Formation of an RNA Quadruplex-Duplex Hybrid in Living Cells Between mRNA of the Epidermal Growth Factor Receptor (EGFR) and a G-Rich Antisense Oligoribonucleotide

Dorota Gudanis^{1,&,*}, Damian Kaniowski^{2,&}, Katarzyna Kulik², Daniel Baranowski¹, Zofia Gdaniec¹, Barbara Nawrot²

¹ Department of Biomolecular NMR, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, 61-704, Poland

² Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Lodz, 90-363, Poland;

&- equal first authorship

* corresponding author Email: dgud@ibch.poznan.pl

Supplementary Information

Figure S1. The 56-nucleotide fragment sequence of the EGFR target used in biophysical studies is marked with a red box.

Figure S2. Putative model of bimolecular G-quadruplex of QF-ASO and QL-ASO.

Figure S3. Secondary structures of the EGFR target (A), rASO/EGFR (B), QF-ASO/EGFR (C), QL-ASO/EGFR (D) as predicted by RNAstructure and quadruplex-duplex hybrid structure containing a two duplex stems at the external loop (2ST-QDH) (E); (GGGG-tract- red or navy blue circles, FG –purple circles, a or S6- white circles, any nucleotides- grey circle, base pairs: A:U – grey line, G:C – blue line, G:U – red line).

Figure S4. Analysis of QF-ASO, EGFR, QF-ASO/EGFR and QL-ASO/EGFR structures by non-denaturing PAGE. All oligomers in 0.1 M Tris HCl, pH 6.8, with 50 mM KCl, 150 mM LiCl and 2 equivalents of G4-ligand: NMM was annealed and subjected to non-denaturing PAGE. Next, the gel was visualized by UV shadowing (A) and exposed to 532 nm light (B).

Figure S5. Imino region of the 1H NMR spectra of 28-nt molecule (AGCAGCGAUGCGACCCUCCG-GGACGGCC) corresponding to mRNA fragment of sequence located between two G-tracts in EGFR target. Spectra were recorded at 25 °C and 40 °C in 90% H2O / 10 % D2O (v/v) in the presence of 50 mM KCl, 150 mM LiCl, 10 mM Tris-HCl, 0.1 mM EDTA, pH 6.8.

Figure S6. CD spectra of QF-ASO/EGFR and QL-ASO/EGFR hybrids at 25 °C in potassium buffer.

Figure S7. oBMVC-C3 labeling of Q-ASO-NH2 oligonucleotides.

Figure S8. As a control, we used non-covalent complex of QL-ASO/EGFR hybrid with NMM. After electrophoresis, the gel was exposed to 532 nm light to detect bands corresponding to the Fl-Q-ASO/EGFR and NMM:QL-ASO/EGFR hybrids. QL-ASO/EGFR in NMM, 50 mM KCl, 150 mM LiCl,

100 mM Tris HCl, pH 6.8 and FI-Q-ASO/EGFR in 50 mM KCl and 150 mM LiCl, 100 mM Tris HCl, pH 6.8 were annealed and subjected to non-denaturing PAGE.

Figure S9. Different type of the unimolecular quadruplex–duplex hybrids.

Figure S10. (A) RP-HPLC profile of the purified dASO (5'-d(AGC AGC GCC AGG AGC G)-3') after automatic synthesis; (B) Q-TOF MS: MW calc. (g/mol): 4941.22; m/z 4941.8203.

Figure S11. (A) RP-HPLC profile of the purified rASO (5'-AGC AGC GCC AGG AGC G-3') after automatic synthesis; (B) Q-TOF MS: MW calc. (g/mol): 5197.21; m/z 5197.7002.

Figure S12. (A) RP-HPLC profile of the purified oligonucleotide 5'-AGG GGU CGG GGA-3' (Q-RNA) after automatic solid phase synthesis; (B) Q-TOF MS: MW calc. (g/mol): 3969.44, m/z 3968.6001.

Figure S13. The purity and homogeneity of Q-ASO, FI-Q-ASO and EGFR mRNA oligomers verified by 15% denaturing gel electrophoresis.

ATG	START						
GAGC	Sacl 237-242		FGER 3	EGER 318-nt mRNA			
GAATTC EcoRI 549-555							
5' C-GGGG-AGCAGCGAUGCGACCCUCCGGGACGGCC-GGGG-CAG-CGCUCCUGGCGCUGCU 3' mRNA EGFR 56-nt							
3' A-GGG	G	S6		GGGG	-aaa-GCGAG	GACCGCGACG	6A 5' QL-ASO
1 gt	ccgggcag	ccccggcgc	agcgcggccg	cagcagcctc	cgcccccgc	acggtgtgag	
61 Cg 121 ga	cccgacgc ccggacga	caggccgaggcg	cgtcggcgtc	cgagctagcc	ccggcggccg	ccgccgccca cgccaacgcc	
181 ac	aaccaccg			tccagtattg	atcgggagag	ccggagcgag	
301 tg	gctgcgct	ctgcccggcg	agtcgggctc	tggaggaaaa	gaaagtttgc	caaggcacga	
361 gt	aacaagct aataactg	cacgcagttg tgaggtggtc	ggcacttttg	aagatcattt tggaaattac	tctcagcctc ctatgtgcag	cagaggatgt aggaattatg	
481 at	ctttcctt	cttaaagacc	/atccaggagg	tggctggtta	tgtcctdatt	gccctcaaca	
601 at	tcctatgc	cttagcagtc	ttatctaact	atgatgcaaa	taaaaccgga	ctgaaggagc	
661 tg	cccatgag	aaatttacag	gaaatcctgc	atggcgccgt	gcggttcagc	aacaaccctg	
3' AGCCCGAGACCTCCTTTTCTTT 5' dASO-R 22-mer							

Figure S1. The 56-nucleotide fragment sequence of the EGFR target used in biophysical studies is marked with a red box.

Figure S2. Putative model of bimolecular G-quadruplex of QF-ASO and QL-ASO.

Figure S3. Secondary structures of the EGFR target (A), rASO/EGFR (B), QF-ASO/EGFR (C), QL-ASO/EGFR (D) as predicted by RNAstructure and quadruplex-duplex hybrid structure containing a two duplex stems at the external loop (2ST-QDH) (E); (GGGG-tract- red or navy blue circles, FG –purple circles, a or S6- white circles, any nucleotides- grey circle, base pairs: A:U – grey line, G:C – blue line, G:U – red line).

Figure S4. Analysis of QF-ASO, EGFR, QF-ASO/EGFR and QL-ASO/EGFR structures by non-denaturing PAGE. All oligomers in 0.1 M Tris HCl, pH 6.8, with 50 mM KCl, 150 mM LiCl and 2 equivalents of G4-ligand: NMM was annealed and subjected to non-denaturing PAGE. Next, the gel was visualized by UV shadowing (A) and exposed to 532 nm light (B).

Figure S5. Imino region of the 1H NMR spectra of 28-nt molecule (AGCAGCGAUGCGACCCUCCG-GGACGGCC) corresponding to mRNA fragment of sequence located between two G-tracts in EGFR target. Spectra were recorded at 25 °C and 40 °C in 90% H2O / 10 % D2O (v/v) in the presence of 50 mM KCl, 150 mM LiCl, 10 mM Tris-HCl, 0.1 mM EDTA, pH 6.8.

Figure S6. CD spectra of QF-ASO/EGFR and QL-ASO/EGFR hybrids at 25 °C in potassium buffer.

Figure S7. oBMVC-C3 labeling of Q-ASO-NH2 oligonucleotides.

Figure S8. As a control, we used non-covalent complex of QL-ASO/EGFR hybrid with NMM. After electrophoresis, the gel was exposed to 532 nm light to detect bands corresponding to the FI-Q-ASO/EGFR and NMM:QL-ASO/EGFR hybrids. QL-ASO/EGFR in NMM, 50 mM KCl, 150 mM LiCl, 100 mM Tris HCl, pH 6.8 and FI-Q-ASO/EGFR in 50 mM KCl and 150 mM LiCl, 100 mM Tris HCl, pH 6.8 were annealed and subjected to non-denaturing PAGE.

Figure S9. Different type of the unimolecular quadruplex–duplex hybrids.

Figure S10. (A) RP-HPLC profile of the purified dASO (5'-d(AGC AGC GCC AGG AGC G)-3') after automatic synthesis; (B) Q-TOF MS: MW calc. (g/mol): 4941.22; m/z 4941.8203.

Figure S11. (A) RP-HPLC profile of the purified rASO (5'-AGC AGC GCC AGG AGC G-3') after automatic synthesis; (B) Q-TOF MS: MW calc. (g/mol): 5197.21; m/z 5197.7002.

Figure S12. (A) RP-HPLC profile of the purified oligonucleotide 5'-AGG GGU CGG GGA-3' (Q-RNA) after automatic solid phase synthesis; (B) Q-TOF MS: MW calc. (g/mol): 3969.44, m/z 3968.6001.

Figure S13. The purity and homogeneity of Q-ASO, FI-Q-ASO and EGFR mRNA oligomers verified by 15% denaturing gel electrophoresis.