sample variation since now the model has 

taken the variations into account during training. This could potentially yield a more generalizable 

model. 

3. Some of the data, as stated in line 98, were obtained by taking photos of slides and some by 

scanning them. Is there any difference at the resolution? At which resolution where the whole slides 

from Hospital B scanned? 

4. The order of presenting the results is a little confusing. It is not clear that the authors built 3 

different models (one for each hospital) because of the difference in the sample preparation and 

collection (microscope camera vs scanned) until the paragraph “Effect of sample preparation 

procedures on diagnostic accuracy”. It will be better to re-write/merge this paragraph with the 

previous one “Achievement of a high diagnostic accuracy for clinical use” and maybe the next one 

“Establishment of AI models using small datasets” to improve the flow of the paper. 

5. Regarding the whole slide model, it seems that the authors used parts of the image to build their 

model (line 176). Since the CNNs mentioned in Fig 1 have the capacity to tile the images why wasn’t 

the whole image used? 

6. To better support the claim in line 183 about the “unprecedented” high diagnostic accuracy of their 

models, it is important that the authors address fully in their introduction the performance of the 

current and other published methods to diagnose DLBCL. 

7. The CIFAR-10 dataset is a collection of slides with labels such as “airplanes, cars etc”. The GOTDP-

MP-CNN platform generated by the authors outperformed all other architectures included in the 

CIFAR-10 platform in classifying these images. I am not sure if this comparison is relevant to DLBCL 

diagnosis. 

8. The comparison with the pathologists’ performance is interesting and indeed it is demonstrating the 

network’s high performance. Is looking at 400x images only the common practice for pathologists to 

make a diagnosis? Do they also look at IHC results? I want to make sure that the network’s 

performance is compared to the actual state-of-the-art practice in the clinic. Also, are the 7 

pathologists experienced in DLBCL diagnosis? 



9. In line 277 is the first time we see the term “GOTDP-MP-CNN” used in the paper although it 

appears in Fig1 without explanation except for the legend. It would be helpful if the term appeared 

earlier in the manuscript. 

10. Will the images be made available to the scientific community? 

Minor Comments 

1. Regarding the title of the study, it might be a little redundant to have both terms “artificial 

intelligence” and “deep learning”. 

2. In line 75, the word “Acquisition” should probably be lowercase. 

3. In Fig1b, would be more aesthetically pleasing to align all the squares properly. 

4. In Fig3 I don’t see a legend for panel b. 

5. Line 188: probably meant to say “In contrast, ” 

6. Fig 4a. The little yellow box is unreadable and may need to be removed or enlarged. 

 

 

 

Reviewer #2: 

Remarks to the Author: 

I am not expert in AI systema as I am an haemopathologist, therefore my objections are based only 

on the histopathology side of the story. I accept the AI can be great, I have no way to judge that but I 

am worried as far as the handling of the pathology side is concerned. 

 

I have several worries. 

 

Against what the authors measure the accuracy? How were diagnosed the cases used as DLBCL or 

not-DLBCL to train the system? Which immunohistochemical panels were performed? Which was the 

anatomical location of the samples: only lymph nodes or also other organs? 

 

DLBCL is an heterogeneous group of lymphomas. What about the T cell rich B cell lymphomas, the 

Burkitt’s lymphoma , the high grade B cell lymphoma, the double hit DLBCL and the post transplant 

DLBCL, just to mention the main types. 

 

Was the non-DLBCL group composed by the same diagnosis in all the hospital? 

 

The authors do not provide a list of these diagnosis of the cases used as non-DLBCL. This is a critical 

omission as the composition of this list is critical to properly train the system. 

 

Variation in quality of histological preparation among hospital is a very well-known problem.whether. 

Ther authors could have started to study it, for example by repeating the analysis after cutting and 

staining all the case just in one hospital: this simple measure could already improve diagnosis across 

hospitals. Another cause could have been the different composition of the non DLBCL list in different 

hospitals. 

 

This variability makes this system of scarce practical utility as hemopathology is usually performed in 

centralised referral centres that cover many different hospitals. 

 

To investigate the feasibility of obtaining an AI system in each hospital the authors worked on a set of 

24 DLBCL patients and 35 non-DLBCL individuals. I am an hemopathologist, not a statistician or a 

computer scientist, however a set of 35 patients other than DLBCL does not even cover the number of 

entities other than DLBCL normally seen by an haemopathologist. 

 

When the author discus the detection of a false negative diagnosis and review the case, it is unclear 



why they decided that the case was not a DLBCL. They do not provide enough information, in 

particular immune prophile , proliferating fraction and proliferating fraction distribution in order to 

properly conclude that the case was not a DLBCL. The diagnosis of “follicular diffuse mixed type” 

(probably what Lennert called “diffuse centrocytic centroblastic”) is now mostly recognised to be 

DLBCL. Alternatively it can represent the extrafollicular component of a follicular lymphoma but for a 

pathologist to make a mistake is pretty bad! 

 

The authors write: 

“To be careful, we compared the diagnostic accuracy of our AI model with that of seven invited 

pathologists for reading the same set of DLBCL and non-DLBCL 400x images. The pathologists used 

about 60 minutes in average to read all 531 images, and the highest diagnostic accuracy among the 

seven pathologists was 74.39% (Fig. 4b). In contrast, it took less than 1 minute with a notebook 

computer for our AI model to finish reading all these images, and the diagnostic accuracy was 100%.” 

 

I guess they mean that the pathologists only used an HE. But I hope that the AI system was trained 

using diagnosis done with the support of immunohistochemistry. This experiment to me make no 

much sense. The gold standard is to make the DLBCL diagnosis with immunohistochemistry, not only 

to verify the B nature of the malignancy but also to establish subtypes (like e.g. Germinal Centre vs 

non-Germinal Centre type, Burkitts; expression of cMyc). 

Furthermore to give 60 minutes to look at 531 cases is non sensical: of course at that spead an 

human pathologist will fail, is a self-fulfilling prophecy. Plus it is misleading to test the system against 

diagnosis done only on HE: this is not the normal clinical practice. 

 

The authors write “In clinical practice, a diagnostic accuracy of 100% or greater than 99% is 

critical and this level of accuracy has not been reported for pathological diagnosis of any types of 

hematopoietic malignancies.” 

This is rather inaccurate and not supported by any evidence. For example I had a very quick look at 

our double reporting records and, to a very rough analysis, we have an agreement between two or 

more pathologists on the diagnosis of DLBCL of 98.35, of 

 

98.7% in the diagnosis of Follicular lymphoma 

 

Minor issues include: 

 

Line 150: why use only 400x? It could miss the presence of some low grade component in the same 

slides 

 

 

 

Reviewer #3: 

Remarks to the Author: 

In their manuscript, Li et al. propose a deep-learning-based platform trained for the diagnosis of 

diffuse large B cell lymphoma (DLBCL) and non-DLBCL from pathologic images. 

With the technique proposed, the authors claim to achieve intra-dataset accuracies between 99.7-

100% on data from 3 different hospitals, and inter-dataset accuracies between 80-82%. 

 

The novelty resides in using a combination of 17 trained convolutional neural networks (CNN), instead 

of comparing performance and choosing the best one as often done. 

They claim it's the first time a perfect accuracy is reached, which, the way it is stated, is incorrect (see 

for example, "Deep Convolutional Neural Networks Enable Discrimination of Heterogeneous Digital 

Pathology Images"). Better setting of the state of the art could be done and the claim phrased more 



carefully and more precisely; 100% is achieved on intra-dataset test set. 

 

While the results are impressive and the method very interesting, the method lacks details to allow 

readers be convinced. More specifically, the code should be made available to the reviewers (and later 

to the readers) so that we could properly assess the work. I can't comment on the well documented 

sources. 

 

A few important details needed that would help the readers would be: 

* Transfer learning is used: what were the networks initially trained on? Where they all pre-trained 

one after the others with their own outputs, or the 17 networks trained as one with a "merged" 

output? 

* The authors mention variations of pathologic images between hospitals and also presence of 

artifacts, and they: "We expect that these variations pose an obstacle to establishing highly accurate 

AI models, which we should pay much attention to when generating our AI models." but don't explain 

properly how they dealt with it 

* line 150 "were correctly labeled by pathology experts". I would suggest to be more specific (here or 

in method): How many experts? What is their level of experience? Did they annotations overlap and if 

so, was variability assessed? 

* "photographed at 400x original magnification". The resulting pixel size should be given to be able to 

compare with scanned images available on other databases for example. 

* the authors say the images were split into training/validation/test set. If it is the case and one 

patient has several images, then, it is possible that a patient has some of his slides in the training set, 

and some in the test set? The cross-validation accuracy (which is the one that matters) shows the 

accuracy drops from 99.7-100% to 80-82%, which is a big drop. It either suggests that the slides are 

very different, or that there is a patient leak when tested on the same hospital's dataset. Please 

double check and show which case it is. One way to un-ambiguously prove the sample preparation is 

the reason for that drop would be to (re)strain slides from a subset of patients using the procedure of 

the different hospitals. If not, showing the list of patients in each dataset is different is another option. 

* Regarding the validation, it looks like a bunch of parameters were tested and optimized. It could be 

interesting, in a supp table, to show how each parameter tested affected the validation performances 

and led to the selected optimal conditions. 

* Authors use "accuracy" only to assess the performance. Other measures are usually more common 

and could be considered (AUC for example). 

* What is the ground truth /gold standard used to assign the true label to each patient? If it was 

based on hematopathologists diagnosis, please how differences between pathologists were tackled to 

assign ground truth. 

* How are the outputs of all the trained networks combined to generate the final decision score? 

* Which network(s) contribute the most/the best to the output, from a statistical point of view, and 

from "workbench" tests? It would be good to show the performance of each individual network to 

solve this task to prove the benefit of combining the 17 of them. 

* The different networks used deal with different input sizes. How did the authors deal with it? 

* The links to the image and code are not yet working. It is not possible to assess the feasibility of the 

technique without having a view on the code. Furthermore, as often requested by most journals, code 

must be properly commented and written in a way that will allow users to reproduce the results. 

 

As a conclusion, I think the main interesting point of this paper is the fact that they combine 17 

different neural networks to achieve the classification. However, the lack of precision in the method, 

the lack of intermediate results and lack of analysis of the obtained results cast a significant shadow 

on the current manuscript. I hope the authors will solve the concerns and questions addressed 

because if they show there is no patient leak and the 17-network combination performs significantly 



better than each individual ones, then it would be a very interesting paper. 

 



Point-by-point response to reviewers 
 

 
Reviewer #1 (Remarks to the Author): 
 
Li et al are presenting a deep learning platform including multiple convolutional neural 
networks for the diagnosis of human diffuse large B cell lymphoma (DLBCL) from 
histopathology slides of the lymph. Using data from three different hospitals, their method 
achieved diagnostic rate of 100% for hospital A, 99.71% for hospital B and 100% for hospital 
C respectively. However, none of the three models is generalizable, which significantly limits 
the impact and novelty of this work. Previous studies have shown that deep learning models 
for histologic diagnosis can be generalized in several cancer types.  

If we may, we respectfully disagree with the reviewer’s comment on the generalization 
performance of our deep learning models based on the following facts: 

 
a. We guess that this comment by the reviewer is derived from our results shown in 

Figure 3 in our originally-submitted manuscript, indicating roughly a 20% drop of DLBCL 
diagnostic accuracy when we conducted a cross-hospital model testing. The reviewer mentioned 
“Previous studies have shown that deep learning models for histologic diagnosis can be 
generalized in several cancer types”. Although we don’t know which study the reviewer was 
referring to and what degree of generalization was shown in that study, based on our knowledge, 
we would like to point out that a drop of diagnostic accuracy or sensitivity in a generalization 
test has been observed in every published work. This is simply because the technical variability 
introduced mainly by tissue slide preparation and the types of imaging equipment used 
significantly affect the performance of any given deep leaning model and each hospital or 
institution determines its own way of preparing the tissue slides and what imaging equipment to 
use. The technical variability among different hospitals/institutions would not be eliminated until 
one day all hospitals/institutions conduct standardized procedures for tissue slide preparation and 
image collection. However, the technical variability could be largely eliminated within one 
hospital or institution, which was what we did in our study. 

To further emphasize our point regarding the generalization of our models, please allow 
us to discuss, in detail, a beautiful representative work published recently by a research group in 
Memorial Sloan Kettering Cancer Center (Campanella, G. et al. Clinical-grade computational 
pathology using weakly supervised deep learning on whole slide images. Nat Med 25, 1301-1309, 
2019), which was actually cited in our originally-submitted manuscript. In this study using AUC 
(area under the curve) as an indicator for diagnostic sensitivity of solid tumors, the highest 
sensitivity reached 0.98 by the deep learning model established. Importantly, when the model 
was used to test a new dataset, a 20% drop of diagnostic sensitivity was observed, which 
represents the current level of deep learning models in computational pathology and is similar to 
the generalization level we observed for our models in our cross-hospital DLBCL study. On the 
other hand, we believe that our model should perform better in generalization than the models 
published by others, because our model was built on more advanced deep learning methods (see 
next section below in “b”).  

  
b. We should thank the reviewer for questioning the generalization ability of our 

deep learning models, because it prompted us to ask why our model did not show a higher level 



of generalization compared to the published work (Campanella, G. et al. Clinical-grade 
computational pathology using weakly supervised deep learning on whole slide images. Nat Med 
25, 1301-1309, 2019). We ask this question to ourselves because we are the first to be able to 
combine 17 CNNs and use our unique Global Optimization Method to read pathologic slides and 
we should do much better. By thinking so, we suddenly recognized one “error” we made when 
we conduct the two cross-hospital tests of our models.  

In the first test when using the model A established in hospital A to read the slide images 
of patients from hospital C, which showed a 82.09% diagnostic accuracy, we did not standardize 
the shape of the tissue images when conducting our generalization test between the two hospitals. 
The model A was trained with the original rectangular images (the width to height ratio is 4:3) 
from the hospital A and the tested images from hospital C were squares in shape; thus, the 
images from hospital C were twisted and were fed into the model A for testing. Fairly, we had a 
reason for not unifying the shape of the images because we did not have a need to do that when 
we focused more on building hospital-specific models as described in our originally-submitted 
manuscript. Now, we realize that our generalization test involved two different hospitals, which 
definitely requires reading the same shape images for precision. This is because the variability 
caused by the differences in the shape of the images are totally unrelated to pathological 
appearance of the disease but would be picked up by the deep learning model, which could 
explain why the performance of our model in the generalization test is expected to be better but 
was at a level similar to what was observed by others. Therefore, we re-did this generalization 
test by normalizing the shape of 179 images in hospital C to the shape of the images in hospital 
A to determine the generalization ability of our model trained and built using the images in 
hospital A. The result showed that the diagnostic accuracy in this new cross-hospital test was 
significantly increased from 82.09% to 90.50% (see new Fig. 3c in the revised manuscript; for 
the reviewer’s convenience, we showed this new subfigure here as well). This 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3c. A high diagnostic accuracy of our AI models. Hematoxylin and eosin (H&E)-stained formalin-
fixed paraffin-embedded tissue sections prepared from lymph nodes of DLBCL and non-DLBCL patients 
from four unrelated hospitals (Hospitals A, B, C, D) were photographed (Hospitals A, C) or scanned 
(Hospitals B, D) at 400x original magnification to produce pathologic images for generating three separate 
AI models (Models A, B, C), each of which was specifically generated using the DLBCL and non-DLBCL 
samples from the corresponding hospital. A high diagnostic accuracy was reached by the three AI models 
(100% for Hospital A, 99.71% for Hospital B, 100% for Hospital C, respectively (see Fig. 3a in the 
manuscript). However, the diagnostic accuracy dropped from 100% to 90.50% or 82.09% with or without 
unifying the size and shape of the images between hospital A and hospital C when cross-hospital use of the 
deep learning model A was used to read the slide images of patients from hospital C. The diagnostic 
accuracy increased to 100% when the model A was used to read new images of patients in the same hospital. 
100% diagnostic accuracy was also achieved when the model B was used to reach the slide images of 
patients from a new hospital (hospital D) after elimination of the technical variability introduced by slide 
preparation procedures and image collection equipment. 



result demonstrates that our deep learning model has reached a high level of generalization 
compared to the methods established by others (Campanella, G. et al. Clinical-grade 
computational pathology using weakly supervised deep learning on whole slide images. Nat Med 
25, 1301-1309, 2019). We should mention that in this generalization test, we used the model A 
established in hospital A to read the images from hospital C, because the images from both 
hospitals were prepared by photographing.  

In the second test when using the model B established in hospital B to read the slide 
images of patients from hospital A, which showed a 79.80% diagnostic accuracy, was that we 
intentionally ignored the fact that the images from hospital B were collected using a scanner, 
whereas the images from hospital A were collected using a camera. Thus, it was inappropriate 
and not meaningful to conduct the generalization test between hospital B and hospital A, and an 
accurate assessment of the generalization ability of our model would be to scan the tissue slides 
in both hospitals (see “c” below). 

c. Although the 90.50% diagnostic accuracy from our new generalization test 
described above is among the best, we wonder what would be the other factors that prevented us 
from reaching an accuracy close to 100% in the cross-hospital (generalization) test as we 
achieved in our accuracy tests within each hospital. The published work (Campanella, G. et al. 
Clinical-grade computational pathology using weakly supervised deep learning on whole slide 
images. Nat Med 25, 1301-1309, 2019) has shown that the technical variability can be introduced 
by slide preparation methods and imaging equipment used in different institutions. In other 
words, slide preparation procedures and types of scanner or camera used could negatively affect 
the performance of deep learning models. Specifically, in this published study, about 3% drop in 
diagnostic sensitivity was observed when different scanners were used between institutions. In 
addition, the difference in slide preparation caused about 6% drop in diagnostic sensitivity. Thus, 
the technical variability introduced by slide preparation methods and imaging equipment caused 
about 9% drop in diagnostic sensitivity. If we could eliminate the interference by those two 
factors (slide preparation methods and imaging equipment), our deep learning model from 
hospital A (model A) would reach, when reading the images from hospital C, a diagnostic 
accuracy close to 100% (from 90.50%) for DLBCL. In our view, however, it would be difficult 
to eliminate those two factors through improving deep learning models, but a practical way to do 
is to standardize slide preparation procedures and image collection methods among different 
hospitals, which would require taking an international cooperation effort in the computational 
pathology field. Achieving this cooperation in a large scale is unrealistic at present, although we 
believe it will eventually happen. In contrast, when we focused on each individual hospital, we 
could largely eliminate those two factors, because we found that in each hospital, all tissue slides 
(DLBLC and non-DLBCL) were prepared similarly and pathologic images were collected using 
the same equipment (a scanner or camera). This explains why our hospital-specific deep learning 
models reached 100% diagnostic accuracy for diagnosing DLBCL. This also explains why we 
emphasized building individual hospital-based deep learning models for achieving 100% 
diagnostic accuracy, which obviously requires an ability to generate deep learning models using 
a smaller dataset as we showed in our manuscript. We believe that at present, this strategy is 
practical, bringing us closer to using our deep learning models for DLBCL diagnosis in medical 
practice. To further demonstrate the practicality of this strategy, we conducted a “generalization-
like” test, in which we used the model A established in hospital A to read new images (totally 
110 images) that were obtained from the same hospital but not used for training the deep learning 
model (model A). We thought that this would largely eliminate those two factors (slide 



preparation methods and imaging equipment) that caused about 9% reduction in accuracy 
between two different institutions (Campanella, G. et al. Clinical-grade computational pathology 
using weakly supervised deep learning on whole slide images. Nat Med 25, 1301-1309, 2019). 
Our new result showed that diagnostic accuracy remained at 100% (see new Fig. 3c in the 
revised manuscript and also the figure above in this rebuttal letter), suggesting that we could 
eliminate the technical variability introduced by slide preparation and imaging equipment 
through building a single hospital-based deep learning model to achieve a 100% diagnostic 
accuracy. Importantly, this result also suggests that our deep learning models with the 100% 
accuracy did not pick up signals unrelated to DLBCL because we used, as a control, non-
DLBCL tissue images that were prepared and collected similarly within the same hospital. In 
other words, the overfitting is not an issue of concern in our study.  

To further evaluate the generalization ability of our deep learning model, we conducted a 
new cross-hospital test, in which we used our model established in hospital B (model B) to read 
new tissue images of patients from a different hospital with a goal of eliminating the technical 
variability introduced by slide preparation procedures and image collection equipment. 
Specifically, we reached out a new hospital (hospital D) that was not originally involved in our 
model building when we submitted our original manuscript reviewed by the reviewer, to 
obtained DLBCL and non-DLBCL samples, because this hospital utilized the slide preparation 
procedures similar to the ones used by hospital B. Also, we scanned the pathologic slides from 
hospital D to produce whole slide images (totally 135 images) using the same scanner we used to 
collect whole slide images from hospital B. Thus, we can say that we basically eliminated the 
differences between the two hospitals (hospitals B and D) in slide preparation and image 
collection equipment. We then used the model B established in hospital B to read the images 
from hospital D, and 100% diagnostic accuracy for DLBCL was achieved in this cross-hospital 
test.  

Taken together with all new tests we did in revising our work, we think it would be fair to 
say that we have generated accurate deep learning models with high generalization ability for 
diagnosis of DLBCL. 

 
 
Major Comments 
 
1. Combining multiple classifiers is not a novel idea, and also the authors need to compare the 
performance of their approach to each individual CNN. Also, how robust are the results to the 
data split (training, validation, testing)? 
 We respectfully argue that our ability to combine 17 CNNs and use them together as a 
single model is definitely unprecedented. This single model has all of the layers built in those 17 
CNNs for conducting transfer deep learning with our datasets, and this novel approach allowed 
us to achieve a high diagnostic accuracy for DLBCL.  

We should point out that different research groups, including us, have used different 
CNNs individually but diagnostic accuracy has not been satisfactory. In our study, we initially 
used each of the 17 CNNs, respectively, to analyze the pathologic images of DLBCL in each of 
the three hospitals, and found that the average percentage of diagnostic accuracy in the three 
hospitals by using one CNN was ranged from 87% to 96%. In our view, the diagnostic accuracy 
needs to be 100% or greater 99% prior to employing any deep learning model in medical practice. 
This is why we programmed multiple models (17 CNNs) into one system with our algorithms to 



enhance the performance of deep learning with a goal of achieving 100% diagnostic accuracy. 
As a result, we have indeed reached 100% accuracy, which is superb to a sole use of any one of 
the 17 CNNs. In our originally-submitted manuscript, we did not mention this information 
regarding the comparison between the combined use of all 17 CNNs and the sole use of one of 
the 17 CNNs, because we thought we did not have a need to do so. In this revised manuscript, we 
added this information, as the reviewer requested, to help to explain why we combined the 17 
CNNs in our analysis of the DLBCL tissue images.  

In terms of the robustness of our results to data split, we can say that the results of our 
model are very robust to the data split. We used 0.8-0.1-0.1 (training 0.8, Validation 0.1, Testing 
0.1) during the training and also tried other ratios such as 0.6-0.2-0.2 and 0.7-0.15-0.15, but we 
did not notice significant differences, which indicates that the data split ratio in training does not 
play a significant role in our deep learning platform. 

 
2. The authors can build a model using the data from Hospitals A and C together since the 
images are obtained with the same method. This could address the sample variation since now 
the model has taken the variations into account during training. This could potentially yield a 
more generalizable model. 
 Here the reviewer emphasized again the importance of having a more generalizable 
model that could be built in one hospital and used in a different hospital. As we addressed above 
the similar concern by the reviewer, the most difficult obstacle to building a more generalizable 
model is the technical variability introduced by slide preparation methods and imaging 
equipment used in different institutions, which would be difficult to overcome by further 
improving deep learning models. In other words, the technical variability produced among 
different institutions would not be effectively eliminated until all institutions conduct 
standardized procedures for tissue slide preparation and image collection. Although the tissue 
images from hospitals A and C were similarly collected by photographing, we knew that the 
differences still existed in tissue preparation procedures and types of imaging camera used, both 
of which were out of our control. Thus, combining data from Hospitals A and C in model 
generation would not substantially improve the diagnostic accuracy when using the model 
(model A+C) to read slides from a third hospital in which slide preparation method and imaging 
equipment are likely different from those in hospitals A and C, again because the third hospital 
would prepare tissue slides differently and use a different imaging device compared to hospitals 
A and C. Regardless, it is fair and appropriate for the reviewer to question our deep learning 
model for its ability to provide high diagnostic accuracy when analyzing new pathologic images 
that are not used in training the model. As described above in our response to the first concern by 
the reviewer, we thought that the best way for conducting our generalization test is to use our 
deep learning model established in hospital A (model A) to read the images from hospital C. 
Actually, we did this test and showed in our originally-submitted manuscript that a 20% drop in 
diagnostic accuracy was observed, which is comparable to the 20% drop of diagnostic sensitivity 
in the published study on diagnosis of solid tumor using deep learning model (Campanella, G. et 
al. Clinical-grade computational pathology using weakly supervised deep learning on whole 
slide images. Nat Med 25, 1301-1309, 2019). We questioned ourselves by asking why our deep 
learning model (model A) did not show a less drop in diagnostic accuracy compared to available 
work by others. As described above in our response to the first concern by the reviewer, we 
discovered some differences in the shape of the images between hospital A and hospital C, which 
could severely affect the diagnostic accuracy.   We corrected this mismatching by normalizing 



the shape of 179 images in hospital C to those in hospital A and used the model A to read these 
normalized images in hospital C. As a result, our cross-hospital diagnostic accuracy was 
significantly increased from 82.09% to 90.50% (see new Fig. 3c in the revised manuscript and 
Figure 3 shown in this rebuttal letter above), indicating that our deep learning model is actually 
more generalizable compared to the models established by others. Because the technical 
variability introduced by slide preparation methods and imaging equipment caused about 9% 
drop in diagnostic sensitivity (Campanella, G. et al. Clinical-grade computational pathology 
using weakly supervised deep learning on whole slide images. Nat Med 25, 1301-1309, 2019), 
our model would reach a diagnostic accuracy close to 100% for DLBCL, after elimination of this 
technical variability by standardizing slide preparation and image collection. As described above 
in response to a similar concern by the reviewer, we validated this assumption by using the 
model B established in hospital B to read pathologic images of patients from a different hospital 
(hospital D) where the slide preparation procedures were similar to the ones used in hospital B. 
Also, the same scanner was used to collect whole slide images from both hospital B and hospital 
D. Together, we basically eliminated the differences between the two hospitals (hospitals B and 
D) in slide preparation and image collection equipment. We achieved 100% diagnostic accuracy 
for DLBCL in this cross-hospital test (see new Fig. 3c in the revised manuscript and Figure 3 
shown in this rebuttal letter above).   

To further test the ability of our deep learning model in reading new DLBCL images, as 
described above in our response to the first concern by the reviewer, we took another approach 
by using the model A established in hospital A to read new images (DLBCL or non-DLBCL) 
that were obtained from the same hospital but not used for training the deep learning model 
(model A). The result showed that diagnostic accuracy remained at 100% (see new Fig. 3c in the 
revised manuscript and also Figure 3 shown above in this rebuttal letter), demonstrating that our 
model is highly generalizable in reading new images. This result also suggest that we could 
eliminate the technical variability introduced by slide preparation and imaging equipment, prior 
to achieving cross-hospital standardization of slide preparation and imaging collection, through 
building a single hospital-based deep learning model and achieving a 100% diagnostic accuracy. 

 
 
3. Some of the data, as stated in line 98, were obtained by taking photos of slides and some by 
scanning them. Is there any difference at the resolution? At which resolution where the whole 
slides from Hospital B scanned? 
 There is a difference in the imaging resolution between photographing and scanning, 
because we just used whatever was available in each hospital. For the scanned whole slide 
images from hospitals B and D, the resolution is 0.121547 (micrometer/pixel) and the image size 
obtained for training and testing is 945x945 pixels. 
 
4. The order of presenting the results is a little confusing. It is not clear that the authors built 
3 different models (one for each hospital) because of the difference in the sample preparation 
and collection (microscope camera vs scanned) until the paragraph “Effect of sample 
preparation procedures on diagnostic accuracy”. It will be better to re-write/merge this 
paragraph with the previous one “Achievement of a high diagnostic accuracy for clinical use” 
and maybe the next one “Establishment of AI models using small datasets” to improve the 
flow of the paper. 



 We apologize for the confusion and appreciate very much the reviewer’s suggestion that 
we should re-write/merge those two paragraphs. Following the reviewer’s suggestion, we made 
the changes in this revised manuscript.  
  
5. Regarding the whole slide model, it seems that the authors used parts of the image to build 
their model (line 176). Since the CNNs mentioned in Fig 1 have the capacity to tile the images 
why wasn’t the whole image used? 
 Like many other previous studies, we, if needed, would be able to tile the images and get 
each every piece of tiled images classified in building our model. However, we intended to save 
computing resources by randomly selecting nine pieces of images within the DLBCL tissue area 
clearly annotated by pathologists for each case. In perspective, the majority of pathology 
departments in hospitals do not have access to and the training to use high-performance super 
computers to analyze entire tissue image of each case, which is one of the reasons why we used 
parts of the image to hope to establish an AI system that could be used by all hospitals.  
  
6. To better support the claim in line 183 about the “unprecedented” high diagnostic accuracy 
of their models, it is important that the authors address fully in their introduction the 
performance of the current and other published methods to diagnose DLBCL. 
 We totally agree with this suggestion by the reviewer. We could only find one DLBCL-
related study showing a 95% diagnostic accuracy along with significant false-negative and false-
positive rates (Achi et al. Annals of Clinical & Laboratory Science. vol. 49, no. 2, 2019). By our 
standard, it is impossible to translate this kind of results into clinical use. By contrast, our deep 
learning models achieved a 100% diagnostic accuracy without having false-negative and false-
positive cases. We have included this reference under the “Discussion” section in our revised 
manuscript.    
  
7. The CIFAR-10 dataset is a collection of slides with labels such as “airplanes, cars etc”. The 
GOTDP-MP-CNN platform generated by the authors outperformed all other architectures 
included in the CIFAR-10 platform in classifying these images. I am not sure if this 
comparison is relevant to DLBCL diagnosis. 
 The goal of this analysis of the CIFAR-10 dataset was to show that our deep learning 
algorithm among or above the best available ones, which helps to explain why we were able to 
achieve a 100% diagnostic accuracy for DLBCL. If the reviewer strongly suggests that we 
should remove this information, we would do that, although we ask to still include this result as 
supplemental information. 
  
8. The comparison with the pathologists’ performance is interesting and indeed it is 
demonstrating the network’s high performance. Is looking at 400x images only the common 
practice for pathologists to make a diagnosis? Do they also look at IHC results? I want to 
make sure that the network’s performance is compared to the actual state-of-the-art practice 
in the clinic. Also, are the 7 pathologists experienced in DLBCL diagnosis? 
 This is a great question! It is great because it gives us an opportunity to make one point:  
for the same tissue slide, there is a fundamental difference in the way of reading the slide by 
artificial intelligence (AI) vs. a pathologist. Unlike what a pathologist does, AI does not use the 
concepts for cell membrane, cytoplasm or nucleus, etc., and it picks up signals that are totally 
different from those looked at by the pathologist. Also, one of the major goals of using AI in 



computational pathology is to reduce the workload of pathologists. Therefore, AI should not be 
expected to follow and repeat what pathologists do in their daily practice. We believe that the 
principal of employing AI in computational pathology should be to collect and read tissue 
images as less as possible but can still achieve high diagnostic accuracy. It is true that in 
common practice by pathologists for DLBCL diagnosis, at least they look at both 200x and 400x 
images as well as IHC results, but this is because they could not make a correct diagnosis by 
only looking at a 400X image; they often need help from looking at the multiple images from the 
same patient by multiple ways (morphology of the cells, biochemical changes detected by 
immunohistochemistry, etc.). In contrast, our AI model only needs to read 400x images to 
achieve a 100% diagnostic accuracy for DLBCL. Thus, it is obvious that AI will help to reduce 
workload of pathologists in a big way. 
 The 7 pathologists have different levels of experience in diagnosing DLBCL, and as what 
we showed, none of the 7 pathologists was 100% correct in the diagnosis of DLBCL when they 
only looked at 400x images, which reflected the fact that in medical practice, pathologists need 
to look at multiple images of each patient by multiple ways to make correct diagnosis. This 
further emphasizes the need of AI in assisting pathologists in their daily practice. On the other 
hand, a significant number of hospitals in the world do not have “state-of-the-art practice in the 
clinic”, which is labor-intensive and expensive, and again, AI will definitely help to reduce the 
labor and cost.         
 
9. In line 277 is the first time we see the term “GOTDP-MP-CNN” used in the paper although 
it appears in Fig1 without explanation except for the legend. It would be helpful if the term 
appeared earlier in the manuscript. 
 We apologize for the inconvenience and have made the correction in our revised 
manuscript. 
  
10. Will the images be made available to the scientific community? 
 Definitely yes. 
 
Minor Comments 
 
1. Regarding the title of the study, it might be a little redundant to have both terms “artificial 
intelligence” and “deep learning”. 
 Totally agree. We removed artificial intelligence from the title in our revised manuscript. 
 
2. In line 75, the word “Acquisition” should probably be lowercase. 
 The reviewer’s correct, and we changed it to lowercase in our revised manuscript. 
 
3. In Fig1b, would be more aesthetically pleasing to align all the squares properly. 
 We made this change in our revised manuscript. 
 
4. In Fig3 I don’t see a legend for panel b. 
 We apologize for this mistake. We added the legend for panel b of Fig. 3 in our revised 
manuscript. 
 
5. Line 188: probably meant to say “In contrast, ” 



 We apologize for this mistake, and it should mean “In contrast”. We corrected this error 
in our revised manuscript. 
 
 
6. Fig 4a. The little yellow box is unreadable and may need to be removed or enlarged. 

Agree. We removed it in our revised manuscript. 
 
 
Reviewer #2 (Remarks to the Author): 
 
I am not expert in AI systema as I am an haemopathologist, therefore my objections are based 
only on the histopathology side of the story. I accept the AI can be great, I have no way to 
judge that but I am worried as far as the handling of the pathology side is concerned. 

We thank the reviewer for supporting our study by saying: “I accept the AI can be 
great…”. 

 
I have several worries. 
Against what the authors measure the accuracy? How were diagnosed the cases used as 
DLBCL or not-DLBCL to train the system? Which immunohistochemical panels were 
performed? Which was the anatomical location of the samples: only lymph nodes or also other 
organs? 
 These are great questions and the answers to them were actually described in detail under 
the “Methods” section in our originally-submitted manuscript. We apologize for not being able 
to provide sufficient information under the “results” section due to the format requirements by 
the journal.  
 To answer the “accuracy” question by the reviewer, please allow us to introduce again 
the following definitions we used in our manuscript: 

DLBCL: positive for DLBCL 
Non-DLBCL: negative for DLBCL (healthy or other diseases) 
True positive (TP): the number of cases correctly identified as DLBCL  
False positive (FP): the number of cases incorrectly identified as DLBCL  
True negative (TN): the number of cases correctly identified as healthy or other diseases 
False negative (FN): the number of cases incorrectly identified as healthy or other diseases 

 The accuracy of a test is its ability to differentiate the DLBCL and Non-DLBCL cases 
correctly. To assess the accuracy of a test, we calculated the proportion of true positive and true 
negative in all evaluated cases. Mathematically, accuracy = (TP+TN)/(TP+TN+FP+FN). In other 
words, the accuracy reflects the correct rate of diagnosis. For example, if we used our deep 
learning model to read slide images for 100 cases of DLBCL (25 cases) and non-DLBCL (75 
cases) and identified 24 cases of DLBCL and 75 cases of non-DLBCL correctly but missed 1 
case of DLBCL, TP = 24, TN = 75, FP = 0, and FN = 1. Diagnostic accuracy for DLBCL is 
24+75/24+75+0+1 = 99%. 
 Every case of DLBCL or non-DLBCL was correctly diagnosed based on reading tissue 
slides with H&E staining and immunohistochemical detection of expression of B cell markers 
such as CD20 and PAX5 by pathologists. The diagnosis and classification of DLBCL, and of 
non-DLBCL lymphomas in the control group, was made in accordance with the WHO 
classification of tumours of haematopoietic and lymphoid tissue. The diagnosis and classification 



of DLBCL, and of non-DLBCL lymphomas in the control group, was made in accordance with 
the WHO classification of tumours of haematopoietic and lymphoid tissue. Also, the 
pathological diagnosis of each case was consistent with clinical symptoms of the patient. 
 For the anatomical location of our samples, only lymph nodes were used, which we 
describe more clearly in our revised manuscript. 
 
DLBCL is an heterogeneous group of lymphomas. What about the T cell rich B cell 
lymphomas, the Burkitt’s lymphoma , the high grade B cell lymphoma, the double hit DLBCL 
and the post transplant DLBCL, just to mention the main types. 
 The reviewer is absolutely correct: DLBCL is a heterogeneous group of lymphomas. In 
our study, the DLBCL cases were limited to those subclassified as DLBCL, NOS according to 
WHO classification, and realistically we did not set a goal for us to develop an AI pathology 
system for many subtypes of human lymphomas within one study. We know that in daily 
practice of pathologists, there is a need for DLBCL diagnosis with exclusion of other B-cell 
lymphomas with large-cell morphology, including mantle cell lymphoma, lymphoblastic 
lymphoma, and plasmablastic lymphoma, etc. It is also necessary to exclude malignant tumors of 
other histogenesis including carcinoma, melanoma, and sarcoma that may potentially mimic 
DLBCL. However, in our current work, we focused on distinguish DLBCL from non-DLBCL to 
prove the principal that our deep learning models are accurate and efficient in diagnosis of 
DLBCL. Our next goal in the future will be to detail with the heterogenesity of DLBCL to sub-
classify the disease via deep learning.    
  
Was the non-DLBCL group composed by the same diagnosis in all the hospital? 
 Among the hospitals involved in our study, the non-DLBCL cases in each hospital 
included similar medical conditions or diseases, some of which need to be distinguished from 
DLBCL in diagnosis as we explained in our answer to the previous question by the reviewer. 
 
The authors do not provide a list of these diagnosis of the cases used as non-DLBCL. This is a 
critical omission as the composition of this list is critical to properly train the system.  

We would like to mention that when building our deep learning models, we purposely did 
not want to know the specific diagnosis for each non-DLBCL case because we intended to 
eliminate any possible human influence on our model building. On the other hand, when 
obtaining pathologic slides from different hospitals, we were bound to policy restrictions by 
relevant institutional committees, and often we are not allowed to have a detailed list showing 
which patient has what disease. However, what we did require to know from the four hospitals 
involved in our study is that each non-DLBCL case is indeed not DLBCL. In addition, for the 
non-DLBCL cases in our study, we purposely included some cases with pathological 
appearances that are similar to DLBCL and clinically need to be distinguished from DLBCL. 
Following the reviewer’s suggestion, in our revised manuscript, we listed the types of disease for 
non-DLBCL, which included: benign/reactive lymph nodes, metastatic carcinomas, small 
lymphocytic lymphoma/chronic lymphocytic leukemia, mantle cell lymphoma, follicular 
lymphoma, and classical Hodgkin lymphoma. 

 
    
Variation in quality of histological preparation among hospital is a very well-known 
problem.whether. Ther authors could have started to study it, for example by repeating the 



analysis after cutting and staining all the case just in one hospital: this simple measure could 
already improve diagnosis across hospitals. Another cause could have been the different 
composition of the non DLBCL list in different hospitals. 
 We appreciate that the reviewer agrees with us regarding the problem in tissue slide 
preparation. As we described in response to the reviewer 1 above, we proposed two ways to 
overcome this problem: 1) standardization of slide preparation procedures and tissue image 
collection equipment, which would take international effort across hospitals; and 2) 
establishment of a single hospital-based deep learning model to achieve a high diagnostic 
accuracy, which would require having an ability to build the model using a smaller dataset, as we 
achieved in our study. At present, the second strategy is more realistic and practical, we believe. 

The reviewer has suggested that we could cut and stain all cases (from all hospitals 
involved in our study) in just one hospital to improve diagnosis across hospitals, and we believe 
that doing so would increase diagnostic accuracy across these hospitals. However, we have to 
respectfully argue that the reviewer’s suggestion is unrealistic to us simply due to the legal and 
ethical issues related to intellectual property, institutional review boards (IRB) approval under 
FDA regulations, patient right protection, etc. In other words, it would be extremely difficult to 
take formalin fixed paraffin embedded tissue blocks out of any hospitals to process them 
somewhere else without violation of institutional rules and regulations. This is why we proposed 
and emphasized in our study that at present, a realistic and practical way to do is to focus on each 
individual hospital when building a deep learning model within that hospital, which will also 
largely eliminate the technical variation introduced by histological slide preparation and image 
collection. As we mentioned in response to the reviewer 1 above, the published work showed 
that the technical variability introduced by slide preparation and image collection caused about 9% 
drop in diagnostic sensitivity of solid tumors between hospitals (Campanella, G. et al. Clinical-
grade computational pathology using weakly supervised deep learning on whole slide images. 
Nat Med 25, 1301-1309, 2019). This 9% drop is consistent with the percent drop in diagnostic 
accuracy of DLBCL in our study when we utilized the model A (established in hospital A) to 
read tissue images from hospital C after normalizing the shape of the images of patients from 
both hospitals: dropping from 100% accuracy to 90.50% (see new Fig. 3c in our revised 
manuscript and above in this rebuttal letter in response to the reviewer 1). In this new figure, we 
also showed that when we utilized the model A to read new tissue images from the same hospital 
(hospital A), we maintained 100% diagnostic accuracy of DLBCL, indicating that the drop from 
100% to 90.50% when utilizing the model A to read the images from hospital C was indeed 
caused by the technical variability (slide preparation and image collection) between the two 
hospitals. This conclusion was further supported by our achieving 100% diagnostic accuracy 
when we used the model B established in hospital B to read the images from a different hospital 
(hospital D) (see new Fig. 3c in our revised manuscript and above in this rebuttal letter in 
response to the reviewer 1), which is because the slide preparation procedures are similar 
between hospital B and hospital D, and the same scanner was used to collect the images for those 
two hospitals. Again, we believe that the best way to eliminate this technical variability is to 
standardize slide preparation procedures and tissue image collection equipment, which would 
take international effort across hospitals. 

It is reasonable and legitimate to think that “the different composition of the non 
DLBCL list in different hospitals” may have contributed to the drop in diagnostic accuracy, 
but we believe that it played, if any, a much lesser role, because if it played a larger role, we 
would not be able to achieve the high diagnostic accuracy in every individual hospital involved 



in this study, especially when we used the model B established in hospital B to read the images 
from a different hospital (hospital D) and achieved 100% diagnostic accuracy in this cross-
hospital test. On the other hand, from our experience we believe that there are many fundamental 
pathological differences between DLBCL and non-DLBCL and our AI models can pick them up 
in a way that is totally different from a human pathologist does. Furthermore, with respect to our 
AI models, “the different composition of the non DLBCL list in different hospitals” would 
not be a concern because non-DLBCL do not have some unique pathological features of DLBCL. 
In other words, our AI models are capable of finding these pathological features of DLBCL to 
determine which cell is DLBCL or non-DLBCL, regardless which hospital the non-DLBCL 
cases are from simply because non-DLBCL does not have the unique pathological features of 
DLBCL. Again, the technical variability introduced by slide preparation and image collection 
equipment across hospitals caused about 10% drop in diagnostic accuracy, and we believe that as 
DLBCL did, non-DLBCL also contributed to this technical variability. The technical variability 
can be basically eliminated by building hospital-specific deep learning models as we successfully 
did in our study because DLBCL and non-DLBCL slides can be handled in the same way within 
the same hospital. Alternatively, the technical variability can be largely eliminated by 
standardizing slide preparation procedures and tissue image collection equipment in all hospitals.     
 
This variability makes this system of scarce practical utility as hemopathology is usually 
performed in centralised referral centres that cover many different hospitals.  
 Actually, most decent sized academic hospitals in the US, which are located in most 
states, employ hematopathologists and are able to work up and diagnose such cases without 
referral to a specialized center. It is true that community hospitals or private groups of 
pathologists may need to send these to a more specialized center. Nevertheless, this technical 
variability introduced by slide preparation and image collection equipment would be eliminated 
if all tissue samples from different hospitals were sent to the same “centralised referral centres” 
where the same slide preparation procedures and tissue image collection equipment are 
employed. However, the technical variation across different centers still exist and would 
negatively affect the diagnostic accuracy if a deep learning model established in one center were 
used to read slide images from a different center. The solution would be: 1) to send all tissue 
samples from all hospitals in the world to one referral center, which is apparently unrealistic; 2) 
to standardize slide preparation procedures and tissue image collection equipment in all referral 
centers in the world, which is obviously not possible at present; and 3) to build referral center-
specific deep learning model to read tissue images of all patient samples sent to a particular 
referral center from “many different hospitals”. In other words, a deep learning model 
established in a particular referral center will only be used to read tissue images of patient 
samples to be sent to this referral center from different hospitals. Thus, we respectfully argue that 
utility of our deep learning models within the hospitals where the models are built will be 
practical and helpful for pathological diagnoses of human diseases including DLBCL, in terms of 
reducing labor and increasing diagnostic efficiency and accuracy by pathologists.  
 
To investigate the feasibility of obtaining an AI system in each hospital the authors worked on 
a set of 24 DLBCL patients and 35 non-DLBCL individuals. I am an hemopathologist, not a 
statistician or a computer scientist, however a set of 35 patients other than DLBCL does not 
even cover the number of entities other than DLBCL normally seen by an haemopathologist. 
 Actually, in hospital A, we had 500 cases of DLBCL and 505 cases of non-DLBCL, 
which covered many other diagnoses. On the other hand, in our current study, we did not intend 



to cover AI diagnosis of all types of human hematopoietic diseases, rather we focused on a 
common form of human lymphoma DLBCL to begin to develop deep learning models for 
diagnosis of DLBCL and in the future for all other human diseases whose diagnosis depends on 
pathological analysis of diseased tissue. Our final goal is to build disease-specific deep learning 
models and use them as a whole to help to diagnose all these human diseases. We, as a scientific 
community, have to start this long journey somewhere and wish that the reviewer would support 
our effort in helping pathologists to utilize the AI system in pathological diagnoses of human 
diseases, starting from DLBCL and expanding to all other diseases eventually. 
 
When the author discus the detection of a false negative diagnosis and review the case, it is 
unclear why they decided that the case was not a DLBCL. They do not provide enough 
information, in particular immune prophile, proliferating fraction and proliferating fraction 
distribution in order to properly conclude that the case was not a DLBCL. The diagnosis of 
“follicular diffuse mixed type” (probably what Lennert called “diffuse centrocytic 
centroblastic”) is now mostly recognised to be DLBCL. Alternatively it can represent the 
extrafollicular component of a follicular lymphoma but for a pathologist to make a mistake is 
pretty bad! 
 We do not know the detailed information about any particular patient due to 
confidentiality agreements with hospitals, but what we do know is that if a case is labelled as 
non-DLBCL, which was based on pathological appearance recognized by pathologists, 
immunohistochemistry, molecular biology, clinical symptoms, etc., this case is definitely not a 
DLBCL. During our study, tissue slides were re-examined and confirmed by at least one 
experienced pathologist to ensure the correctness of diagnosis for all patients included in our 
study.   

We appreciate that the reviewer pointed out a real difficult situation where a pathologist 
feels it could be challenging to distinguish DLBCL from some related human conditions such as 
“follicular diffuse mixed type”, follicular lymphoma”, etc., as we know that some form of 
lymphoma such as follicular lymphoma can transform to become DLBCL at a later stage of the 
disease. This is a good example for what a deep learning model can do to help pathologists: not 
only reducing their labor in reading tissue slides but also assisting them to correctly diagnosis 
DLBCL and other human diseases. If we may, we would like to mention again that pathologists 
should not think that AI and pathologists see a tissue slide in a similar way, and in fact, in totally 
different ways. This is one dilemma for pathologists to overcome because they often use what 
pathologists can see to evaluate what AI should and can do. The reality is that AI has surpassed 
human performance in many areas, including, for example, playing chess (Silver, D. et al. 
Mastering the game of Go with deep neural networks and tree search. Nature 529, 484-489, 
doi:10.1038/nature16961, 2016). Actually, we, human beings, do not know how a machine with 
a deep learning ability thinks during the chess game, which is why the best chess player was 
defeated by the machine, as the chess player thinks like us but the machine thinks differently. 
Anyway, we should believe that AI can help pathologists to do many things and do better under 
the supervision by pathologists. 
 
The authors write:  
“To be careful, we compared the diagnostic accuracy of our AI model with that of seven 
invited pathologists for reading the same set of DLBCL and non-DLBCL 400x images. The 
pathologists used about 60 minutes in average to read all 531 images, and the highest 



diagnostic accuracy among the seven pathologists was 74.39% (Fig. 4b). In contrast, it took 
less than 1 minute with a notebook computer for our AI model to finish reading all these 
images, and the diagnostic accuracy was 100%.” 
I guess they mean that the pathologists only used an HE. But I hope that the AI system was 
trained using diagnosis done with the support of immunohistochemistry. This experiment to 
me make no much sense. The gold standard is to make the DLBCL diagnosis with 
immunohistochemistry, not only to verify the B nature of the malignancy but also to establish 
subtypes (like e.g. Germinal Centre vs non-Germinal Centre type, Burkitts; expression of 
cMyc). 
Furthermore to give 60 minutes to look at 531 cases is non sensical: of course at that spead an 
human pathologist will fail, is a self-fulfilling prophecy. Plus it is misleading to test the system 
against diagnosis done only on HE: this is not the normal clinical practice. 
 We thank the reviewer for asking these clinical-relevant questions, and please allow us to 
answer them one-by-one below. 
 It is true that the pathologists we invited only looked at the HE tissue slides, which was 
why they did not achieved 100% diagnostic accuracy as our AI model did. This fact does not 
mean that these pathologists were incapable of providing correct diagnosis, rather it emphasizes 
that pathologists often need support from other clinical tests (such as immunohistochemistry, 
molecular biology, etc.) to come up with a correct diagnosis, as the reviewer pointed out that 
“The gold standard is to make the DLBCL diagnosis with immunohistochemistry, not only to 
verify the B nature of the malignancy but also to establish subtypes…”. We totally agree with 
the reviewer that the gold standard is to make the DLBCL diagnosis pathologically with the 
support of immunohistochemistry. Technically, we could include immunohistochemistry result 
in AI training if necessary but in our current study we just aimed to distinguish DLBCL from 
non-DLBCL by only reading the HE tissue slides to show whether we could achieve a high 
diagnostic accuracy. Indeed, our results showed that our AI models can reach 100% diagnostic 
accuracy for DLBCL. Again, the reviewer’s suggestion for including immunohistochemistry into 
our AI model building is outstanding, and in our future study, we will do so to help to sub-
classify DLBCL using the AI system. 
 The reviewer mentioned: “…it is misleading to test the system against diagnosis done 
only on HE: this is not the normal clinical practice”. It is not the normal clinical practice 
because a pathologist does not diagnose DLBCL solely based on looking at a HE tissue slide. As 
we pointed out above, AI does not and should not follow what a pathologist does simply because 
an AI machine does not think and do things in the same way as a pathologist does. The AI 
machine can detect what a human pathologist can’t. Just because of this, a normal practice by AI 
in the near future should differ from the “the normal clinical practice” by pathologists. The fact 
is that our AI model can help to diagnose DLBCL only based on HE, which is why we believe 
that AI pathology has a bright future in helping pathologists in reducing workload and providing 
correct diagnosis.       
 
The authors write “In clinical practice, a diagnostic accuracy of 100% or greater than 99% is 
critical and this level of accuracy has not been reported for pathological diagnosis of any types 
of hematopoietic malignancies.” 
This is rather inaccurate and not supported by any evidence. For example I had a very quick 
look at our double reporting records and, to a very rough analysis, we have an agreement 
between two or more pathologists on the diagnosis of DLBCL of 98.35, of  98.7% in the 



diagnosis of Follicular lymphoma  
 We apologize for not describing what we really wanted to express clearly. We wanted to 
say that it will be difficult to provide a diagnosis with 100% correct rate by a pathologist if 
he/she only looks at a 400x slide. A pathologist often needs to look at many magnifications often 
including from 200x to 400x original magnification as well as immunohistochemistry and often 
flow cytometry to provide a final diagnosis. In this revised manuscript, we more clearly 
described what we really want to express. 
   
Minor issues include: 
 
Line 150: why use only 400x? It could miss the presence of some low grade component in the 
same slides 

As we described above in response to the reviewer, at only 400x, human pathologists 
may miss “the presence of some low grade component in the same slides” and other features 
but AI model will not. This is because the AI model is able to extract thousands or more features 
from a slide image, whereas a pathologist only focuses on a limited amount of information 
related to some major morphological changes of diseased cells and their locations. Actually, AI 
does not know what “low grade component” is, and AI only picks up all differences between 
DLBCL and non-DLBCL to be able to identify which image is DLBCL or non-DLBCL. Again, 
we should not expect or require AI to work in the same ways as pathologists do in their medical 
practice, because AI does not think and work like a human being.  Importantly, AI utilizes its 
unique way to pick up disease-specific information that we cannot pick up and understand, 
which is why we need AI in medicine including pathology.  
 
 
Reviewer #3 (Remarks to the Author): 
 
In their manuscript, Li et al. propose a deep-learning-based platform trained for the diagnosis 
of diffuse large B cell lymphoma (DLBCL) and non-DLBCL from pathologic images.  
With the technique proposed, the authors claim to achieve intra-dataset accuracies between 
99.7-100% on data from 3 different hospitals, and inter-dataset accuracies between 80-82%. 
 We need to make a correction regarding “inter-dataset accuracies between 80-82%” 
because the inter-dataset accuracy is actually greater than 90%. During revising our work, we 
discovered a mismatch of the input data in our examination of “inter-dataset accuracies”, and 
after correcting this mismatch, the inter-dataset accuracy reached 90.50%, which is among the 
best in the published studies. We have added this new information to our revised manuscript. By 
the way, the mismatch was that we did not normalize the images between hospitals into the same 
shape, which was not appropriate for comparison using an AI system. 
 
The novelty resides in using a combination of 17 trained convolutional neural networks 
(CNN), instead of comparing performance and choosing the best one as often done.  
They claim it's the first time a perfect accuracy is reached, which, the way it is stated, is 
incorrect (see for example, "Deep Convolutional Neural Networks Enable Discrimination of 
Heterogeneous Digital Pathology Images"). Better setting of the state of the art could be done 
and the claim phrased more carefully and more precisely; 100% is achieved on intra-dataset 
test set.  



 We greatly appreciate the recognition of the novelty of our 17 CNN approach by the 
reviewer and apologize for the unclear message we described. As for our claim “it's the first 
time a perfect accuracy is reached”, what we actually meant was that it is the first time for us to 
reach a perfect accuracy in AI diagnosis of DLBCL in an intra-dataset test. In our revised 
manuscript, we made our point more clearly. 
 
While the results are impressive and the method very interesting, the method lacks details to 
allow readers be convinced. More specifically, the code should be made available to the 
reviewers (and later to the readers) so that we could properly assess the work. I can't comment 
on the well documented sources.  
 Although we thought we provided sufficient method-related information, during revising 
our manuscript we tried our best to guess what detailed information the reviewer is asking and 
added more information in the Method section. 

Sorry to say that based on our institutional policy related to the protection of intellectual 
property (IP), we have no right to disclose the source code prior to publication. All of our AI 
models have been trained, tested and programmed with Matlab software package and Microsoft 
Visual Studio. We will certainly make the source code and datasets available to public (readers) 
after our work is accepted for publication, but if the reviewer were still not satisfied with this 
solution, we would ask that the reviewer agrees to sign a confidentiality agreement with us for 
approval of releasing the information by our university.  

 
A few important details needed that would help the readers would be: 
* Transfer learning is used: what were the networks initially trained on? Where they all pre-
trained one after the others with their own outputs, or the 17 networks trained as one with a 
"merged" output? 
 The networks were initially trained on ImageNet.  

The 17 pre-trained networks were trained as one system with a "merged" output, which is 
why we emphasized in our manuscript that we combined 17 CNNs. 
 
 
* The authors mention variations of pathologic images between hospitals and also presence of 
artifacts, and they: "We expect that these variations pose an obstacle to establishing highly 
accurate AI models, which we should pay much attention to when generating our AI models." 
but don't explain properly how they dealt with it 
 We apologize for leaving the reviewer with this concern, and in our revised manuscript 
we provided more clear strategies for dealing with these variations as described here as well: 
 

1) Building more powerful AI models. In this regard, we built our AI models that are 
among the best available. As mentioned above, our inter-dataset test, in which the model A 
established using tissue images of patients from hospital A was used to read the images of 
patients from hospital C, reached a diagnostic accuracy of 90.50% for DLBCL. This 90.50% 
inter-dataset accuracy is about 10% drop from our 100% intra-dataset accuracy, contrasting 
sharply to about 20% drop in accuracy in a beautiful representative study on solid tumors 
(Campanella, G. et al. Clinical-grade computational pathology using weakly supervised deep 
learning on whole slide images. Nat Med 25, 1301-1309, 2019). 



2) Standardizing slide preparation procedures and image collection equipment used. The 
technical variability introduced by slide preparation and image collection equipment could only 
be partially overcome through improving the building of AI models as we were able to do. A 
complete elimination of this variability requires different hospitals/institutions/centralized 
referral centers to use the same slide preparation procedures and the imaging equipment. This 
strategy has been accepted in the medical research field and we have had experimental evidence 
to support this strategy. Specifically, we used our AI model established in hospital B to read slide 
images from another hospital (hospital D) where the tissue slides were prepared using a similar 
procedures as used in hospital B and the slide images were collected using the same scanner. Our 
result showed that a 100% diagnostic accuracy was achieved for DLBCL (see new Fig. 3c in our 
revised manuscript and above in response to the reviewer 1).   

3) Building hospital-based AI models. Realistically, we can only ensure the use of the 
same slide preparation procedures and image collection equipment within a single hospital to 
avoid the introduction of the technical variability between hospitals into the generation of AI 
models. This strategy requires an ability to use a smaller dataset (one should not expect to obtain 
a large number of human samples for a particular disease from any single hospital) to build an AI 
model with a high diagnostic accuracy, as we did in this study.  
 
* line 150 "were correctly labeled by pathology experts". I would suggest to be more specific 
(here or in method): How many experts? What is their level of experience? Did they 
annotations overlap and if so, was variability assessed? 
 We apologize for not providing more details regarding how the diagnosis of each case 
was determined. Each tissue slide used in our study came to us with a diagnosis and was looked 
at again and confirmed by at least one pathologist with sufficient experience in hemopathology. 
We further emphasized this point in our revised manuscript. Controversial slides were eliminated 
and not used in generating our AI models. 
 
* "photographed at 400x original magnification". The resulting pixel size should be given to 
be able to compare with scanned images available on other databases for example. 
 We totally agree with the reviewer, and in our revised manuscript we added the following 
information:  
Photos taken from Hospital A:  

Objective magnification: 40x 

Original image: 2592x1944 pixels 

Whole slides information from Hospital B: 

Average slide dimensions in pixels: ~200000 x ~400000 

Average file size: ~10Gb 

Objective magnification: 40x 

Micrometer/pixel X: 0.121547 

Micrometer/pixel Y: 0.121547 



Cropped image for classification at 945x945 pixels 

Photos taken from Hospital C:  

Objective magnification: 40x 

Original image at 2048x1536 pixels 

Cropped image at 1075x1075 pixels 

 
* the authors say the images were split into training/validation/test set. If it is the case and one 
patient has several images, then, it is possible that a patient has some of his slides in the 
training set, and some in the test set? The cross-validation accuracy (which is the one that 
matters) shows the accuracy drops from 99.7-100% to 80-82%, which is a big drop. It either 
suggests that the slides are very different, or that there is a patient leak when tested on the 
same hospital's dataset. Please double check and show which case it is. One way to un-
ambiguously prove the sample preparation is the reason for that drop would be to (re)strain 
slides from a subset of patients using the procedure of the different hospitals. If not, showing 
the list of patients in each dataset is different is another option. 

The reviewer is correct, and it is possible that a patient has some of his slides in the 
training set and some in the test set. 

The reviewer suggested two possible reasons for “the accuracy drops from 99.7-100% to 
80-82%” (about 20% drop) in our cross-validation, but now we know that the main reason for 
the dropping is actually the technical variability introduced by slide preparation procedures and 
image collection equipment, which were different between hospitals. Before we show our 
supporting evidence for this reasoning, we would like to make a correction on the 20% drops in 
our cross-hospital accuracy tests using our AI models. In our originally-submitted manuscript, 
we had an error in designing our cross-hospital tests. First of all, we inappropriately used the 
model B established in hospital B to read the images from patients in hospital A to test the 
generalizable level of our model, which showed about 20% accuracy drop from 99.71% to 
79.80%. This test was inappropriate because the slide images in hospital B were collected using 
a scanner, whereas the slide images in hospital A were collected using a camera. It has been 
reported that about 3% accuracy drop was observed when two different scanners were used 
between hospitals in a study of solid tumors (Campanella, G. et al. Clinical-grade computational 
pathology using weakly supervised deep learning on whole slide images. Nat Med 25, 1301-1309, 
2019). We used totally different types of image collect equipment (scanner vs camera) in the two 
hospitals, so the percentage of accuracy drop could be even greater. Secondly, although it was 
appropriate to use the model A established in hospital A to read the images from patients in 
hospital C because the images from both hospitals were collected in the same way (by 
photographing), we ignored the fact that the shape of the input images in hospital A were 
different from those in hospital C, which would negatively affect the diagnostic accuracy, 
although this should not be considered as a real “mismatch error” because we originally focused 
on using an AI model within the same hospital where patient samples were obtained and the 
model was built, which is why we made this “mismatch error” when conducting the cross-
hospital test involving hospitals A and C. After we normalized the shape of 179 images in 
hospital C to those in hospital A and re-did this cross-hospital test, we were able to significantly 



increase the diagnostic accuracy from 82.09% to 90.50% (see new Fig. 3c in the revised 
manuscript and also above in response to the reviewer 1). In our knowledge, we have rarely seen 
a published work showing this high level of accuracy (90.50%) for diagnosing human cancer in 
cross-validation using an AI model. Now we should answer the reviewer’s question: What 
caused the accuracy drop from 100% to about 90.50 % when we used our AI model in cross-
validation?  
  Although the 90.50% diagnostic accuracy from our cross-hospital test is among the best, 
which showed about 10% accuracy drop in contrast to about 20% drop in the solid tumor study 
(Campanella, G. et al. Clinical-grade computational pathology using weakly supervised deep 
learning on whole slide images. Nat Med 25, 1301-1309, 2019), we agree with the reviewer that 
we should try to identify the factors that prevented us from reaching, in this cross-hospital test, 
an accuracy close to 100% as we achieved in our intra-hospital accuracy tests within each 
hospital. We believe that the differences between hospitals in slide preparation procedures and 
image collection equipment are to blame. This reasoning is based on the published solid tumor 
work showing that the technical variability introduced by differences in slide preparation and 
type of scanner caused about 9% drop in diagnostic sensitivity (Campanella, G. et al. Clinical-
grade computational pathology using weakly supervised deep learning on whole slide images. 
Nat Med 25, 1301-1309, 2019). To provide more supporting evidence for our reasoning, we 
conducted two new tests. First, we used the model A established in hospital A to read the slide 
images of new patients from the same hospital with an attempt to eliminate the potential 
accuracy drop caused by the technical variability introduced by slide preparation procedures and 
image collection equipment used. Our result showed that the 100% diagnostic accuracy for 
DLBCL was maintained. Second, we reached out a new hospital (hospital D) that was not 
involved originally when we submitted our previous manuscript reviewed by the reviewer, 
because this hospital utilized slide preparation procedures that were similar to the ones used in 
hospital B. Also, we scanned the pathologic slides from hospital D to produce whole slide 
images using the same scanner we used to collect whole slide images from hospital B. Thus, we 
basically eliminated the differences between the two hospitals (hospitals B and D) in slide 
preparation and image collection equipment. We then used the model B established in hospital B 
to read the images of patients from hospital D, and 100% diagnostic accuracy for DLBCL was 
achieved in this inter-hospital test. This new cross-hospital inter-dataset test allowed us to draw 
two conclusions:  

1) We provided the strong evidence showing that diagnostic accuracy by AI can be 
negatively affected by slide preparation procedure and image collection equipment used, calling 
for having an international effort to standardize slide preparation procedure and image collection 
equipment in computational pathology for diagnosing human diseases. 

2) We have had an ability to generate powerful AI models that could be soon employed 
in medical practice to assist pathologists in reducing their intensive workload and helping to 
provide more accurate diagnosis.       
 
* Regarding the validation, it looks like a bunch of parameters were tested and optimized. It 
could be interesting, in a supp table, to show how each parameter tested affected the validation 
performances and led to the selected optimal conditions. 
 We thank the reviewer for this good suggestion. From our work, we learned that AI 
diagnostic accuracy is mainly affected by slide preparation, image collection equipment, and 



image annotation. Thus, we think that a supp table would not be necessary, but we emphasized 
this information more clearly in our revised manuscript. 
 
* Authors use "accuracy" only to assess the performance. Other measures are usually more 
common and could be considered (AUC for example). 
 We chose “accuracy” because we believe that diagnostic accuracy is the most important 
and more meaningful criterion for medical diagnosis as it clearly shows how many patients 
would be diagnosed and mis-diagnosed. AUC (area under the curve) has been widely used by 
researchers to help to evaluate the overall performance of a probabilistic classifier. However, the 
models we have built in medical practice must be discrete classifiers (Tom Fawcett, ROC Graphs: 
Notes and Practical Considerations for Researchers, Pattern Recognition Letters 31(8):1-
38 · January 2004). AUC does not accurately eliminate false-negative diagnosis, and in addition, 
it increases false-positive diagnosis as shown in the representative deep learning study 
(Campanella, G. et al. Clinical-grade computational pathology using weakly supervised deep 
learning on whole slide images. Nat Med 25, 1301-1309, 2019). In contrast, we emphasize the 
diagnostic accuracy with a goal of eliminating both false-negative and false-positive diagnoses.   
 
* What is the ground truth /gold standard used to assign the true label to each patient? If it 
was based on hematopathologists diagnosis, please how differences between pathologists were 
tackled to assign ground truth. 
 We thank the reviewer to ask this important question and we apologize for not making 
this clear enough in our originally-submitted manuscript. In our view, the “ground truth /gold 
standard used to assign the true label to each patient” includes the following: 

1) Read the original diagnosis by pathologists correctly. 
2) Invite at least one experienced pathologist to confirm the original diagnosis by 

looking at the tissue slide and reviewing the results from other tests including 
immunohistochemistry, molecular biology, etc. 

3) Confirm further the original diagnosis by validating the consistency between the 
pathological diagnosis and patient’s clinical symptoms for the disease. 

In this revised manuscript, we made these points more clearly.  
 
* How are the outputs of all the trained networks combined to generate the final decision 
score? 
 The final score is determined by voting among the 17 CNNs for the result supported by 
the majority of the class. For example, if 9 out of 17 CNNs classify an image as DLBCL and 8 
out of 17 CNNs classify the same image as non-DLBCL, then the image will be finally classified 
as a DLBCL. There are mathematical formulas in our manuscript to express such a strategy 
accurately. 
 
* Which network(s) contribute the most/the best to the output, from a statistical point of view, 
and from "workbench" tests? It would be good to show the performance of each individual 
network to solve this task to prove the benefit of combining the 17 of them. 
 We do not know which network(s) contribute the most/the best to the output, because our 
model was treated as a black box, which is how deep learning should work. However, what we 
do know is that the output of combining the 17 CNNs is much better than any individual network. 
In fact, we initially used each of the 17 CNNs, respectively, to analyze the pathologic images of 



DLBCL in each of the three hospitals, and found that the average diagnostic accuracy in the 
three hospitals by using one CNN was ranged from 87% to 96%. In our view, the diagnostic 
accuracy needs to be 100% or greater 99% prior to employing any deep learning model in 
medical practice. This is why we decided to combine 17 CNNs into one system with our 
algorithms with a goal of enhancing the performance of deep learning to reach 100% diagnostic 
accuracy, which we had achieved in our study. We added this information to our revised 
manuscript.   
 
* The different networks used deal with different input sizes. How did the authors deal with it? 
 This is a very good question. The 17 pre-trained CNNs have different input image sizes, 
such as 224x224, 227x227, 299x299, and 331x331. Those requirements were met by calling 
resize functions respectively according different networks in our platform. 
 
* The links to the image and code are not yet working. It is not possible to assess the feasibility 
of the technique without having a view on the code. Furthermore, as often requested by most 
journals, code must be properly commented and written in a way that will allow users to 
reproduce the results. 
 Although we thought we provided sufficient method-related information, in our revised 
manuscript we tried our best to guess what detailed information the reviewer is asking for and 
added more information in the Method section. 
Again, sorry to say that based on our institutional policy related to the protection of intellectual 
property (IP), we have no right to disclose the code prior to publication. We will certainly make 
the source code available to public (readers) after our work is accepted for publication. However, 
if the reviewer insists in reviewing the code at this early stage, as we suggested above, we would 
ask that the reviewer agrees to sign a confidentiality agreement with us for approval of releasing 
the information by our university. 

 
As a conclusion, I think the main interesting point of this paper is the fact that they combine 
17 different neural networks to achieve the classification. However, the lack of precision in the 
method, the lack of intermediate results and lack of analysis of the obtained results cast a 
significant shadow on the current manuscript. I hope the authors will solve the concerns and 
questions addressed because if they show there is no patient leak and the 17-network 
combination performs significantly better than each individual ones, then it would be a very 
interesting paper. 
 Again, we thank the reviewer for acknowledging the novelty of our work using combined 
17 CNNs in our study. In this revised manuscript, we provided more information and conducted 
new tests to address the reviewer’s concerns on “the lack of precision in the method, the lack of 
intermediate results and lack of analysis of the obtained results”. We hope that now the 
reviewer would feel satisfied with our revisions and we thank the reviewer again for raising so 
many good questions to help to strengthen our work.   
 



Reviewers' Comments: 

 

Reviewer #1: 

Remarks to the Author: 

No further comments. 

 

 

 

Reviewer #2: 

Remarks to the Author: 

I am happy with the authors reply. 

 

 

 

Reviewer #3: 

Remarks to the Author: 

 

The paper has been considerably improved with the last modifications. There are however a few 

answers that are incomplete, or would require further clarification: 

 

 

>> “The reviewer is correct, and it is possible that a patient has some of his slides in the training set 

and some 

>> in the test set.” 

 

This information should be clearly stated in the text. Also, in addition to the number of slides for each 

hospital, the number of patients should be given so the readers can have an idea of how many slides 

per patient are used. 

 

Ideally, to assess whether the 100% performance is somehow linked to recognition of intra-patient 

features, tests where slides from patients are separated and do not appear in similar sets should have 

been done. 

 

Khosravi et al. for example (10.1016/j.ebiom.2017.12.026, who, BTW, also obtained 100% with AI on 

histopatholy images classification and should be discussed somewhere) have shown to some extend 

that perfect AUC can be obtained on intra-slide classifications. One can expect that if several slides 

from a same patient are in different sets, the same thing can happen. 

 

>>>> "photographed at 400x original magnification". The resulting pixel size should be given to be 

able to compare 

>>>> with scanned images available on other databases for example. 

>> We totally agree with the reviewer, and in our revised manuscript we added the following 

information: 

>> Photos taken from Hospital A: 

>> Objective magnification: 40x 

>> Original image: 2592x1944 pixels 

>> Whole slides information from Hospital B: 

>> Average slide dimensions in pixels: ~200000 x ~400000 

>> Average file size: ~10Gb 

>> Objective magnification: 40x 

>> Micrometer/pixel X: 0.121547 



>> Micrometer/pixel Y: 0.121547 

>> Cropped image for classification at 945x945 pixels 

>> Photos taken from Hospital C: 

>> Objective magnification: 40x 

>> Original image at 2048x1536 pixels 

>> Cropped image at 1075x1075 pixels 

 

 

The information added regarding the images is not complete. To have a possible comparison, the pixel 

size must be given for all hospital. Here, it’s only given for hospital B. 

 

>>>> Which network(s) contribute the most/the best to the output, from a statistical point of view, 

and from 

>>>> "workbench" tests? It would be good to show the performance of each individual network to 

solve this task to 

>>>> prove the benefit of combining the 17 of them. 

>> We do not know which network(s) contribute the most/the best to the output, because our model 

was treated as 

>> a black box, which is how deep learning should work. However, what we do know is that the 

output of combining the 

>> 17 CNNs is much better than any individual network. In fact, we initially used each of the 17 

CNNs, respectively, 

>> to analyze the pathologic images of DLBCL in each of the three hospitals, and found that the 

average diagnostic 

>> accuracy in the three hospitals by using one CNN was ranged from 87% to 96%. In our view, the 

diagnostic accuracy 

>> needs to be 100% or greater 99% prior to employing any deep learning model in medical practice. 

This is why we 

>> decided to combine 17 CNNs into one system with our algorithms with a goal of enhancing the 

performance of deep 

>> learning to reach 100% diagnostic accuracy, which we had achieved in our study. We added this 

information to our 

>> revised manuscript. 

>> “model was treated as a black box, which is how deep learning should work” 

 

(This is not true! It is how deep learning often does work but it is not how it should work. Many groups 

are actually working on trying to understand how they work and make decisions!) 

 

>> “In fact, we initially used each of the 17 CNNs, respectively, to analyze the pathologic images of 

DLBCL in each of 

>> the three hospitals, and found that the average diagnostic accuracy in the three hospitals by using 

one CNN was 

>> ranged from 87% to 96%.” 

 

I believe this could be very interesting to readers. If this was indeed done, then why not include the 

detailed data in the manuscript? This would be a very interesting comparison and piece of information! 

I see just the sentence added, but no detailed table with what is the performance of each of these 17 

CNNs, not only the range. (please add reference to the table in the main text if the table is there but I 

missed it) 

 

>>>> How are the outputs of all the trained networks combined to generate the final decision score? 



>> The final score is determined by voting among the 17 CNNs for the result supported by the 

majority of the class. For 

>> example, if 9 out of 17 CNNs classify an image as DLBCL and 8 out of 17 CNNs classify the same 

image as non-DLBCL, 

>> then the image will be finally classified as a DLBCL. There are mathematical formulas in our 

manuscript to express 

>> such a strategy accurately. 

 

This answer seems to contradict the one above where the authors said “We do not know which 

network(s) contribute”. Here they say: “if 9 out of 17 CNNs classify an image as DLBCL and 8 out of 

17 CNNs classify the same image as non-DLBCL, then the image will be finally classified as a DLBCL.”, 

meaning you do have access to the performance of the 17 network. And since the decision is a simple 

count, it should be possible to analyze in details the contributions, which ones are significant or not, 

etc… 

 

>> Other comments: 

In the abstract, the authors added: 

“The 100% accuracy was maintained after eliminating the technical variability between hospitals” 

This seems wrong and misleading since it could be understood as the inter-hospital AUC is 100%, but 

it’s not, it’s ~90%. It should be made very clear in the abstract that 100% in the intra-hospital 

performance and 90% the inter-hospital one. 

 



Point-by-point response to reviewers 
 

 We thank the reviewers for their time and patience in reviewing our manuscript. Their 
comments and suggestions are extremely valuable and have helped to improve our 
manuscript greatly. Our point-by-point response to the reviewers is shown below: 
  
 
REVIEWER COMMENTS 
 
 Reviewer #1 (Remarks to the Author): 
No further comments. 
Response: We thank the reviewer for supporting our work. 
 
 Reviewer #2 (Remarks to the Author): 
I am happy with the authors reply. 
Response: We thank the reviewer for supporting our work. 
 
 Reviewer #3 (Remarks to the Author): 
 The paper has been considerably improved with the last modifications. There are however a 
few answers that are incomplete, or would require further clarification: 
 “The reviewer is correct, and it is possible that a patient has some of his slides in the training 
set and some in the test set.” 
This information should be clearly stated in the text. Also, in addition to the number of slides 
for each hospital, the number of patients should be given so the readers can have an idea of 
how many slides per patient are used.  

Response: We thank the reviewer for this important comment and had described this 
information more clearly in our revised manuscript. Also, we had more clearly described the 
number of patients in each hospital in our revised manuscript. 

  
Ideally, to assess whether the 100% performance is somehow linked to recognition of intra-
patient features, tests where slides from patients are separated and do not appear in similar 
sets should have been done. 

Response: As described in our manuscript, we used 0.8-0.1-0.1 format (training 0.8, 
validation 0.1, testing 0.1). In other words, we purposely separated 10% of all tissue images 
from patients in each of the three hospitals for testing each of our AI models. For example, in 
hospital A, we used 90% of photographed tissue images for training and validation, and 10%, 
for testing. To emphasize, those 10% images were not involved in training and validation of 
the AI model. The same was done for hospital C. Therefore, we are confident that the 100% 
performance of our AI models truly reflects the ability of our models in identifying the 
pathological features of DLBCL.    

 
Khosravi et al. for example (10.1016/j.ebiom.2017.12.026, who, BTW, also obtained 100% 
with AI on histopatholy images classification and should be discussed somewhere) have 
shown to some extend that perfect AUC can be obtained on intra-slide classifications. One 
can expect that if several slides from a same patient are in different sets, the same thing can 
happen.  

Response: Compared to the whole slide images in hospital B where “several slides 
from a same patient are in different sets”, in hospitals A and C, each patient had only one 
photographed tissue image, so the situation “several slides from a same patient are in 
different sets” did not exist in those two hospitals. Thus, our 100% performance of our AI 



models truly reflects the ability of our models in identifying the pathological features of 
DLBCL.  

We thank the reviewer for pointing out the beautiful paper by Khosravi, although this 
paper focused on a type of solid tumor. To emphasize the potential of AI technology in 
computational pathology, we have cited this paper in our revised manuscript. We could not 
further discuss the results in the paper by Khosravi, because data and code were not provided 
in the paper to allow a test-run on the generalization of the deep learning model used in this 
published study.    
 
"photographed at 400x original magnification". The resulting pixel size should be given to be 
able to compare with scanned images available on other databases for example. 
 We totally agree with the reviewer, and in our revised manuscript we added the following 
information:  
 Photos taken from Hospital A:  
 Objective magnification: 40x 
 Original image: 2592x1944 pixels 
 Whole slides information from Hospital B: 
 Average slide dimensions in pixels: ~200000 x ~400000 
 Average file size: ~10Gb 
 Objective magnification: 40x 
 Micrometer/pixel X: 0.121547 
 Micrometer/pixel Y: 0.121547 
Cropped image for classification at 945x945 pixels 
Photos taken from Hospital C:  
Objective magnification: 40x 
Original image at 2048x1536 pixels 
Cropped image at 1075x1075 pixels 
The information added regarding the images is not complete. To have a possible comparison, 
the pixel size must be given for all hospital. Here, it’s only given for hospital B. 

Response: Following the reviewer’s suggestion, we provided the requested 
information in our revised manuscript as follows:  

Photos taken from Hospital A:  
Objective magnification: 40x 
Original image: 2592x1944 pixels 
Original image file size: 14.4Mb 
Pixel Size: 2.2µm x 2.2µm 

Whole slides information from Hospital B: 
Average slide dimensions in pixels: ~200000 x ~400000 
Average file size: ~10Gb 
Objective magnification: 40x 
Pixel size: 0.121547µm x 0.121547µm 
Cropped image for classification at 945x945 pixels 

Photos taken from Hospital C:  
Objective magnification: 40x 
Original image: 2048x1536 pixels 
Original image file size: 5-8Mb 
Pixel Size: 3.45µm x 3.45µm 
Cropped image at 1075x1075 pixels 

 
 



Which network(s) contribute the most/the best to the output, from a statistical point of view, 
and from "workbench" tests? It would be good to show the performance of each individual 
network to solve this task to prove the benefit of combining the 17 of them. 

We do not know which network(s) contribute the most/the best to the output, because 
our model was treated as a black box, which is how deep learning should work. However, 
what we do know is that the output of combining the 17 CNNs is much better than any 
individual network. In fact, we initially used each of the 17 CNNs, respectively, to analyze 
the pathologic images of DLBCL in each of the three hospitals, and found that the average 
diagnostic accuracy in the three hospitals by using one CNN was ranged from 87% to 96%. 
In our view, the diagnostic accuracy needs to be 100% or greater 99% prior to employing any 
deep learning model in medical practice. This is why we decided to combine 17 CNNs into 
one system with our algorithms with a goal of enhancing the performance of deep learning to 
reach 100% diagnostic accuracy, which we had achieved in our study. We added this 
information to our revised manuscript. “model was treated as a black box, which is how deep 
learning should work” 
 
(This is not true! It is how deep learning often does work but it is not how it should work. 
Many groups are actually working on trying to understand how they work and make 
decisions!)  

Response: we apologize for not making our point clear, and we agree with the 
reviewer that the model was treated as a black box, which is how deep learning often works.  
 
“In fact, we initially used each of the 17 CNNs, respectively, to analyze the pathologic 
images of DLBCL in each of the three hospitals, and found that the average diagnostic 
accuracy in the three hospitals by using one CNN was ranged from 87% to 96%.” 
 
I believe this could be very interesting to readers. If this was indeed done, then why not 
include the detailed data in the manuscript? This would be a very interesting comparison and 
piece of information! I see just the sentence added, but no detailed table with what is the 
performance of each of these 17 CNNs, not only the range. (please add reference to the table 
in the main text if the table is there but I missed it) 

Response: Originally, we did not think it would be necessary to include a table 
showing “what is the performance of each of these 17 CNNs” in order for us to focus on the 
performance of our combined 17 CNNs. Following the reviewer’s request, we added a new 
table as Table 1 in the main text of our revised manuscript. For the reviewer’s convenience, 
we attached the table here: 
 

CNNs Diagnostic Accuracy % 
Model A Model B Model C 

AlexNet 92.08 93.57 95.12 
GoogleNet 95.05 90.68 95.12 
Vgg16 95.05 94.53 99.50 
ResNet18 92.08 88.42 95.12 
SqueezeNet 92.08 89.39 92.68 
MobileNetv2 90.10 88.42 92.68 
Inceptionv3 90.10 93.89 87.80 
DenseNet201 90.10 84.57 95.12 
Xception 98.02 91.32 85.37 
Vgg19 87.13 93.25 92.68 
Places365GoogleNet 96.04 92.93 95.12 



InceptionResNetv2 94.06 96.14 96.02 
ResNet50 86.14 90.68 87.80 
ResNet101 89.11 91.96 97.56 
NASNetMobile 95.05 85.21 90.24 
NASNetLarge 95.05 91.96 92.50 
ShuffleNet 87.13 88.42 85.37 
    
 GOTDP-MP-CNNs 
(with combined 17 
CNNs) 

100.00 99.71 100.00 

 
   

How are the outputs of all the trained networks combined to generate the final decision 
score? 

The final score is determined by voting among the 17 CNNs for the result supported 
by the majority of the class. For example, if 9 out of 17 CNNs classify an image as DLBCL 
and 8 out of 17 CNNs classify the same image as non-DLBCL, then the image will be finally 
classified as a DLBCL. There are mathematical formulas in our manuscript to express such a 
strategy accurately. 
 
This answer seems to contradict the one above where the authors said “We do not know 
which network(s) contribute”. Here they say: “if 9 out of 17 CNNs classify an image as 
DLBCL and 8 out of 17 CNNs classify the same image as non-DLBCL, then the image will be 
finally classified as a DLBCL.”, meaning you do have access to the performance of the 17 
network. And since the decision is a simple count, it should be possible to analyze in details 
the contributions, which ones are significant or not, etc…  

Response: To add more explanations to our response to the previous comment by the 
reviewer in this rebuttal letter, we said “We do not know which network(s) contribute the 
most/the best to the output” because we were not interested in any individual CNN’s 
performance or we did not strongly depend on any individual CNN’s performance. Therefore, 
we did not show any individual CNN’s performance in our previous revised manuscript. As 
mentioned above, now we have added the table showing the individual performance of 17 
CNNs in the main text of our revised manuscript. 
 
Other comments: 
In the abstract, the authors added: 
“The 100% accuracy was maintained after eliminating the technical variability between 
hospitals” 
This seems wrong and misleading since it could be understood as the inter-hospital AUC is 
100%, but it’s not, it’s ~90%. It should be made very clear in the abstract that 100% in the 
intra-hospital performance and 90% the inter-hospital one.  

Response: We apologize for leaving the reviewer a wrong impression about the 
performance of our model when doing a cross-hospital test. We simply attempted to 
emphasize and send an important message that the reduced performance (by about 10%) is 
caused by the technical variability introduced by slide preparation methods and imaging 
equipment caused, and if this technical variability is eliminated, the performance is back to 
100%. Keeping this in mind, we have revised the abstract in our revised manuscript by saying 
the following: 



 “Although the technical variability introduced by slide preparation and image 
collection reduced AI model performance in cross-hospital tests, the 100% diagnostic 
accuracy was maintained after eliminating this variability.” 
 



Reviewers' Comments: 

 

Reviewer #3: 

Remarks to the Author: 

Thanks for the additions and clarifications. I have no other comment. 

 

This is a nice work. Once published, please make the code available for the community with clear 

guidelines on its usage. 

 

 


