An atypical and functionally diverse family of Kunitz-type cysteine/serine proteinase inhibitors secreted by the helminth parasite *Fasciola hepatica*

David Smith^{1,2}, Krystyna Cwiklinski^{1,3}, Heather Jewhurst^{1,3}, Irina G. Tikhonova⁴, John P. Dalton^{1,3}

Author affiliations:

School of Biological Sciences, Queen's University Belfast BT9 7BL, Belfast, Northern
Ireland, United Kingdom; 2. Present address: Moredun Research Institute, Pentland Science
Park, Penicuik, Midlothian, Scotland, United Kingdom; 3. Centre of One Health and Ryan
Institute, School of Natural Sciences, National University of Ireland Galway, Galway,
Ireland; 4. School of Pharmacy, Medical Biology Centre, Queen's University Belfast, Belfast
BT9 7BL, Northern Ireland, United Kingdom.

Supplementary Information

Supplementary Table S1. Trematode Kunitz type inhibitor gene sequences used for phylogenetic analysis.

Supplementary Table S2. FhKT proteins present in the excretory/secretory products of NEJ and adult *F. hepatica* represented as Normalized Spectral Abundance Factor (NSAF).

Supplementary Figure S1. Schematic representation of the *F. hepatica* Kunitz-type gene structure

Supplementary Figure S2. Phylogenetic analysis of helminth Kunitz-type inhibitors.

Supplementary Figure S3. Graphical representation of differential gene expression represented as fold change compared to the metacercariae stage.

Supplementary Figure S4. Immunolocalization of FhKT1 proteins in the reproductive organs of adult *F. hepatica*.

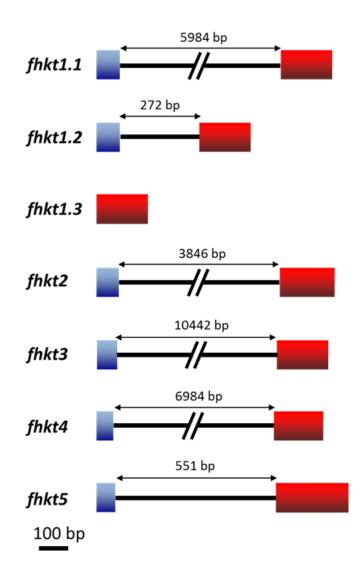
Supplementary Figure S5. Immunolocalization of FhKT1 proteins in the gut of adult *F*. *hepatica*.

Supplementary Figure S6. rFhKT1.1Arg¹⁹/Ala¹⁹ binding to the active site groove of native cathepsin Ls is not prevented by Z-Phe-Ala-CHN₂.

Supplementary Figure S7. Full length gel photos as shown in (A) Fig. 6; (B) Fig. 9B, D and F; (C) Supplemental Figure 5.

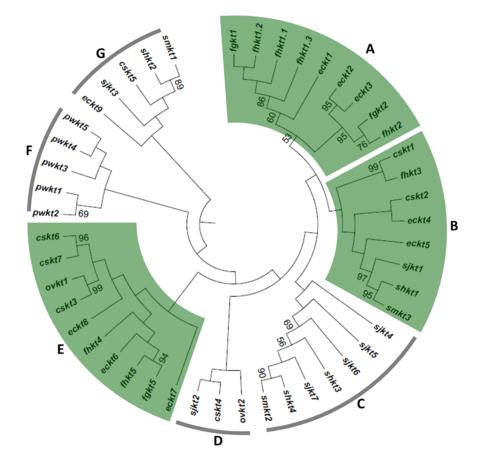
Nomenclature on Phylogram			P1-P4'	
Group A				
fgkt1	Fasciola gigantica	Contig12	LGGIR	
fhkt1.2	Fasciola hepatica	BN1106_s318B000274	LGGIR	
fhkt1.1	Fasciola hepatica	BN1106_s8826B000029	LGGIR	
fhkt1.3	Fasciola hepatica	BN1106_s11518B000016	RGGIR	
eckt1	Echinostoma caproni	ECPE_0001647201	FRGGI	
eckt2	Echinostoma caproni	ECPE_0001016301	LAIHY	
eckt3	Echinostoma caproni	ECPE_0001278301	LAIHY	
fgkt2	Fasciola gigantica	Contig38896	LAIRP	
fhkt2	Fasciola hepatica	BN1106_s6608B000014	LAIRP	
Group B				
cskt1	Clonorchis sinensis	csin108828	HENYT	
fhkt3	Fasciola hepatica	scaffold5597	SEHIT	
cskt2	Clonorchis sinensis	csin107698	AENLR	
eckt4	Echinostoma caproni	ECPE_0001105001	RGYHV	
eckt5	Echinostoma caproni	ECPE_0000795001	RAAIT	
sjkt1	Schistosoma japonicum	Sjp_0020270	RASLL	
shkt1	Schistosoma haematobium	MS3_09801	RSKLH	
smkt3	Schistosoma mansoni	Smp_139840	RASFN	
Group C				
sjkt4	Schistosoma japonicum	Sjp_0097640	RYNYH	
sjkt5	Schistosoma japonicum	Sjp_0117580	GNNST	
sjkt6	Schistosoma japonicum	Sjp_0024620	LKRHP	
shkt3	Schistosoma haematobium	MS3_09688	LQNIP	
sjkt7	Schistosoma japonicum	Sjp_0024630	LHNKP	
shkt4	Schistosoma haematobium	MS3_10748	LQKKP	
smkt2	Schistosoma mansoni	Smp_179120	LQNKP	
Group D				
sjkt2	Schistosoma japonicum	Sjp_0030350	RASIQ	
cskt4	Clonorchis sinensis	csin103940	RGDVT	
ovkt2	Opisthorchis viverrini	T265_11148	FVTAT	
Group E				
cskt6	Clonorchis sinensis	csin112642	KAYMP	
cskt7	Clonorchis sinensis	csin106214	LASMP	
ovkt1	Opisthorchis viverrini	T265_11147	RAMIP	
cskt3	Clonorchis sinensis	csin102310	RAMIP	
eckt8	Echinostoma caproni	ECPE_0000615701	FHIFI	
fhkt4	Fasciola hepatica	BN1106_s3911B000104	RGSFP	
eckt6	Echinostoma caproni	ECPE_0001134901	GANIL	

Supplementary Table S1: Trematode Kunitz type inhibitor gene sequences used for phylogenetic analysis

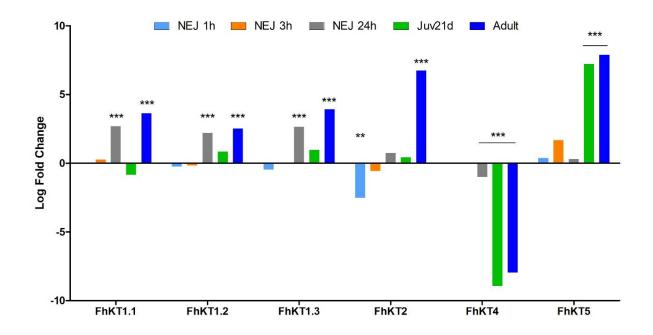

fhkt5	Fasciola hepatica	BN1106_s4272B000063	LAHIP
fgkt5	Fasciola gigantica	Contig26461	LALVP
eckt7	Echinostoma caproni	ECPE_0001663401	HTLLL
Group F			
pwkt5	Paragonimus westermani	comp19852	SDSIT
pwkt4	Paragonimus westermani	comp14876	GESLT
pwkt3	Paragonimus westermani	comp20534	MGHST
pwkt1	Paragonimus westermani	comp21326	RALIK
pwkt2	Paragonimus westermani	comp15715	RALMK
Group G			
smkt1	Schistosoma mansoni	Smp_147730	RALLK
shkt2	Schistosoma haematobium	MS3_09690	RALIK
cskt5	Clonorchis sinensis	csin102323	NFRTR
sjkt3	Schistosoma japonicum	Sjp_0076670	RGYFR
eckt9	Echinostoma caproni	ECPE_0000445201	SQFIT

Supplementary Table S2: FhKT proteins present in the excretory/secretory products of NEJ and adult *F. hepatica* represented as Normalized Spectral Abundance Factor (NSAF).

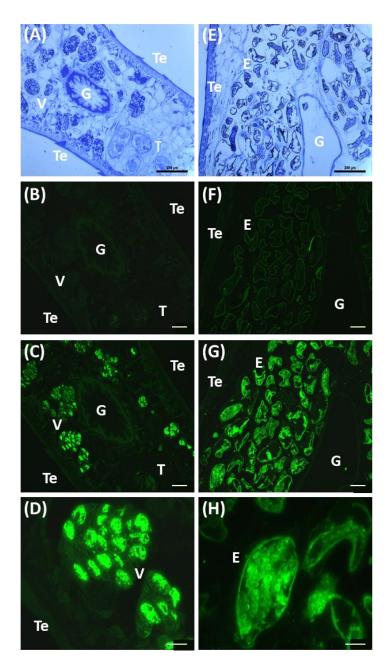
Inhibitor	NEJ 1h**	NEJ 3h**	NEJ 24h**	Adult	Adult EVs
FhKT1.1	-	-	0.00330	-	0.00416
FhKT1.2	0.01131	0.00482	0.00967	0.18816	0.01258
FhKT1.3	0.00447	0.00293	-	0.00615	-


**Average NSAF value from triplicate samples

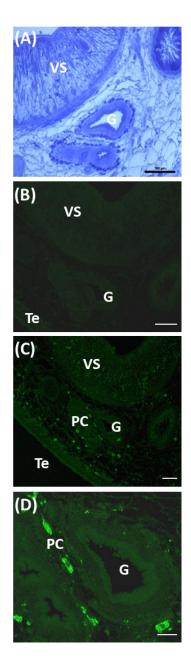
Supplementary Figure S1. Schematic representation of the *F. hepatica* **Kunitz-type gene structure.** Exons are represented by the coloured boxes and the introns are depicted as a black line. The nucleotide sequence encoding the signal peptide (exon 1) and Kunitz domain (exon 2) is represented by the blue exon and red exons, respectively. *fhkt1.3* consists of only one exon, with no sequence encoding a signal peptide. Scale bar indicates the length of 100 nucleotide base pairs. The size of the respective introns in the *F. hepatica* genome assembly (PRJEB6687) is shown.



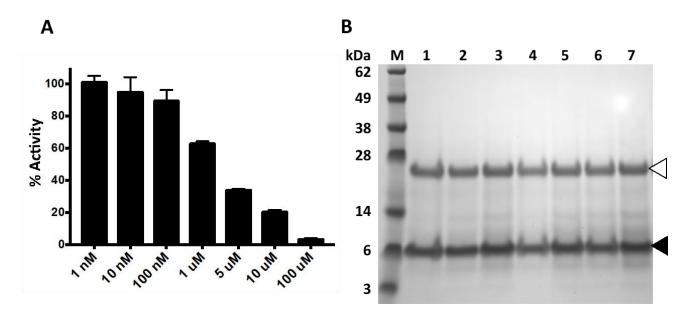
Supplementary Figure S2. Phylogenetic analysis of helminth Kunitz-type inhibitors.


Maximum-likelihood phylogenetic tree computed using 1000 bootstrap replicates based on the sequence encoding the kunitz domain between cysteine residues 1 and 6 (Cys¹ and Cys⁶), from nine helminth species: *Clonorchis sinensis* (*cskt1-7*), *Echinostoma caproni* (*eckt1-9*), *Fasciola hepatica* (*fhkt1-5*), *F. gigantica* (*fgkt1*, 2 and 5), *Opisthorchis viverrini* (*ovkt1-2*), *Paragonimus westermani* (*pwkt1-5*), *Schistosoma haematobium* (*shkt1-4*), *S. japonicum* (*sjkt1-7*) and *S. mansoni* (*smkt1-3*). Bootstrap values >50% are shown. The green coloured blocks highlight the presence of the *F. hepatica* KT sequences within 3 distinct groups formed by phylogenetic analysis (A, B, and E). The black lines represent the other clusters generated by phylogenetic analysis that do not contain *F. hepatica* sequences (clusters C, D, F and G). The accession numbers of the sequences represented by this phylogenetic tree are included in Supplementary Table S1.

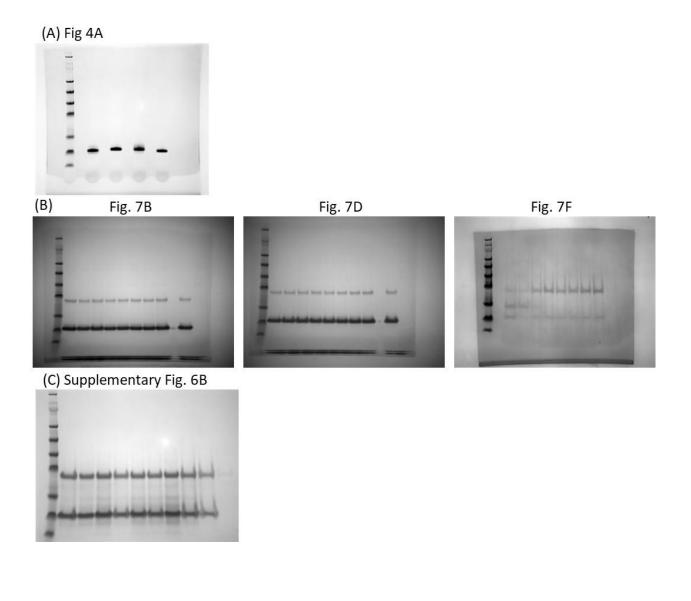
Supplementary Figure S3. Graphical representation of differential gene expression of the FhKT family represented as log fold change compared to the metacercariae life cycle stage. Differential expression was calculated as reported by Cwiklinski et al. [3] using negative binomial model of successive developmental stages relative to metacercariae and tagwise dispersion estimated from all samples in edge R. (p<0.01: **; p<0.001: ***).



Supplementary Figure S4. Immunolocalization of FhKT1 proteins in the reproductive organs of adult *F. hepatica*. Serial sections through a JB-4 embedded adult *F. hepatica* were stained with Toluidine Blue or anti-FhKT1 antibodies. Toluidine Blue staining highlights the vitelline glands (A) and ovaries containing parasite eggs (E) (10x). Sections probed with mouse pre-immune serum (negative control) and stained with anti-mouse FITC show light background fluorescence in the testes (B) and eggshell (F) (10x). Serial sections probed with polyclonal anti-FhKT1 antibodies show strong staining in the vesicular structures within the vitelline cells contained in the vitelline glands (C) (10x), as also shown at higher magnification of 40x (D). Intense staining was also observed in the vitelline cell-derived yolk mass within eggs (G and H, 10X and 100x, respectively). E: egg; G: gut; T: testes; Te: tegument; V: vitelline glands containing vitelline cells. Scale bar: panels A-C and E-G, 200 μm; panels D and H, 50 μm.



Supplementary Figure S5. Immunolocalization of FhKT1 proteins in the gut of adult *F*.


hepatica. (A) Cross-section of a JB-4 section of adult *F. hepatica* stained with Toluidine Blue highlighting the digestive gut, parenchyma, tegument and the ventral sucker. (B) Section probed with mouse pre-immune serum (negative control) (C-D) or anti-FhKT1 antibodies followed by with anti-mouse-FITC. Visible staining in the within the ventral sucker and parenchymal cell bodies that are concentrated around near the gut, with diffuse staining throughout the parenchyma and gut (C and D, 10x and 40 x, respectively). G, gut; PC, Parenchymal cell body; Te, tegument; VS, ventral sucker. Scale bar: panels A-C, 200 μm; panel D, 50 μm.

Supplementary Figure S6. rFhKT1.1Arg¹⁹/Ala¹⁹ binding to the active site groove of native cathepsin Ls is not prevented by Z-Phe-Ala-CHN₂ (A) Cysteine protease activity within adult *F. hepatica* excretory/secretory (ES) products measured in the presence of Z-Phe-Ala-CHN₂, at a concentration ranging from 1 nM to 100μ M (% Activity, relative to the cysteine protease activity of ES containing no inhibitor ± SD). (B) rFhKT1.1Arg¹⁹/Ala¹⁹ (10 μ M) was added to replicate reaction samples and then pull-down using NTA-beads. rFhKT1.1Arg¹⁹/Ala¹⁹ (black arrow) is not prevented from interacting with the cathepsin L cysteine proteases by Z-Phe-Ala-CHN₂ (white arrows).

Supplementary Figure S7. Full length gel photos as shown in (A) Fig. 4A; (B) Fig. 7B, D and F; (C) Supplemental Figure 6B.

