

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

BMJ Open

Image-guided targeted doxorubicin delivery using thermosensitive liposomes and hyperthermia to optimize loco-regional control in breast cancer; study protocol of the phase I i-GO feasibility study

Phase I Feasibility Study of High-Intensity Focused Ultrasound-Induced Hyperthermia, Lyso-Thermosensitive Liposomal Doxorubicin, and Cyclophosphamide in Metastatic Breast Cancer

Journal:	BMJ Open
Manuscript ID	bmjopen-2020-040162
Article Type:	Protocol
Date Submitted by the Author:	06-May-2020
Complete List of Authors:	de Maar, Josanne; University Medical Center Utrecht, Utrecht University, Division of Imaging & Oncology Suelmann, Britt; University Medical Center Utrecht, Utrecht University, Division of Imaging & Oncology Braat, Manon; University Medical Center Utrecht, Utrecht University, Division of Imaging & Oncology van Diest, Paul; University Medical Center Utrecht, Department of Pathology Vaessen, Paul; Universitair Medisch Centrum Utrecht, Anesthesiology Witkamp, Arjen ; University Medical Center Utrecht, Utrecht University, Division of Imaging & Oncology Linn, S. C.; Nederlands Kanker Instituut - Antoni van Leeuwenhoek Ziekenhuis, Department of Molecular Pathology, C2; University Medical Center Utrecht, Utrecht University, Division of Imaging & Oncology Moonen, Chrit; University Medical Center Utrecht, Utrecht University, Division of Imaging & Oncology van der Wall, Elsken; University Medical Center Utrecht, Utrecht University, Division of Imaging & Oncology Deckers, Roel; University Medical Center Utrecht, Utrecht University, Division of Imaging & Oncology
Keywords:	ONCOLOGY, Breast tumours < ONCOLOGY, Interventional radiology < RADIOLOGY & IMAGING, Magnetic resonance imaging < RADIOLOGY & IMAGING, Ultrasound < RADIOLOGY & IMAGING, CHEMOTHERAPY

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

review on

1							
2 3 4	1	Title					
5 6 7	2	Image-guided targeted doxorubicin delivery u	ising thermosensitive liposomes and				
8 9 10	3	hyperthermia to optimize loco-regional contro	ol in breast cancer; study protocol of the				
11 12	4	phase I i-GO feasibility study					
13 14 15	5						
16 17 18	6	Subtitle					
19 20	7	Phase I Feasibility Study of High-Intensity Focu	used Ultrasound-Induced Hyperthermia,				
21 22 23	8	Lyso-Thermosensitive Liposomal Doxorubicin,	and Cyclophosphamide in Metastatic				
24 25 26	9	Breast Cancer					
27 28	10						
29 30 31	11	Authors					
32 33 34	12	J.S. de Maar ¹ (corresponding author)	J.S.deMaar@umcutrecht.nl				
35 36	13	B.B.M. Suelmann ¹	B.B.M.Suelmann@umcutrecht.nl				
37 38 39	14	M.N.G.J.A. Braat ¹	M.N.G.Braat-3@umcutrecht.nl				
40 41 42	15	P.J. van Diest ¹	P.J.vanDiest@umcutrecht.nl				
43 44	16	H.H.B. Vaessen ¹	H.H.B.Vaessen@umcutrecht.nl				
45 46 47	17	A. J. Witkamp ¹	A.J.Witkamp@umcutrecht.nl				
48 49 50	18	S. Linn ^{1, 2}	<u>s.linn@nki.nl</u>				
51 52	19	C.T.W. Moonen ¹	C.Moonen@umcutrecht.nl				
53 54 55	20	E. van der Wall ¹	E.vanderWall@umcutrecht.nl				
56 57 58	21	R. Deckers ¹	R.Deckers-2@umcutrecht.nl				
59 60	22						

2 3		
4	1	Institutional address
5 6 7	2	1. University Medical Center Utrecht, Utrecht University
8 9 10	3	Heidelberglaan 100, 3584 CX
11 12	4	Huispostnummer Q 00.3.11, Postbus 85500,
13 14 15	5	Utrecht, The Netherlands
16 17 18	6	2. Netherlands Cancer Institute - Antoni van Leeuwenhoek hospital,
19 20	7	Plesmanlaan 121, 1066 CX
21 22 23	8	Postbus 90203, 1006 BE
24 25 26	9	Amsterdam, The Netherlands
27 28 29	10	
30 31	11	
32 33 34	12	
35 36 37	13	
38 39 40	14	
41 42	15	
43 44 45	16	
46 47 48	17	
49 50	18	
51 52 53	19	
54 55 56	20	
57 58 59		
60		

BMJ Open

1 2		
3 4	1	Abstract
5 6 7	2	Introduction
8 9	3	In breast cancer, local tumour control is thought to be optimized by administering
10 11 12	4	higher local levels of cytotoxic chemotherapy, in particular doxorubicin. However,
13 14 15	5	systemic administration of higher dosages of doxorubicin is hampered by its toxic
15 16 17	6	side effects. In this study, we aim to increase doxorubicin deposition in the primary
18 19 20	7	tumour without changing systemic doxorubicin concentration and thus without
21 22	8	interfering with systemic efficacy and toxicity. This is to be achieved by combining
23 24 25	9	lyso-thermosensitive liposomal doxorubicin (LTLD, ThermoDox®, Celsion
26 27 28 29 30	10	Corporation, Lawrenceville, NJ, USA) with mild local hyperthermia, induced by
	11	Magnetic Resonance guided High Intensity Focused Ultrasound (MR-HIFU). When
31 32 33	12	heated above 39.5 °C, LTLD releases a high concentration of doxorubicin
34 35 36	13	intravascularly within seconds. In absence of hyperthermia, LTLD leads to a similar
30 37 38	14	biodistribution and antitumour efficacy compared to conventional doxorubicin.
39 40 41	15	Methods and analysis
42 43	16	This is a single-arm phase I study in 12 chemotherapy-naïve patients with <i>de novo</i>
44 45 46	17	stage IV HER2-negative breast cancer. Previous endocrine treatment is allowed. Study
47 48	18	treatment consists of up to 6 cycles of LTLD at 21-day intervals, administered during
49 50 51	19	MR-HIFU induced hyperthermia to the primary tumour. We will aim for 60 minutes of
52 53 54	20	hyperthermia at 40-42 °C using a dedicated MR-HIFU breast system (Profound
55 56	20	Medical, Mississauga, Canada). Afterwards, intravenous cyclophosphamide will be
57 58 59		

3	1	administered. Primary endpoints are safety, tolerability and feasibility. The secondary
5 6 7	2	endpoint is efficacy, assessed by radiological response.
8 9 10	3	Future impact
11 12	4	This approach could lead to optimal loco-regional control with less extensive or even
13 14 15	5	no surgery, in <i>de novo</i> stage IV patients and in stage II/III patients allocated to receive
16 17 18	6	neo-adjuvant chemotherapy.
19 20	7	Ethics and dissemination
21 22 23	8	This study has obtained ethical approval by the Medical Research Ethics Committee
24 25 26	9	UMC Utrecht (Protocol NL67422.041.18, METC number 18-702). Informed consent will
27 28 29	10	be obtained from all patients before study participation. Results will be published in
29 30 31	11	an academic journal.
32 33	12	Trial registration number
32 33 34 35 36	12 13	Trial registration number NCT03749850, EudraCT 2015-005582-23.
32 33 34 35 36 37 38		
32 33 34 35 36 37 38 39 40 41	13	NCT03749850, EudraCT 2015-005582-23.
 32 33 34 35 36 37 38 39 40 41 42 43 44 	13 14	NCT03749850, EudraCT 2015-005582-23.
32 33 34 35 36 37 38 39 40 41 42 43	13 14 15	NCT03749850, EudraCT 2015-005582-23.
 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 	13 14 15 16	NCT03749850, EudraCT 2015-005582-23. Keywords High Intensity Focused Ultrasound,
 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 	13 14 15 16 17	NCT03749850, EudraCT 2015-005582-23. Keywords High Intensity Focused Ultrasound, MR-HIFU
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55	 13 14 15 16 17 18 	NCT03749850, EudraCT 2015-005582-23. Keywords High Intensity Focused Ultrasound, MR-HIFU ThermoDox
 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 	 13 14 15 16 17 18 19 	NCT03749850, EudraCT 2015-005582-23. Keywords High Intensity Focused Ultrasound, MR-HIFU ThermoDox Lyso-thermosensitive liposomal doxorubicin (LTLD)

1	Image-guided therapy
2	De novo stage IV breast cancer
3	Synchronous stage IV breast cancer
4	Metastatic breast cancer
5	
6	Strengths and limitations
7	• This first in human clinical trial investigates the combination of Lyso-
8	Thermosensitive Liposomal Doxorubicin and Magnetic Resonance guided High
9	Intensity Focused Ultrasound induced hyperthermia in breast cancer patients.
10	• A dedicated MR-HIFU breast system with real-time MR temperature feedback
11	will be used for safe non-invasive local hyperthermia treatment of breast
12	tumours.
13	• Because the study population consists of patients with <i>de novo</i> stage IV breast
14	cancer, both local and systemic response to the treatment can be monitored.
15	• A survival benefit of treating the primary tumour in patients with metastatic
16	breast cancer has not been proven, therefore study participants will participate
17	altruistically in the interest of future patients.
18	• This approach could lead to improved local control during palliative
19	chemotherapy in <i>de novo</i> stage IV breast cancer or neoadjuvant chemotherapy
20	in stage II/III disease, with less extensive or even no surgery.
	2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

1 Introduction

Both neo-adjuvant and adjuvant chemotherapy of breast cancer aim to improve survival by eradicating microscopic distant metastases. In addition, neo-adjuvant treatment offers the opportunity to observe the biological behaviour of the primary tumour and increase the likelihood of less extensive radical (breast conserving) surgery. Given the fact that pathological complete response (pCR) is achieved at best in 68% of patients [1], efforts should be focused on improving primary tumour response. This may be achieved by increasing the dose of chemotherapy at the site of the tumour. In pre-clinical data, a higher concentration of chemotherapy in the tumour is correlated with increased tumour response, in particular for doxorubicin, one of the most frequently applied cytostatics in breast cancer treatment [2, 3]. However, the administration of higher doses of doxorubicin is hampered by its systemic side effects. In the i-GO study we aim to increase doxorubicin levels in the primary tumour, without interfering with systemic efficacy and toxicity, by combining lyso-thermosensitive liposomal doxorubicin (LTLD, ThermoDox®; Celsion Corporation, Lawrenceville, NJ, USA) with mild local hyperthermia, induced by Magnetic Resonance guided High Intensity Focused Ultrasound (MR-HIFU). This will be followed by the intravenous administration of a second cytostatic agent, cyclophosphamide. The combined administration of doxorubicin and cyclophosphamide (AC) is a well-known regimen in the standard of care treatment in both the (neo-) adjuvant setting as in the treatment of metastatic breast cancer.

BMJ Open

The i-GO study will be a phase I feasibility study in stage IV breast cancer patients who present with distant metastases and a primary tumour in situ (de novo stage IV patients). Several studies suggest that by obtaining loco-regional control in metastatic breast cancer, overall survival in advanced disease will be improved [4, 5]. However, randomized controlled trials have shown conflicting results [6, 7]. As such it remains a subject of continuous research. Lyso-thermosensitive liposomal doxorubicin LTLD is a temperature-sensitive liposomal encapsulation of doxorubicin. Doxorubicin is a cytotoxic (chemotherapy) agent that is approved and frequently used for the treatment of a wide range of cancers, including breast cancer. When heated to 40-42 °C, LTLD releases the encapsulated doxorubicin intravascularly within seconds [8-10]. (Figure 1.) In small animal tumour models, LTLD combined with hyperthermia results in a 3-25 fold higher tumour concentration than conventional doxorubicin [2, 11-15] and increased antitumour efficacy [2, 9, 11]. In the absence of hyperthermia, doxorubicin leaks slowly from the liposome, and after two hours all of the doxorubicin is released [8]. Furthermore, LTLD without hyperthermia leads to a similar biodistribution [12, 13] and antitumour efficacy [9, 11] compared to conventional doxorubicin. Magnetic resonance-guided high intensity focused ultrasound MR-HIFU is a truly non-invasive treatment modality, that combines magnetic resonance imaging (MRI) and high intensity focused ultrasound to perform image-guided thermal tissue ablation (55-70 °C) [16-18] or mild local hyperthermia (40-43

Page 10 of 37

BMJ Open

1	°C) [19-21]. Unlike other heating methods, using microwaves, radiofrequency or non-
2	focused ultrasound, HIFU allows for non-invasive localized heating of deep-seated
3	tumours [22]. In addition to treatment planning based on anatomical MRI, MR-
4	guidance can provide temperature feedback and control during hyperthermia
5	treatment, through real-time MR-thermometry. For this study we will use a dedicated
6	MR-HIFU breast system: the Sonalleve MR-HIFU breast tumour therapy system
7	(hereafter referred to as 'MR-HIFU breast system', Profound Medical, Mississauga,
8	Canada), integrated with a clinical 1.5 Tesla MR scanner (Achieva, Philips Healthcare,
9	Best, The Netherlands). This system has a lateral sonication approach, which enables
10	specific heating of the breast tumour, while reducing the risk of heating the skin or
11	other organs to a minimum [23]. A phase I study in our hospital with MR-HIFU
12	ablation of breast tumours showed that the MR-HIFU breast system allows for safe,
13	accurate and precise thermal ablation [24, 25].
14	Previous clinical studies
15	This will be the first-in-human study to evaluate LTLD with MR-HIFU hyperthermia in
16	breast cancer patients. LTLD has been studied previously in combination with
17	superficial hyperthermia in patients with chest wall recurrences of breast cancer [26].
18	This phase I/II study showed that LTLD at 40 mg/m ² with superficial hyperthermia was
19	safe and the 48% overall response (14/29, 95% CI:30–66%) was promising in this
20	heavily pre-treated population. A large randomized phase III study in 701 patients
21	with hepatocellular carcinoma compared LTLD at 50 mg/m ² with radiofrequency

22 ablation (RFA) to RFA alone (the HEAT study) [27, 28]. In that study the primary

Page 11 of 37

BMJ Open

	1	endpoint of 33% improvement in progression free survival was not met. However, a
	2	post-hoc analysis in the subgroup of 285 patients with solitary lesions that were
0	3	treated with \ge 45 min of RFA showed a significant overall survival benefit for the
0 1 2	4	combination treatment (Hazard Ratio for Overall Survival 0.63 (95% CI, 0.41–0.96; P <
3 4 5	5	0.05), in favour of RFA+LTLD with \geq 45 minutes heating). Systemic adverse events
1 2 3 4 5 6 7 8	6	increased in the RFA+LTLD arm (83% vs 35% with RFA alone) as expected, with a
8 9 0	7	similar profile to that of conventional doxorubicin [28].
1	8	Furthermore, the combination of LTLD and ultrasound guided HIFU hyperthermia has
2 3 4 5 6 7 8	9	been evaluated in a phase I proof-of-concept study in ten patients with incurable
6 7 8	10	primary or metastatic liver tumours (the TARDOX study) [29, 30]. Adverse events did
9 0 1	11	not differ from those associated with doxorubicin alone and in the group of patients
2 3	12	that underwent invasive thermometry sufficient mean tumour temperatures were
4 5 6	13	measured. In seven out of ten patients, the intratumoural doxorubicin concentration
7 8	14	doubled after HIFU, although a within-patient comparison was not possible for all
9 0 1	15	patients. We aim to take advantage of the same principle to treat the primary tumour
2 3 4	16	in patients presenting with metastatic breast cancer. Monitoring the treatment by
5 6	17	MR-thermometry may further enhance safety, efficacy and feasibility. Using multiple
/ 8 9	18	cycles of LTLD + MR-HIFU hyperthermia is expected to increase treatment efficacy
0 1 2	19	and mimics the standard of care treatment.
2 3 4	20	Methods and analysis
5		

This single-arm phase I feasibility study aims to determine the safety, tolerability and
feasibility of the combination of LTLD, MR-HIFU induced mild local hyperthermia, and

2 3 4	1
5 6 7	2
8 9	3
10 11 12	4
13 14 15	5
16 17	6
18 19 20	7
21	8
22 23 24 25	9
26 27 28	10
29 30 31	11
32 33	12
34 35 36	13
37 38 39	14
39 40 41	15
42 43	16
44 45	17
46 47	18
48 49	19
50 51	20
52 53	21
54 55 56	22
56 57 58	23
59 60	24

1	cyclophosphamide, for the enhanced local treatment of the primary tumour in		
2	patients presenting with metastatic breast cancer. All eligible participants will receive		
3	up to 6 cycles of LTLD at 21-day intervals, administered during MR-HIFU induced		
4	hyperthermia to the primary tumour and cyclophosphamide administered afterwards.		
5	Patient population		
6	We will include 6 or 12 adult female patients with <i>de novo</i> stage IV (distant		
7	metastases at the time of diagnosis, with the primary tumour in situ) HER2-negative		
8	breast cancer, who have not received previous chemotherapy for their disease.		
9	Previous endocrine treatment in those with hormone-receptor positive disease is		
10	allowed. Potentially eligible patients will be referred to the department of Medical		
11	Oncology at the University Medical Center Utrecht, The Netherlands.		
	5, ,		
12	Inclusion criteria		
12 13			
	Inclusion criteria		
13	Inclusion criteria Patients must meet all of the following inclusion criteria:		
13 14	Inclusion criteria Patients must meet all of the following inclusion criteria: • Histologically confirmed adenocarcinoma of the breast and planned for palliative		
13 14 15	Inclusion criteria Patients must meet all of the following inclusion criteria: • Histologically confirmed adenocarcinoma of the breast and planned for palliative chemotherapy with doxorubicin and cyclophosphamide.		
13 14 15 16	Inclusion criteria Patients must meet all of the following inclusion criteria: • Histologically confirmed adenocarcinoma of the breast and planned for palliative chemotherapy with doxorubicin and cyclophosphamide. • Biopsy-proven stage T1-2AnyNM1 at diagnosis of breast cancer.		
13 14 15 16 17	Inclusion criteria Patients must meet all of the following inclusion criteria: • Histologically confirmed adenocarcinoma of the breast and planned for palliative chemotherapy with doxorubicin and cyclophosphamide. • Biopsy-proven stage T1-2AnyNM1 at diagnosis of breast cancer. • Measurable disease according to either RECIST 1.1 or PERCIST 1.0 at baseline.		
 13 14 15 16 17 18 	Inclusion criteria Patients must meet all of the following inclusion criteria: • Histologically confirmed adenocarcinoma of the breast and planned for palliative chemotherapy with doxorubicin and cyclophosphamide. • Biopsy-proven stage T1-2AnyNM1 at diagnosis of breast cancer. • Measurable disease according to either RECIST 1.1 or PERCIST 1.0 at baseline. • Non-pregnant, non-lactating female at least 18 years of age. If the patient is of		
 13 14 15 16 17 18 19 	Inclusion criteria Patients must meet all of the following inclusion criteria: • Histologically confirmed adenocarcinoma of the breast and planned for palliative chemotherapy with doxorubicin and cyclophosphamide. • Biopsy-proven stage T1-2AnyNM1 at diagnosis of breast cancer. • Measurable disease according to either RECIST 1.1 or PERCIST 1.0 at baseline. • Non-pregnant, non-lactating female at least 18 years of age. If the patient is of child-bearing age, she must have a negative serum pregnancy test prior to enrolment and		
 13 14 15 16 17 18 19 20 	 Inclusion criteria Patients must meet all of the following inclusion criteria: Histologically confirmed adenocarcinoma of the breast and planned for palliative chemotherapy with doxorubicin and cyclophosphamide. Biopsy-proven stage T1-2AnyNM1 at diagnosis of breast cancer. Measurable disease according to either RECIST 1.1 or PERCIST 1.0 at baseline. Non-pregnant, non-lactating female at least 18 years of age. If the patient is of child-bearing age, she must have a negative serum pregnancy test prior to enrolment and must agree to practice an acceptable form of birth control while on study. 		
 13 14 15 16 17 18 19 20 21 	Inclusion criteria Patients must meet all of the following inclusion criteria: • Histologically confirmed adenocarcinoma of the breast and planned for palliative chemotherapy with doxorubicin and cyclophosphamide. • Biopsy-proven stage T1-2AnyNM1 at diagnosis of breast cancer. • Measurable disease according to either RECIST 1.1 or PERCIST 1.0 at baseline. • Non-pregnant, non-lactating female at least 18 years of age. If the patient is of child-bearing age, she must have a negative serum pregnancy test prior to enrolment and must agree to practice an acceptable form of birth control while on study. • The tumour is located within the reach of the HIFU beam (based on pre-treatment		

1 2		
2 3 4	1	• The target breast is expected to fit in the cup of the MR-HIFU breast system (based
5 6	2	on pre-treatment MRI findings).
7 8	3	• The patient is able to provide written informed consent and willing to comply with
9 10 11	4	protocol requirements.
11 12 13	5	Exclusion criteria
14 15 16	6	Patients will be excluded if any of the following conditions are observed:
17 18	7	HER2-positive disease or classic invasive lobular carcinoma (ILC).
19 20	8	• A treatment plan with curative intent is available.
21 22	9	Any prior chemotherapy treatment for invasive breast cancer (previous anti-
23 24 25	10	hormonal therapy is allowed).
26 27	11	Any prior therapy with anthracyclines.
28 29 30 31	12	• The patient weighs \geq 90 kg (restriction of the HIFU table top).
	13	Any concomitant malignancy or previous malignancy in the last 5 years, except
32 33	14	basal cell or squamous cell cancer of the skin or in situ carcinoma of the cervix. Subjects with a
34 35 36	15	prior contralateral breast malignancy more than 5 years ago can be included if they did not
37 38	16	receive any chemotherapy.
39 40	17	• Any previous malignancy in the unilateral breast (even if more than 5 years ago)
41 42	18	• Prior sensitivity (including rash, dyspnoea, wheezing, urticarial, or other symptoms)
43 44 45	19	attributed to any liposomal-encapsulated drug.
46 47	20	Baseline laboratory values:
48 49	21	Absolute Neutrophil Count (ANC) < 1.5 x 10^9/L
50 51	22	Platelets < 75 x 10^9/L
52 53	23	Haemoglobin < 5.6 mmol/L (transfusion is allowed)
54 55 56	24	Total Bilirubin > 1.5 times upper limit of normal
57 58	25	Alanine Transaminase (ALAT) and Aspartate Transaminase (ASAT)
59 60	26	> 2.5 times upper limit of normal

1 2			
- 3 4	1		>5 times upper limit of normal in case of liver
5 6	2		metastases
7 8	3		Estimated Glomerular Filtration Rate < 30 ml/min/1.73m ²
9 10	4	•	World Health Organization Performance Status (WHO-PS) >2.
11 12 13	5	•	Left Ventricular Ejection Fraction <50% (validated by baseline scan).
14 15	6	•	History of: acute coronary syndrome in the last year, cerebral vascular accident in
16 17	7		the last year, abnormal cardiac stress testing within the last six months, symptomatic coronary
18 19	8		artery disease, uncontrolled hypertension or cardiomyopathy, cardiac valvular surgery or
20 21	9		open-heart surgery in the last year or known structural heart disease.
22 23 24	10	•	Any condition which may interfere with the hyperthermia portion of the trial such
25 26	11		as: functioning cardiac pacemaker; metal plates, rods or prosthesis of the chest wall, breast
27 28	12		prosthesis in the treated breast, severe numbness and/or tingling of the chest wall or breast,
29 30	13		skin grafts and/or flaps on the breast or chest wall, scar tissue or surgical clips in the HIFU
31 32 33	14		beam path.
34 35	15	•	Active infection.
36 37	16	•	Body temperature > 38.0 degrees Celsius on the day of a MR-HIFU treatment.
38 39	17	•	Concurrent use of any of the following prohibited medications within a reasonable
40 41 42	18		wash-out time: protease inhibitors, cyclosporine, carbamazepine, phenytoin, valproic acid,
42 43 44	19		paclitaxel, trastuzumab and other liposomal drugs (AbelectTM, Ambisome™, NyotranTM, etc.)
45 46	20		or lipid-complexed drugs. Caution will be exercised with medications, dietary components and
47 48	21		herbal supplements that affect CYP2A4, CYP2D6 or P-gp or have been described to interact
49 50	22		with doxorubicin in other ways.
51 52 53	23	•	Contraindications to MR imaging (e.g., pacemaker in situ, severe claustrophobia,
55 54 55	24		metal implants incompatible with the MRI-scan, body size incompatible with MR bore).
56 57	25	•	Contraindications to gadolinium-based contrast agents, including prior allergic
58 59 60	26		reaction to gadolinium-based contrast agent, and/or renal failure.

Page 15 of 37

1

BMJ Open

2					
3 4 5 6 7 8 9 10 11 12 13 14 15	1	Contraindications to sedation and analgesia with Propofol and Remifentanil,			
	2	including history of Chronic Obstructive Pulmonary Disease (COPD) that results in the inability			
	3	to perform a physical activity corresponding with a Metabolic Equivalent (MET(57)) of 4;			
	4	dependence on artificial ventilation at home; sleep apnoea or an American Society of			
	5	Anaesthesiologists (ASA) classification \geq 4.			
	6	Inability to lie in prone position.			
16 17	7	A medical or psychiatric condition or other circumstances which would significantly			
18 19	8	decrease the chances of understanding the informed consent process, obtaining reliable data,			
20 21	9	achieving study objectives, or completing the study treatment and/or examinations.			
22 23 24	10	Endpoints			
25 26 27	11	Primary endpoints are safety, tolerability and feasibility. These will be evaluated by			
28 29	12	the following assessments.			
30 31 32	13	Safety and tolerability:			
 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 	14	Incidence and severity of Adverse Events and Severe Adverse Events			
	15	 Incidence of Dose Limiting Toxicity (DLT, systemic and loco-regional) 			
	16	 Necessity for dose adjustments, delay and early cessation 			
	17	Incidence and severity of post-procedural pain			
	18	Patient reported tolerability (questionnaires)			
	19	Cardiotoxicity: Left Ventricular Ejection Fraction measurement and			
	20	electrocardiogram abnormalities.			
	21	Feasibility:			
54 55 56	22	• The number of cycles in which hyperthermia treatment was sufficient: at least			
57 58 59 60	23	30 minutes at the target temperature of 40-42 °C.			

1 2

3 4	1	• The number of completed cycles with MR-HIFU induced hyperthermia, LTLD			
5 6 7	2	and cyclophosphamide			
8 9	3	• Quality of MR thermometry data acquired during the MR-HIFU treatment			
10 11 12	4	Spatiotemporal temperature distribution in the tumour			
13 14 15	5	• Total duration of the study procedures on a treatment day.			
16 17 18	6	Secondary endpoints consist of efficacy parameters:			
19 20	7	Assessment of distant radiological objective response rates			
21 22 23	8	Assessment of local radiological objective response rates			
24 25 26	9	Study procedures			
27 28	10	The study design (Figure 2) was based on the AC regimen, a well-known			
29 30 31	11	chemotherapeutic regimen that consists of doxorubicin and cyclophosphamide. This			
32 33 34	12	regimen is used in the (neo-)adjuvant setting as well as in the first-line chemotherapy			
35 36	13	treatment of metastatic breast cancer. Standard of care for our study population			
37 38 39	14	consists of 6 cycles at 21-days intervals. In this study we will replace doxorubicin in			
40 41 42	15	this regimen with the combination of LTLD and MR-HIFU induced hyperthermia.			
43 44	16	All participants will receive procedural sedation and analgesia with propofol and			
45 46 47	17	remifentanil to limit patient movement during the treatment and to establish a			
48 49 50	18	regular breathing pattern that will facilitate respiratory gated MR-thermometry [31].			
51 52	19	To prevent any hypersensitivity reactions to LTLD, the participants will also receive a			
53 54 55	20	premedication regimen of steroids, H1- and H2- histamine antagonists.			
56 57	21	MR-HIFU hyperthermia will be performed on the MR-HIFU breast system, with the			
58 59 60	22	patient in prone position. We will aim for 60 minutes of hyperthermia at 40-42 $^{\circ}$ C to			

Page 17 of 37

1

BMJ Open

1 2	
3 4	
5 6 7	
7 8 9	
9 10 11	
12 13	
14 15	
16 17	
18 19	
20 21	
22 23	
24 25	
26 27 28	
29 30	
31 32	
33 34	
35 36	
37 38	
39 40	
41 42 43	
44 45	
46 47	
48 49	
50 51	
52 53	
54 55 56	
50 57 58	
59 60	•

the breast tumour, in four blocks of 15 minutes. After each block the MR
thermometry is restarted to minimize the possible influence of magnetic field drift or
patient displacement. When MR thermometry indicates that the target temperature is
reached, 50 mg/m ² of LTLD will be administered intravenously over 30 minutes, via a
peripherally inserted central catheter (PICC), while the patient is on the MR-HIFU
breast system. Temperature will be monitored by respiratory navigator-gated MR-
thermometry, using the proton resonance frequency shift method [32, 33]. In case the
target temperature is not reached, conventional doxorubicin (60 mg/m ²) will be
administered instead of LTLD. Shortly after MR-HIFU, 600 mg/m ² of
cyclophosphamide will be administered intravenously according to standard of care
in the AC regimen.
Participants will receive up to six treatment cycles. Feasibility will be evaluated after
each MR-HIFU treatment and during the course of the cycles. Safety and tolerability
will be assessed three hours after MR-HIFU treatment, during telephone contact on
day +1 and +7 and during a hospital visit on day +14 and +21 of each cycle, by
monitoring of adverse events, laboratory measurements and evaluation of pain.
Cardiotoxicity evaluations (LVEF and ECG) will be performed at baseline, after cycle 3
and after cycle 6. The participants will be asked to fill out the Dutch version of the
Functional Assessment of Cancer Therapy – Breast (FACT-B, version 4, FACIT)[34] at
baseline and after each treatment cycle, combined with a selection of questions
adapted from the Dutch version of the Cancer Therapy Satisfaction Questionnaire

Page 18 of 37

BMJ Open

1	Before starting the next cycle, any toxicities will be evaluated and if necessary, dose
2	adjustments will be made. DLT will be categorized in systemic or loco-regional
3	toxicity (Table 1). Thus, we aim to distinguish systemic chemotherapy effects from
4	local effects of MR-HIFU hyperthermia and/or the high local doxorubicin
5	concentration. Planned dose adjustments for these categories have been established.
6	In case of a systemic DLT the LTLD dosage will be decreased, while for loco-regional
7	DLT the duration of hyperthermia will be decreased. No dose increases will be
8	performed. Depending on the severity and nature of the toxicity, study treatment can
9	be delayed or even ceased. In case of solely loco-regional DLT, technical issues or
10	other feasibility issues that restrict the use of MR-HIFU treatment, the participant will
11	receive the standard of care AC regimen. If hyperthermia is insufficient (i.e. the target
12	temperature of 40-42 °C is not reached or was only maintained for less than 30
13	minutes) in two separate cycles, the treatment is not considered feasible for that
14	patient and study participation will end.
15	For the secondary endpoint of efficacy, MRI of the breast will be performed using a 3
16	Tesla MRI scanner with a dedicated breast coil, at baseline and after cycle 2 and 6 to
17	determine local radiological objective response. In addition, MRI of the breast will be
18	performed during each MR-HIFU treatment. However, the receiver coil in the MR-
19	HIFU breast system is not suited for clinical imaging. In case a complete radiological
20	response of the breast tumour is obtained after less than 6 cycles, the patient will
21	continue with the conventional AC regimen. ¹⁸ F -fluorodeoxyglucose (FDG-) Positron
22	

Page 19 of 37

1 2

BMJ Open

3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22 23	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
52 53	
54	
55	
56	
57	
58	
59	
60	

1	and abdomen will be performed at baseline and CT or PET/CT after cycle 2 and cycle
2	6, to determine the distant objective response according to RECIST 1.1 [37] or
3	PERCIST 1.0 [38]. PET/CT will be performed for response evaluation in patients with
4	only PERCIST-measurable disease, such as patients with only bone metastases.
5	The participants will be followed for adverse events from the time of signing
6	informed consent until the end of study visit after six cycles of chemotherapy.
7	Afterwards patients will receive standard of care treatment.
8	If the patient consents to the biobank study, additional blood samples will be taken
9	from the PICC-line at seven time points (Figure 2) when the patient is already at the
10	hospital. These blood samples will be collected in the UMC Utrecht Biobank for future
11	research. Moreover, in case tissue samples of the breast tumour and/or metastases
12	were obtained in standard care before inclusion or following study participation, we
13	will ask for consent to perform additional analyses on these samples.
14	Interim analysis
15	An interim analysis of safety and efficacy will determine whether accrual will continue
16	after six participants (Supplementary materials 1). Safety will be evaluated once the
17	first six patients complete two treatment cycles. If safety is sufficiently proven or is
18	
10	deemed inadequate, the trial will end after six participants. Otherwise accrual will
19	deemed inadequate, the trial will end after six participants. Otherwise accrual will continue until twelve patients have been treated, if necessary after dose adjustments.
19	continue until twelve patients have been treated, if necessary after dose adjustments.

disease outside the heated treatment field is inadequate. This early stopping rule was based on a phase III trial with liposomal doxorubicin in metastatic breast cancer [39] where 77.5% of the subjects were free of disease progression at two months post-randomization (the 95% confidence interval of 2/6 patients does not contain 0.775). An independent, qualified monitor will monitor the study procedures. An external Data Safety Monitoring Board (DSMB) will review accumulating safety data at regular intervals throughout the study, perform the interim safety and efficacy analyses and monitor trial data integrity. Data analysis Descriptive statistics will be used to describe the incidence and severity of adverse events (National Cancer Institute Common Terminology Criteria for Adverse Events version 5.0), the patient reported outcomes in the questionnaires and feasibility parameters including the number of completed study treatment cycles, duration of study procedures and spatiotemporal temperature distribution during MR-HIFU treatment. For the secondary endpoint of efficacy, distant and local radiological objective response rates (RECIST 1.1) will be described. Discussion This is the first clinical trial that investigates the combination of LTLD and MR-HIFU induced hyperthermia in breast cancer. In a small number of patients we will focus primarily on safety, tolerability and feasibility of this procedure. We hypothesize that

the combination of LTLD and MR-HIFU hyperthermia leads to improved treatment of

Page 21 of 37

BMJ Open

the primary tumour, without changing the systemic doxorubicin concentration and thus without interfering with systemic efficacy and toxicity. A future randomized study with a control group receiving the standard of care AC regimen would be needed to prove this. Including patients with *de novo* stage IV breast cancer provides the unique possibility to monitor both local and systemic disease simultaneously. While in this setting a survival benefit of treating the primary tumour has not been proven, the study treatment (if proven safe and feasible) could in the future improve outcomes in the neoadjuvant setting. We aim to replace doxorubicin by LTLD plus MR-HIFU hyperthermia in all six cycles of the AC regimen, because we expect this to maximize the local treatment effect. In each cycle, the feasibility to achieve tumour hyperthermia at 40-42 °C for 30 minutes will be verified with MR-thermometry. If hyperthermia treatment is repeatedly insufficient, or if (after any number of cycles) radiological complete response is already obtained, patients will continue on the standard-of-care AC regimen. The number of MR-HIFU hyperthermia plus LTLD cycles that our patients are willing and able to complete could be less than six, which would be an important feasibility finding. Our goal is to maintain an equivalent systemic efficacy compared to the standard-ofcare AC regimen using 60 mg/m² conventional doxorubicin. Pharmacokinetic studies showed that the area-under the curve (AUC0-∞) of free/unencapsulated doxorubicin in plasma of patients receiving LTLD 50 mg/m² with local hyperthermia or RFA [26,

40, 41] was higher than the AUC0- ∞ of conventional doxorubicin 60 mg/m² [42-44].

Page 22 of 37

1	To be able to compare the AUCs we converted the AUC0- ∞ of the metabolite
2	doxorubicinol that was measured in the LTLD studies to the AUC0- ∞ of doxorubicin
3	[45-47] (Additional explanation in Supplementary materials 2). The 50 mg/m ² LTLD
4	dose was also recommended for and well-tolerated in the phase III trial in
5	combination with RFA [28]. Due to local toxicity, the recommended dose for LTLD
6	combined with local superficial hyperthermia for chest wall recurrences was
7	decreased to 40 mg/m ² [40]. In our study local (skin) toxicity is not expected because
8	a margin of at least 1.0 cm is preserved from the tumour to the skin, therefore the
9	LTLD dose of 50 mg/m ² was chosen. Real time MR-thermometry and the lateral
10	configuration of the MR-HIFU breast system will help mitigate this risk. If however
11	local DLT do occur, the duration of hyperthermia will be decreased while maintaining
12	the LTLD dosage to avoid decreasing systemic efficacy. We will only decrease LTLD
13	dosage in case of systemic DLT. If despite these measures, systemic efficacy seems
14	inadequate, the trial will be halted prematurely based on the interim analysis for
15	efficacy.
16	Because this is a small phase I feasibility study, the results will only provide a rough
17	indication of local efficacy based on radiological response. To diminish the burden on
18	participants, we will not perform tissue biopsies or breast surgery and therefore
19	cannot describe the number of pathological complete responses or measure the
20	concentration of doxorubicin in the tumour. Proof-of-concept that hyperthermia
21	increases the tumour doxorubicin concentration has already been established in the

BMJ Open

3 4 5	1	Tardox study, although doxorubicin concentrations were not compared between		
5 6 7	2	heated and unheated tumours.		
8 9 10	3			
11 12	4	Conclusions		
13 14 15	5	With this phase I clinical trial, we aim to show that LTLD combined with MR-HIFU		
16 17 18	6	induced hyperthermia on a dedicated MR-HIFU breast system can safely replace		
19 20 21	7	doxorubicin in the AC regimen. We hypothesize that this combination will result in		
22 23	8	improved response of the primary tumour without compromising the systemic		
24 25 26	9	efficacy on metastatic sites or increasing systemic toxicity. If feasibility and tolerability		
27 28	$\frac{7}{3}$ 10 are adequate, this approach could in the future lead to optimal loco-regional c			
with less extensive or even no surgery, in stage II or III breast cancer paties				
32 33 34	12	allocated to receive neo-adjuvant chemotherapy. Finally, it could also be suitable for		
35 36	13	other doxorubicin sensitive tumour types that benefit from enhanced local treatment,		
37 38 39	14	such as soft tissue sarcoma.		
40 41 42	15			
43 44 45	16	Word Count		
46 47	17	3768 words		
48 49 50	18			
51 52 53	19	Ethics and dissemination		
54 55	20	This study has obtained ethical approval by the Medical Research Ethics Committee		
56 57 58	21	of the UMC Utrecht (METC Utrecht) on May 29 th 2019 (Protocol NL67422.041.18,		
59 60	22	METC number 18-702). Informed consent will be obtained by all patients before		

4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20 21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
43 44	
44 45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

1 2 3

study participation. The results will be disseminated by publication in an academic
 peer-reviewed journal.

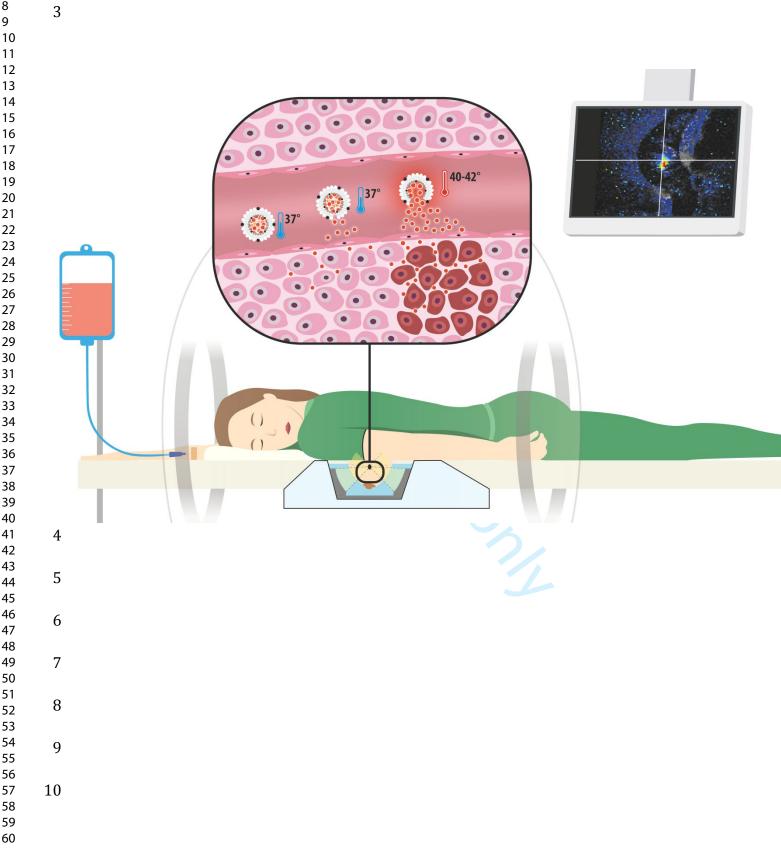
3 Patient and public involvement

Patient experiences have been the starting point for the grant proposal to the Dutch 4 5 Cancer Foundation and patients were involved in the design of the study and the 6 choice of outcome measures. Patients will not be actively involved in recruitment or dissemination of study results, however information regarding the study can be 7 found by individual patients on the UMC Utrecht website and clinicaltrials.gov. 8 9 **Trial status** Patient recruitment was initiated on March 10th 2020. On the submission date of this 10 11 article, no patients had been enrolled yet. Due to the COVID-19 outbreak, the study has been temporarily discontinued. Recruitment will be resumed as soon as possible. 12 **Authors' contributions** 13 JdM, BS, MB, SL, CM, EW and RD were all involved in the design of the study and in 14 15 writing the manuscript. 16 PvD, HV and AW critically reviewed the design of the study providing additional 17 comments and suggestions. 18 **Funding statement** 19 This work was supported by the Dutch Cancer Foundation (project no. UU 2015-20 7891), Center for Translational Molecular Medicine (CTMM) in the projects 21 VOLTAVALO (project no. 09P-106) and HIFU-chem (project no. 03O-301) and by

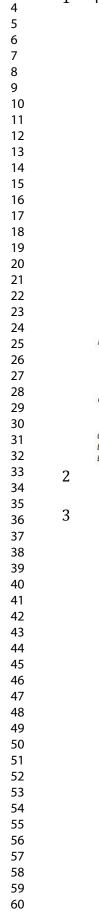
22 "Friends of the UMC Utrecht".

2	1	Acknowledgements		
4 5 6	ŋ			
6 7	Z	2 We thank Roelien Kronemeijer of the trial bureau medical oncology and Helee		
8 9 10	3	Wolterink-Blok, re	search nurse medical oncology, for their work leading up to the	
11 12	4	institutional review	v board (IRB) approval of the study and the start of patient	
13 14 15	5	recruitment.		
 We thank Gert Storm for his work in the preceding HIFU-CHEM project that Contributed to the current project. 			orm for his work in the preceding HIFU-CHEM project that has	
			e current project.	
21 22 23	8	We thank Christiaan van Kesteren for his help with the design of Figure 1.		
 We thank Celsion Corporation for their support relating the use and safety o We thank Celsion Corporation for their support relating the use and safety o ThermoDox and their input during the design of the study. 			Corporation for their support relating the use and safety of	
			neir input during the design of the study.	
 Finally, we thank Profound Medical for their support relating the use an 		Profound Medical for their support relating the use and safety of the		
32 33	12	MR-HIFU breast system in their role as legal manufacturer of this investigational		
34 35 36	13	medical device.		
37 38 39	14	Competing interests statement		
40 41	15	The authors have no competing interest to declare.		
42 43 44	16	6 List of abbreviations		
45 46 47	17	AC	Doxorubicin (A) and cyclophosphamide (C)	
48 49	18	AF	Alkaline Phosphatase	
50 51 52	19	ALAT	Alanine Transaminase	
53 54	20	ANC	Absolute Neutrophil Count	
55 56 57	21	ASAT	Aspartate Transaminase	
58 59 60	22	CTSQ	Cancer Therapy Satisfaction Questionnaire	

2 3	1	DCE	Dynamic contrast-enhanced
4 5 6	2	DLT	Dose Limiting Toxicity
7 8	Z		Dose Limiting Toxicity
9 10	3	FACT-B	Functional Assessment of Cancer Therapy – Breast
11 12	4	LTLD	Lyso-Thermosensitive Liposomal Doxorubicin
13 14 15	5	MR-HIFU	Magnetic Resonance guided High Intensity Focused Ultrasound
16 17 18	6	MRI	Magnetic Resonance Imaging
19 20 21	7	(FDG-) PET/CT	¹⁸ F-Fluorodeoxyglucose Positron Emission Tomography
22 23	8		combined with Computed Tomography
24 25 26	9	PICC	Peripherally inserted central catheter
~ -	10	RFA	Radiofrequency ablation
	11		


1		
2		
3 4	1	References
5	2	1. van Ramshorst MS, van der Voort A, van Werkhoven ED, et al. Neoadjuvant
6	2	
7		chemotherapy with or without anthracyclines in the presence of dual HER2 blockade for
8	4	HER2-positive breast cancer (TRAIN-2): a multicentre, open-label, randomised, phase 3
9 10	5	trial. <i>The Lancet Oncology</i> 2018;19(12):1630-40.
11	6	2. Ponce AM, Viglianti BL, Yu D, et al. Magnetic resonance imaging of temperature-
12	7	sensitive liposome release: drug dose painting and antitumor effects. <i>J Natl Cancer Inst</i>
13	8	2007;99(1):53-63.
14	9	3. Koechli OR, Sevin B, Perras JP, et al. Comparative chemosensitivity profiles in
15	10	three human breast cancer cell lines with the ATP-cell viability assay. <i>Oncology</i>
16 17	11	1995;51:552-8.
17 18	12	4. Khan SA. Surgical Management of de novo Stage IV Breast Cancer. <i>Semin Radiat</i>
19	13	Oncol 2016;26(1):79-86.
20	14	5. Headon H, Wazir U, Kasem A, et al. Surgical treatment of the primary tumour
21	15	improves the overall survival in patients with metastatic breast cancer: A systematic
22	16	review and meta-analysis. <i>Mol Clin Oncol</i> 2016;4(5):863-7.
23	17	6. Badwe R, Hawaldar R, Nair N, et al. Locoregional treatment versus no treatment
24 25	18	of the primary tumour in metastatic breast cancer: an open-label randomised controlled
25 26	19	trial. <i>Lancet Oncol</i> 2015;16(13):1380-8.
27	20	7. Soran A, Ozmen V, Ozbas S, et al. The importance of primary surgery in patients
28	21	with de novo stage IV breast cancer; finalizing the protocol MF07-01 randomized clinical
29	22	trial Poster P1-20-01 at San Antonio Breast Cancer Symposium 2019 2019.
30	23	8. Al-Jamal WT, Al-Ahmady ZS, Kostarelos K. Pharmacokinetics & tissue distribution
31	24	of temperature-sensitive liposomal doxorubicin in tumor-bearing mice triggered with
32 33	25	mild hyperthermia. <i>Biomaterials</i> 2012;33(18):4608-17.
34	26	9. Needham D, Anyarambhatla G, Kong G, et al. A new temperature-sensitive
35	27	liposome for use with mild hyperthermia: characterization and testing in a human
36	28	tumor xenograft model. <i>Cancer Res</i> 2000;60:1197-201.
37	29	10. Needham D, Dewhirst MW. The development and testing of a new temperature-
38	30	sensitive drug delivery system for the treatment of solid tumors. Adv Drug Deliv Rev
39 40	31	2001;53:285-305.
41	32	11. Kong G, Anyarambhatla G, Petros WP, et al. Efficacy of Liposomes and
42	33	Hyperthermia in a Human Tumor Xenograft Model: Importance of Triggered Drug
43	34	Release. Cancer Res 2000;60:6950-7.
44	35	12. Ranjan A, Jacobs GC, Woods DL, et al. Image-guided drug delivery with magnetic
45	36	resonance guided high intensity focused ultrasound and temperature sensitive
46 47	37	liposomes in a rabbit Vx2 tumor model. <i>J Control Release</i> 2012;158(3):487-94.
47 48	38	13. Staruch RM, Ganguly M, Tannock IF, et al. Enhanced drug delivery in rabbit VX2
49	39	tumours using thermosensitive liposomes and MRI-controlled focused ultrasound
50	40	hyperthermia. Int J Hyperthermia 2012;28(8):776-87.
51	41	14. de Smet M, Hijnen NM, Langereis S, et al. Magnetic Resonance Guided High-
52	42	Intensity Focused Ultrasound Mediated Hyperthermia Improves the Intratumoral
53	43	Distribution of Temperature-Sensitive Liposomal Doxorubicin. Invest Radiol
54 55	44	2013;48:395-405.
56	45	15. Li L, ten Hagen TL, Hossann M, et al. Mild hyperthermia triggered doxorubicin
57	46	release from optimized stealth thermosensitive liposomes improves intratumoral drug
58	47	delivery and efficacy. J Control Release 2013;168(2):142-50.
59		
60		

16. Kim YS, Keserci B, Partanen A, et al. Volumetric MR-HIFU ablation of uterine fibroids: role of treatment cell size in the improvement of energy efficiency. Eur J Radiol 2012;81(11):3652-9. 17. Hurwitz MD, Ghanouni P, Kanaev SV, et al. Magnetic resonance-guided focused ultrasound for patients with painful bone metastases: phase III trial results. *J Natl Cancer* Inst 2014;106(5). Hsiao YH, Kuo SJ, Tsai HD, et al. Clinical Application of High-intensity Focused 18. Ultrasound in Cancer Therapy. J Cancer 2016;7(3):225-31. Chu W, Staruch RM, Pichardo S, et al. Magnetic Resonance-Guided High-Intensity 19. Focused Ultrasound Hyperthermia for Recurrent Rectal Cancer: MR Thermometry Evaluation and Preclinical Validation. Int J Radiat Oncol Biol Phys 2016;95(4):1259-67. Bing C, Patel P, Staruch RM, et al. Longer heating duration increases localized 20. doxorubicin deposition and therapeutic index in Vx2 tumors using MR-HIFU mild hyperthermia and thermosensitive liposomal doxorubicin. Int J Hyperthermia 2019;36(1):196-203. 21. Zhu L, Partanen A, Talcott MR, et al. Feasibility and safety assessment of magnetic resonance-guided high-intensity focused ultrasound (MRgHIFU)-mediated mild hyperthermia in pelvic targets evaluated using an in vivo porcine model. Int J *Hyperthermia* 2019;36(1):1147-59. 22. Deckers R, Rome C, Moonen CT. The role of ultrasound and magnetic resonance in local drug delivery. J Magn Reson Imaging 2008;27(2):400-9. Merckel LG, Bartels LW, Kohler MO, et al. MR-guided high-intensity focused 23. ultrasound ablation of breast cancer with a dedicated breast platform. Cardiovasc Intervent Radiol 2013;36(2):292-301. Deckers R, Merckel LG, Denis de Senneville B, et al. Performance analysis of a 24. dedicated breast MR-HIFU system for tumor ablation in breast cancer patients. Phys Med *Biol* 2015;60(14):5527-42. Merckel LG, Knuttel FM, Deckers R, et al. First clinical experience with a dedicated 25. MRI-guided high-intensity focused ultrasound system for breast cancer ablation. Eur Radiol 2016;26(11):4037-46. Zagar TM, Vujaskovic Z, Formenti S, et al. Two phase I dose-26. escalation/pharmacokinetics studies of low temperature liposomal doxorubicin (LTLD) and mild local hyperthermia in heavily pretreated patients with local regionally recurrent breast cancer. Int J Hyperthermia 2014;30(5):285-94. Poon RT, Borys N. Lyso-thermosensitive liposomal doxorubicin: an adjuvant to 27. increase the cure rate of radiofrequency ablation in liver cancer. Future Oncol 2011;7(8):937-45. Tak WY, Lin SM, Wang Y, et al. Phase III HEAT Study Adding Lyso-28. Thermosensitive Liposomal Doxorubicin to Radiofrequency Ablation in Patients with Unresectable Hepatocellular Carcinoma Lesions. Clin Cancer Res 2018;24(1):73-83. Lyon PC, Gray MD, Mannaris C, et al. Safety and feasibility of ultrasound-triggered 29. targeted drug delivery of doxorubicin from thermosensitive liposomes in liver tumours (TARDOX): a single-centre, open-label, phase 1 trial. Lancet Oncol 2018;19(8):1027-39. Gray MD, Lyon PC, Mannaris C, et al. Focused Ultrasound Hyperthermia for 30. Targeted Drug Release from Thermosensitive Liposomes: Results from a Phase I Trial. Radiology 2019;291(1):232-8. van Breugel JM, Wijlemans JW, Vaessen HH, et al. Procedural sedation and 31. analgesia for respiratory-gated MR-HIFU in the liver: a feasibility study. J Ther *Ultrasound* 2016;4:19.


1		
2		
3	1	32. Ishihara Y, Calderon A, Watanabe H, et al. A precise and fast temperature
4	2	mapping using water proton chemical shift. MRM 1995;34:814-23.
5 6	3	33. de Poorter J. Noninvasive MRI thermometry with the proton resonance frequency
7	4	method: study of susceptibility effects. MRM 1995;34:359-67.
8	5	34. Brady MJ, Cella DF, Mo F, et al. Reliability and Validity of the Functional
9	6	Assessment of Cancer Therapy-Breast Quality-of-Life Instrument. J Clin Oncol
10	7	1997;15:974-86.
11 12	8	35. Abetz L, Coombs JH, Keininger DL, et al. Development of the cancer therapy
13	9	satisfaction questionnaire: item generation and content validity testing. Value Health
14	10	2005;8 Suppl 1:S41-53.
15	11	36. Cheung K, de Mol M, Visser S, et al. Reliability and validity of the Cancer Therapy
16 17	12	Satisfaction Questionnaire in lung cancer. <i>Qual Life Res</i> 2016;25(1):71-80.
18	13	37. Eisenhauer EA, Therasse P, Bogaerts J, et al. New response evaluation criteria in
19	14	solid tumours: revised RECIST guideline (version 1.1). <i>Eur J Cancer</i> 2009;45(2):228-47.
20	15	38. Wahl RL, Jacene H, Kasamon Y, et al. From RECIST to PERCIST: Evolving
21 22	16 17	Considerations for PET response criteria in solid tumors. <i>J Nucl Med</i> 2009;50 Suppl 1:122S-50S.
22	17	39. Chan S, Davidson N, Juozaityte E, et al. Phase III trial of liposomal doxorubicin and
24	10 19	cyclophosphamide compared with epirubicin and cyclophosphamide as first-line
25	20	therapy for metastatic breast cancer. Ann Oncol 2004;15(10):1527-34.
26	20	40. Celsion Corporation. ThermoDox®, Lyso-Thermosensitive Liposomal
27 28	22	Doxorubicin (LTLD), Investigator's Brochure. 2019.
20	23	41. Wood BJ, Poon RT, Locklin JK, et al. Phase I study of heat-deployed liposomal
30	24	doxorubicin during radiofrequency ablation for hepatic malignancies. J Vasc Interv
31	25	Radiol 2012;23(2):248-55 e7.
32	26	42. Gabizon A, Catane R, Uziely B, et al. Prolonged circulation time and enhanced
33 34	27	accumulation in malignant exudates of doxorubicin encapsulated in polyethylene-glycol
35	28	coated liposomes. Cancer Res 1994;54(4):987-92.
36	29	43. Swenson CE, Bolcsak LE, Batist G, et al. Pharmacokinetics of doxorubicin
37	30	administered i.v. as Myocet (TLC D-99; liposome-encapsulated doxorubicin citrate)
38 39	31	compared with conventional doxorubicin when given in combination with
40	32	cyclophosphamide in patients with metastatic breast can <mark>cer.</mark> <i>Anticancer Drugs</i>
41	33	2003;14(3):239-46.
42	34	44. Joerger M, Huitema ADR, Richel DJ, et al. Population pharmacokinetics and
43 44	35	pharmacodynamics of doxorubicin and cyclophosphamide in breast cancer patients. <i>Clin</i>
44	36	Pharmacokinet 2007;46(12):1051-68.
46	37	45. Jacquet JM, Bressolle F, Galtier M, et al. Doxorubicin and doxorubicinol: intra- and
47	38	inter-individual variations of pharmacokinetic parameters. <i>Cancer Chemother Pharmacol</i>
48	39 40	1990;27(3):219-25.
49 50	40 41	46. Callies S, de Alwis DP, Wright JG, et al. A population pharmacokinetic model for doxorubicin and doxorubicinol in the presence of a novel MDR modulator, zosuquidar
51	41	trihydrochloride (LY335979). <i>Cancer Chemother Pharmacol</i> 2003;51(2):107-18.
52	42 43	47. Joerger M, Huitema AD, Meenhorst PL, et al. Pharmacokinetics of low-dose
53	43 44	doxorubicin and metabolites in patients with AIDS-related Kaposi sarcoma. <i>Cancer</i>
54 55	45	Chemother Pharmacol 2005;55(5):488-96.
55 56	46	
57	10	
58		
59 60		
00		

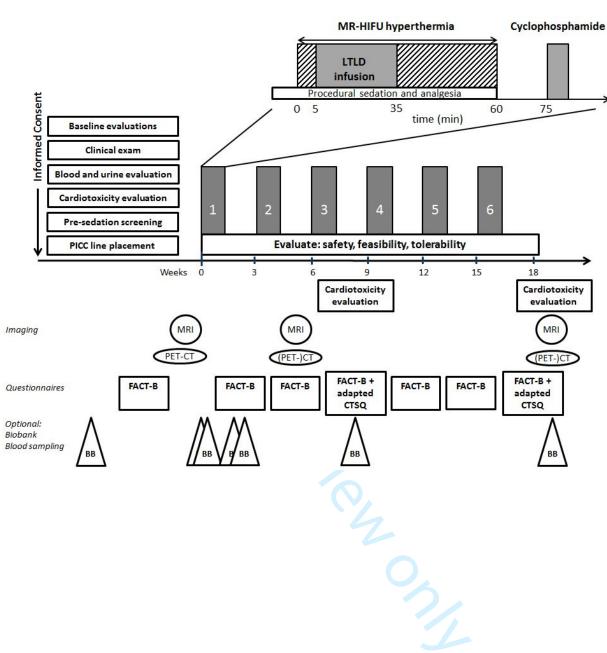

Figures and tables

Figure 1 LTLD combined with MR-HIFU hyperthermia on the MR-HIFU breast system.

1 Figure 2 Study procedures

1 Table 1 Definitions of Dose Limiting Toxicity

Dose limiting systemic toxicity	
---------------------------------	--

Dose	initiand systemic toxicity
A	Hematologic DLT
	defined as Grade 3 anaemia, Grade 4 thrombocytopenia, febrile neutropenia,
	or Grade 4 neutropenia \geq 7 days in duration.
В	Non-hematologic DLT (non-loco-regional)
	defined as Grade 3 or greater toxicity with the exceptions of alopecia, fatigue,
	nausea or vomiting and loco-regional effects.
	Including Cardiotoxicity DLT, defined as:
	Grade 3 or greater cardiac disorders OR
	 a decline in LVEF of > 15% while the LVEF remains > 40% OR
	• a decline to an LVEF of \leq 40%.
Dose	imiting loco-regional toxicity
С	Loco-regional DLT
	defined as post-procedural effects (e.g. pain or skin effects) on the treated
	breast warranting dose adjustment or delay.

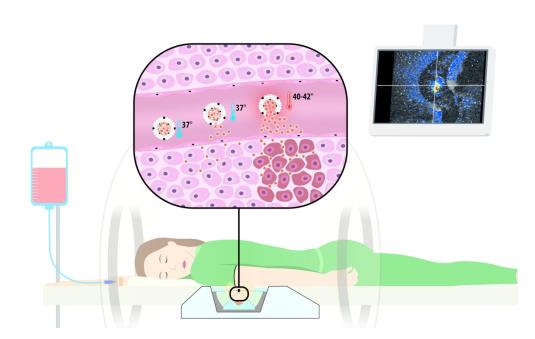


Figure 1 LTLD combined with MR-HIFU hyperthermia on the MR-HIFU breast system.

209x127mm (300 x 300 DPI)

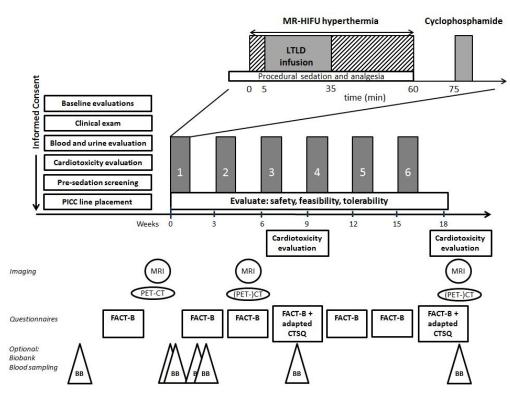
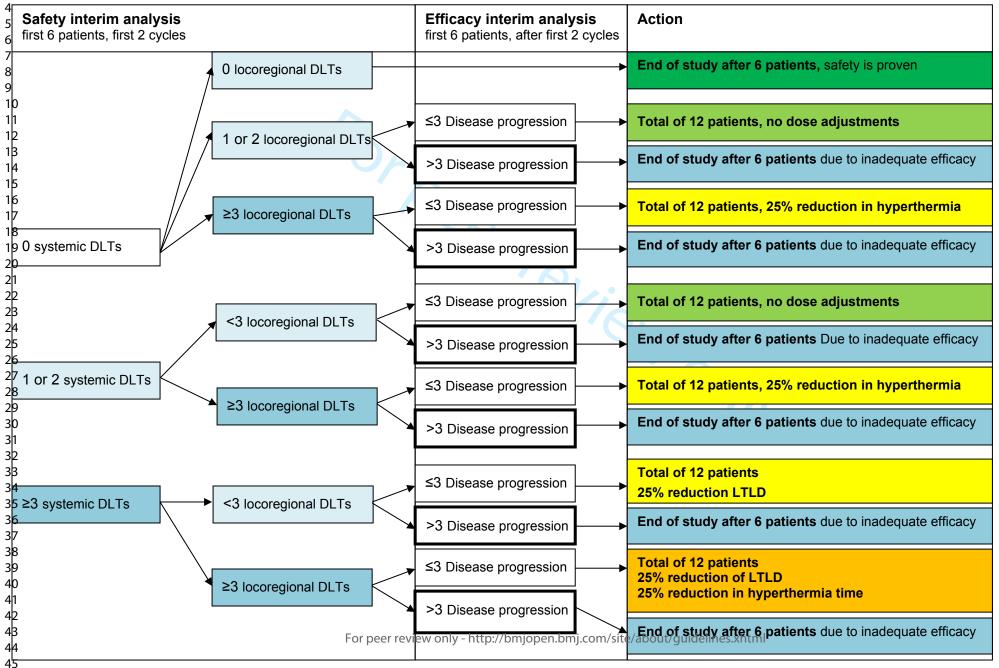


Figure 2 Study procedures

252x188mm (96 x 96 DPI)

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

 Supplementary materials:

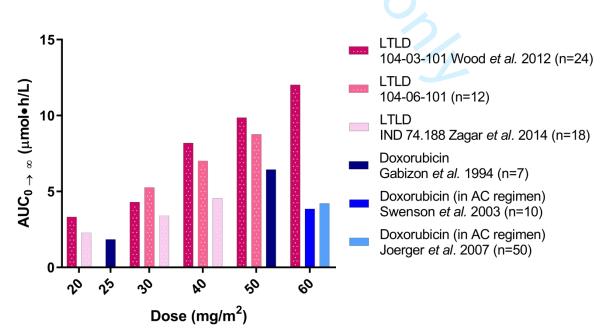

Supplement 1 Flow-chart interim analysis

Supplement 2 Comparison of AUC0-∞ of free doxorubicin for LTLD and conventional doxorubicin.

For peer review only

S2

Supplement 1 Flow-chart interim analysis


46

1 2

Supplement 2 Comparison of AUC0-∞ of free doxorubicin for LTLD and conventional doxorubicin.

In order to obtain a systemic dose of free doxorubicin (due to leakage of LTLD at 37 °C) that is as similar to conventional doxorubicin at 60 mg/m² (which is the standard of care treatment for the patients that will be enrolled in this study) as possible (to avoid undertreatment) we will start at the dose of 50 mg/m² LTLD, and we will apply dose adjustments when necessary. To compare the systemic dose of free doxorubicin after LTLD plus hyperthermia to the systemic dose of conventional doxorubicin, we summarized the pharmacokinetic data of the three studies with LTLD in which total plasma doxorubicin and the metabolite doxorubicinol were measured with a validated assay (studies 104-03-101 [1], 104-06-101 [2], and IND #174,188 [3]). In these studies the Area Under the Curve from t=0 to infinity (AUC0- ∞) of the metabolite doxorubicinol was measured. Note that in these studies LTLD was administered with hyperthermia or RFA treatment. Pharmacokinetic data on LTLD without heating are not available. The mean values were converted to the AUC0- ∞ of 'free doxorubicin' based on the mean ratios between doxorubicinol and doxorubicin found in three studies (0.3826, 0.47 and 0.514 respectively, with a mean of 0.456) [4-6]. We compared these AUC0- ∞ values of 'free doxorubicin' from the LTLD studies with the AUC0-∞ values of doxorubicin in pharmacokinetic studies of conventional doxorubicin [7-9]. Figure S2 displays the AUC0- ∞ of three studies with conventional doxorubicin (actual doxorubicin values are portrayed) and the AUC0-∞ of three studies with LTLD (calculated 'free doxorubicin' values are portrayed). The figure shows that the calculated 'free doxorubicin' after LTLD 50 mg/m² is at least equal to that of conventional doxorubicin at 60 mg/m².

Figure S2: Comparison of the AUC0- ∞ of "free" plasma doxorubicin for LTLD + heat (calculated based on doxorubicinol concentration) and conventional doxorubicin.

S3

Supplementary References

1. Wood BJ, Poon RT, Locklin JK, et al. Phase I study of heat-deployed liposomal doxorubicin during radiofrequency ablation for hepatic malignancies. *J Vasc Interv Radiol* 2012;23(2):248-55 e7.

2. Celsion Corporation. ThermoDox®, Lyso-Thermosensitive Liposomal Doxorubicin (LTLD), Investigator's Brochure. 2019.

3. Zagar TM, Vujaskovic Z, Formenti S, et al. Two phase I dose-escalation/pharmacokinetics studies of low temperature liposomal doxorubicin (LTLD) and mild local hyperthermia in heavily pretreated patients with local regionally recurrent breast cancer. *Int J Hyperthermia* 2014;30(5):285-94.

4. Jacquet JM, Bressolle F, Galtier M, et al. Doxorubicin and doxorubicinol: intra- and interindividual variations of pharmacokinetic parameters. *Cancer Chemother Pharmacol* 1990;27(3):219-25.

5. Joerger M, Huitema AD, Meenhorst PL, et al. Pharmacokinetics of low-dose doxorubicin and metabolites in patients with AIDS-related Kaposi sarcoma. *Cancer Chemother Pharmacol* 2005;55(5):488-96.

6. Callies S, de Alwis DP, Wright JG, et al. A population pharmacokinetic model for doxorubicin and doxorubicinol in the presence of a novel MDR modulator, zosuquidar trihydrochloride (LY335979). *Cancer Chemother Pharmacol* 2003;51(2):107-18.

7. Gabizon A, Catane R, Uziely B, et al. Prolonged circulation time and enhanced accumulation in malignant exudates of doxorubicin encapsulated in polyethylene-glycol coated liposomes. *Cancer Res* 1994;54(4):987-92.

8. Swenson CE, Bolcsak LE, Batist G, et al. Pharmacokinetics of doxorubicin administered i.v. as Myocet (TLC D-99; liposome-encapsulated doxorubicin citrate) compared with conventional doxorubicin when given in combination with cyclophosphamide in patients with metastatic breast cancer. *Anticancer Drugs* 2003;14(3):239-46.

9. Joerger M, Huitema ADR, Richel DJ, et al. Population pharmacokinetics and pharmacodynamics of doxorubicin and cyclophosphamide in breast cancer patients. *Clin Pharmacokinet* 2007;46(12):1051-68.

LTLD

LTLD

LTLD

Doxorubicin

.....

60

104-06-101 (n=12)

Gabizon *et al.* 1994 (n=7)

Doxorubicin (in AC regimen)

Swenson et al. 2003 (n=10)

Doxorubicin (in AC regimen) Joerger *et al.* 2007 (n=50)

104-03-101 Wood et al. 2012 (n=24)

IND 74.188 Zagar et al. 2014 (n=18)

BMJ Open

Study protocol of the i-GO study, a phase I feasibility study of Magnetic Resonance guided High-Intensity Focused Ultrasound-induced hyperthermia, Lyso-Thermosensitive Liposomal Doxorubicin and cyclophosphamide in de novo stage IV breast cancer patients.

Journal:	BMJ Open
Manuscript ID	bmjopen-2020-040162.R1
Article Type:	Protocol
Date Submitted by the Author:	21-Sep-2020
Complete List of Authors:	de Maar, Josanne; UMC Utrecht, Division of Imaging & Oncology Suelmann, Britt; University Medical Center Utrecht, Utrecht University, Division of Imaging & Oncology Braat, Manon; University Medical Center Utrecht, Utrecht University, Division of Imaging & Oncology van Diest, P.J.; University Medical Center Utrecht, Department of Pathology Vaessen, H.H.B.; Universitair Medisch Centrum Utrecht, Anesthesiology Witkamp, Arjen ; University Medical Center Utrecht, Utrecht University, Division of Imaging & Oncology Linn, S. C.; Nederlands Kanker Instituut - Antoni van Leeuwenhoek Ziekenhuis, Department of Molecular Pathology, C2; University Medical Center Utrecht, Utrecht University, Division of Imaging & Oncology Moonen, Chrit; University Medical Center Utrecht, Utrecht University, Division of Imaging & Oncology van der Wall, Elsken; University Medical Center Utrecht, Utrecht University, Division of Imaging & Oncology Deckers, Roel; University Medical Center Utrecht, Utrecht University, Division of Imaging & Oncology
Primary Subject Heading :	Oncology
Secondary Subject Heading:	Radiology and imaging
Keywords:	ONCOLOGY, Breast tumours < ONCOLOGY, Interventional radiology < RADIOLOGY & IMAGING, Magnetic resonance imaging < RADIOLOGY & IMAGING, Ultrasound < RADIOLOGY & IMAGING, CHEMOTHERAPY

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

reliez on

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2 3 4	1	Title			
5 6 7	2	Study protocol of the	i-GO study, a phase I fea	asibility study of Magnetic Resonance	
8 9 10	3	guided High-Intensity	y Focused Ultrasound-ind	duced hyperthermia, Lyso-	
11 12	4	Thermosensitive Liposomal Doxorubicin and cyclophosphamide in de novo stage IV			
13 14 15	5	breast cancer patients	S.		
16 17 18	6				
19 20	7	Authors			
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44	8	J.S. de Maar ¹ ((corresponding author)	J.S.deMaar@umcutrecht.nl	
	9	B.B.M. Suelmann ¹		B.B.M.Suelmann@umcutrecht.nl	
	10	M.N.G.J.A. Braat ¹		M.N.G.Braat-3@umcutrecht.nl	
	11	P.J. van Diest ¹		P.J.vanDiest@umcutrecht.nl	
	12	H.H.B. Vaessen ¹		H.H.B.Vaessen@umcutrecht.nl	
	13	A. J. Witkamp ¹		A.J.Witkamp@umcutrecht.nl	
	14	S. Linn ^{1, 2}		<u>s.linn@nki.nl</u>	
	15	C.T.W. Moonen ¹		<u>C.Moonen@umcutrecht.nl</u>	
	16	E. van der Wall ¹		E.vanderWall@umcutrecht.nl	
45 46 47	17	R. Deckers ¹		R.Deckers-2@umcutrecht.nl	
48 49	18				
50 51 52 53 54 55	19	Institutional address	5		
	20	1. Unive	ersity Medical Center Utr	echt, Utrecht University	
56 57	21	Heidelberglaar	n 100, 3584 CX		
58 59 60	22	Huispostnumn	ner Q 00.3.11, Postbus 85	5500,	

1			
2 3	1		
4	1		Utrecht, The Netherlands
5 6 7	2	2.	Netherlands Cancer Institute - Antoni van Leeuwenhoek hospital,
8 9 10	3		Plesmanlaan 121, 1066 CX
11 12	4		Postbus 90203, 1006 BE
13 14 15	5		Amsterdam, The Netherlands
16 17 18	6		
19 20	7		
21 22 23	8		
24 25 26	9		
27 28	10		
29 30 31	11		
32 33 34	12		
35 36 37	13		
38 39	14		
40 41			
42			
43			
44 45			
46			
47			
48 49			
50			
51 52			
53			
54			
55 56			
57			
58			
59 60			
50			

1 Abstract

2 Introduction

In breast cancer, local tumour control is thought to be optimized by administering higher local levels of cytotoxic chemotherapy, in particular doxorubicin. However, systemic administration of higher dosages of doxorubicin is hampered by its toxic side effects. In this study, we aim to increase doxorubicin deposition in the primary breast tumour without changing systemic doxorubicin concentration and thus without interfering with systemic efficacy and toxicity. This is to be achieved by combining lyso-thermosensitive liposomal doxorubicin (LTLD, ThermoDox®, Celsion Corporation, Lawrenceville, NJ, USA) with mild local hyperthermia, induced by Magnetic Resonance guided High Intensity Focused Ultrasound (MR-HIFU). When heated above 39.5 °C, LTLD releases a high concentration of doxorubicin intravascularly within seconds. In absence of hyperthermia, LTLD leads to a similar biodistribution and antitumour efficacy compared to conventional doxorubicin. Methods and analysis This is a single-arm phase I study in 12 chemotherapy-naïve patients with *de novo* stage IV HER2-negative breast cancer. Previous endocrine treatment is allowed. Study treatment consists of up to 6 cycles of LTLD at 21-day intervals, administered during MR-HIFU induced hyperthermia to the primary tumour. We will aim for 60 minutes of hyperthermia at 40-42 °C using a dedicated MR-HIFU breast system (Profound Medical, Mississauga, Canada). Afterwards, intravenous cyclophosphamide will be

BMJ Open

administered. Primary endpoints are safety, tolerability and feasibility. The secondary

3 4	1
5 6 7	2
8 9	3
10 11 12	4
13 14 15	5
16 17	6
18 19 20	7
21 22 23	8
24 25	9
26 27 28	10
29 30 31	11
32 33 34	12
35 36	13
37 38 39	14
40 41 42	15
43 44	16
45 46 47	17
48 49 50	18
51 52	19
53 54 55	20
56 57 58	21
59 60	22

endpoint is efficacy, assessed by radiological response. This approach could lead to optimal loco-regional control with less extensive or even no surgery, in *de novo* stage IV patients and in stage II/III patients allocated to receive neo-adjuvant chemotherapy. **Ethics and dissemination** This study has obtained ethical approval by the Medical Research Ethics Committee Utrecht (Protocol NL67422.041.18, METC number 18-702). Informed consent will be

- obtained from all patients before study participation. Results will be published in an
- academic peer-reviewed journal.
- **Trial registration number**
 - NCT03749850, EudraCT 2015-005582-23.
- Keywords
- High Intensity Focused Ultrasound,
- MR-HIFU
- ThermoDox
- Lyso-thermosensitive liposomal doxorubicin (LTLD)
- Temperature sensitive liposome
- Targeted drug delivery
- Hyperthermia
- Image-guided therapy

2 3 4	1	De novo stage IV breast cancer
5 6 7	2	Synchronous stage IV breast cancer
8 9	3	Metastatic breast cancer
10 11 12	4	
13 14	5	Strengths and limitations
15 16 17 18	6	• This first in human clinical trial investigates the combination of Lyso-
19 20	7	Thermosensitive Liposomal Doxorubicin and Magnetic Resonance guided High
21 22 23	8	Intensity Focused Ultrasound induced hyperthermia in breast cancer patients.
24 25	9	A dedicated MR-HIFU breast system with real-time MR temperature feedback
26 27 28	10	will be used for safe non-invasive local hyperthermia treatment of breast
29 30	11	tumours.
31 32 33	12	• Because the study population consists of patients with <i>de novo</i> stage IV breast
34 35 36	13	cancer, both local and systemic response to the treatment can be monitored.
37 38	14	 A survival benefit of treating the primary tumour in patients with metastatic
39 40 41	15	breast cancer has not been proven, therefore study participants will participate
42 43 44	16	altruistically in the interest of future patients.
44 45 46	17	This approach could lead to improved local control during palliative
47 48 49	18	chemotherapy in <i>de novo</i> stage IV breast cancer or neoadjuvant chemotherapy
50 51	19	in stage II/III disease, with less extensive or even no surgery.
52 53 54		
55 56		
57 58 59		
60		

Page 7 of 71

 BMJ Open

1	Introduction
2	Both neo-adjuvant and adjuvant chemotherapy of breast cancer aim to improve
3	survival by eradicating microscopic distant metastases. In addition, neo-adjuvant
4	treatment offers the opportunity to observe the biological behaviour of the primary
5	tumour and increase the likelihood of less extensive radical (breast conserving)
6	surgery. Given the fact that pathological complete response (pCR) is achieved at best
7	in 68% of patients [1], efforts should be focused on improving primary tumour
8	response. This may be achieved by increasing the dose of chemotherapy at the site of
9	the tumour. In pre-clinical data, a higher concentration of chemotherapy in the
10	tumour is correlated with increased tumour response, in particular for doxorubicin,
11	one of the most frequently applied cytostatics in breast cancer treatment [2-4].
12	Clinically this was confirmed by studies using other chemotherapeutics, i.e. 5-
13	fluorouracil and docetaxel. Higher tumour uptake of radio-active labelled 5-
14	fluorouracil or docetaxel chemotherapy on PET was shown to correlate respectively
15	with longer survival in patients with liver metastasis of colorectal carcinoma [5] and
16	with better tumour response in lung cancer patients [6]. In a study comparing
17	different dose schedules of the adjuvant AC regimen, the highest dosages (60mg/m ²
18	doxorubicin and 600mg/m ² cyclophosphamide) were most effective, and this is
19	currently the standard of care [7]. However, the administration of higher doses of
20	doxorubicin is hampered by its systemic side effects. A randomized study evaluating
21	even higher doxorubicin dosages (60mg/m^2 versus 75mg/m^2 and 90mg/m^2) did not
22	find a difference in disease-free or overall survival. However, the higher dose levels

Page 8 of 71

BMJ Open

> did lead to significantly more dose reductions and delays, which could explain why the efficacy did not increase further [8]. In the i-GO study we aim to increase doxorubicin levels in the primary tumour, without interfering with systemic efficacy and toxicity, by combining lyso-thermosensitive liposomal doxorubicin (LTLD, ThermoDox®; Celsion Corporation, Lawrenceville, NJ, USA) with mild local hyperthermia, induced by Magnetic Resonance guided High Intensity Focused Ultrasound (MR-HIFU). This will be followed by the intravenous administration of a second cytostatic agent, cyclophosphamide. The combined administration of doxorubicin and cyclophosphamide (AC) is a well-known regimen in the standard of care treatment in both the (neo-) adjuvant setting as in the treatment of metastatic breast cancer. The i-GO study will be a phase I feasibility study in stage IV breast cancer patients who present with distant metastases and a primary tumour in situ (de novo stage IV patients). Several studies have suggested that by obtaining loco-regional control in metastatic breast cancer, overall survival in advanced disease would be improved [9-11] However, randomized controlled trials have contradicted this [12, 13] A recent presentation at ASCO 2020 [14] confirmed that local treatment in addition to systemic therapy did not improve survival. As such, besides a personal preference of the patient and the possibility of preventing local morbidity, study participation will not have a benefit compared to the standard of care. However, based on pharmacokinetic studies (details outlined in Supplementary materials 1) we do expect at least an equally effective treatment. Study participants will participate altruistically

Page 9 of 71

1 2 3 BMJ Open

4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
12 13 14 15 16 17	
17	
18	
19 20	
20 21	
21	
22 23	
24	
25	
26	
27	
28	
29	
30	
31	
32 33	
33	
34	
35	
36	
37	
38	
39	
40 41	
41 42	
42 43	
43 44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

1	in the interest of future patients in the neoadjuvant setting. In the future, the
2	combination of LTLD, MR-HIFU hyperthermia, and cyclophosphamide may lead to
3	improved local control during neoadjuvant chemotherapy in stage II/III disease, with
4	less extensive or even no surgery.
5	Lyso-thermosensitive liposomal doxorubicin
6	LTLD is a temperature-sensitive liposomal encapsulation of doxorubicin. Doxorubicin
7	is a cytotoxic (chemotherapy) agent that is approved and frequently used for the
8	treatment of a wide range of cancers, including breast cancer. When heated to 40-42
9	°C, LTLD releases the encapsulated doxorubicin intravascularly within seconds [15-17].
10	(Figure 1.) In small animal tumour models, LTLD combined with hyperthermia results
11	in a 3-25 fold higher tumour concentration than conventional doxorubicin [2, 18-22]
12	and increased antitumour efficacy [2, 16, 18]. In the absence of hyperthermia,
13	doxorubicin leaks slowly from the liposome, and after two hours all of the
14	doxorubicin is released [15]. Furthermore, LTLD without hyperthermia leads to a
15	similar biodistribution [19, 20] and antitumour efficacy [16, 18] compared to
16	conventional doxorubicin.
17	Magnetic resonance-guided high intensity focused ultrasound
18	MR-HIFU is a truly non-invasive treatment modality, that combines magnetic
19	resonance imaging (MRI) and high intensity focused ultrasound to perform image-
20	guided thermal tissue ablation (55-70 °C) [23-25] or mild local hyperthermia (40-43
21	°C) [26-28]. Unlike other heating methods, using microwaves, radiofrequency or non-
22	focused ultracound HIEL allows for non-invasive localized beating of deep sected

22 focused ultrasound, HIFU allows for non-invasive localized heating of deep-seated

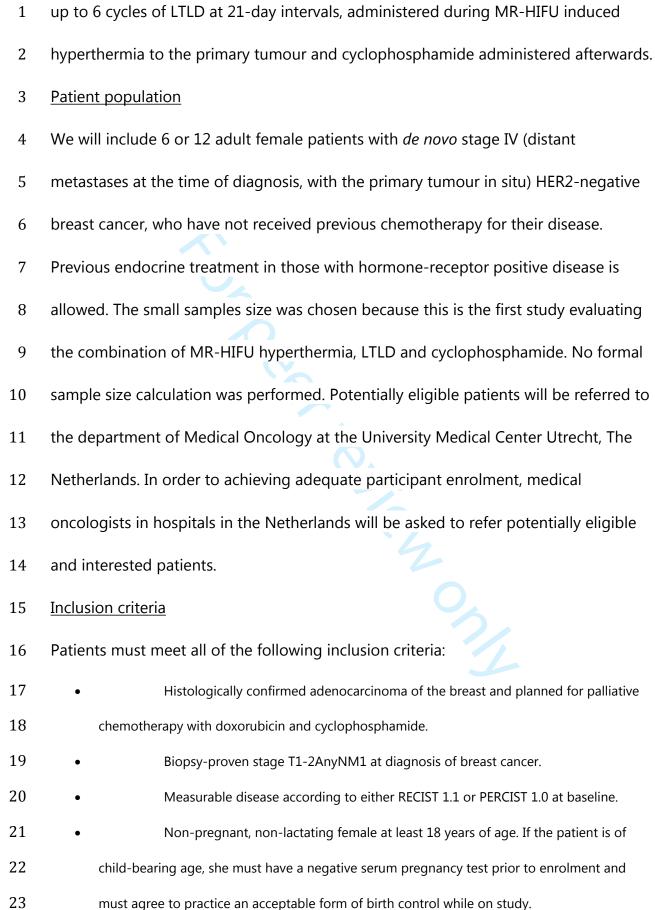
1	tumours [29]. In addition to treatment planning based on anatomical MRI, MR-
2	guidance can provide temperature feedback and control during hyperthermia
3	treatment, through real-time MR thermometry. For this study we will use a dedicated
4	MR-HIFU breast system: the Sonalleve MR-HIFU breast tumour therapy system
5	(hereafter referred to as 'MR-HIFU breast system', Profound Medical, Mississauga,
6	Canada), integrated with a clinical 1.5 Tesla MR scanner (Achieva, Philips Healthcare,
7	Best, The Netherlands). This system has a lateral sonication approach, which enables
8	specific heating of the breast tumour, while reducing the risk of heating the skin or
9	other organs to a minimum [30]. A phase I study in our hospital with MR-HIFU
10	ablation of breast tumours showed that the MR-HIFU breast system allows for safe,
11	accurate and precise thermal ablation [31, 32].
12	Previous clinical studies
13	This will be the first-in-human study to evaluate LTLD with MR-HIFU hyperthermia in
14	breast cancer patients. LTLD has been studied previously in combination with
15	superficial hyperthermia in patients with chest wall recurrences of breast cancer [33].
16	This phase I/II study showed that LTLD at 40 mg/m ² with superficial hyperthermia was
17	safe and the 48% overall response (14/29, 95% CI:30–66%) was promising in this
18	heavily pre-treated population. A large randomized phase III study in 701 patients
19	with hepatocellular carcinoma compared LTLD at 50 mg/m ² with radiofrequency
20	ablation (RFA) to RFA alone (the HEAT study) [34, 35]. In that study the primary
21	endpoint of 33% improvement in progression free survival was not met. However, a
22	nest becapelysis in the subgroup of 295 patients with califord lesions that were

22 post-hoc analysis in the subgroup of 285 patients with solitary lesions that were

Page 11 of 71

1 2

BMJ Open


3			
4			
5			
б			
7			
8			
9			
1	0		
1	1		
1			
1			
1	4		
1	5		
1	6		
1			
	8		
	9		
י ר	ע ה		
2	1		
2	1		
2	0 1 2 3 4		
2	3		
2	4		
2	5		
2	5 6		
2	7		
2	8		
2	8 9		
3	0		
_	1		
с ~	ו ר		
3	2		
3			
	4		
3	5		
3	6		
3	7		
	8		
	9		
1	0		
	1		
	2		
4			
	4		
	5		
4	6		
4	7		
4	8		
	9		
	0		
	1		
5	י ר		
כ ר	2		
5	3		
5	4		
5	5		
5	6		
5	7		
5	8		
5	9		
^	÷.,		

1	treated with \geq 45 min of RFA showed a significant overall survival benefit for the
2	combination treatment (Hazard Ratio for Overall Survival 0.63 (95% CI, 0.41–0.96; P <
3	0.05), in favour of RFA+LTLD with \geq 45 minutes heating). Systemic adverse events
4	increased in the RFA+LTLD arm (83% vs 35% with RFA alone) as expected, with a
5	similar profile to that of conventional doxorubicin [35].
6	Furthermore, the combination of LTLD and ultrasound guided HIFU hyperthermia has
7	been evaluated in a phase I proof-of-concept study in ten patients with incurable
8	primary or metastatic liver tumours (the TARDOX study) [36, 37]. Adverse events did
9	not differ from those associated with doxorubicin alone and in the group of patients
10	that underwent invasive thermometry sufficient mean tumour temperatures were
11	measured. In seven out of ten patients, the intratumoural doxorubicin concentration
12	doubled after HIFU, although a within-patient comparison was not possible for all
13	patients. We aim to take advantage of the same principle to treat the primary tumour
14	in patients presenting with metastatic breast cancer. Monitoring the treatment by MR
15	thermometry may further enhance safety, efficacy and feasibility. Using multiple
16	cycles of LTLD + MR-HIFU hyperthermia is expected to increase treatment efficacy
17	and mimics the standard of care treatment.
18	Methods and analysis

This single-arm phase I feasibility study aims to determine the safety, tolerability and
 feasibility of the combination of LTLD, MR-HIFU induced mild local hyperthermia, and
 cyclophosphamide, for the enhanced local treatment of the primary tumour in
 patients presenting with metastatic breast cancer. All eligible participants will receive

4	
5	
6	
5 6 7 8 9 10	
/	
ð	
9	
10	
11	
12	
13	
14	
11 12 13 14 15	
14 15 16 17 18 19	
17	
18	
19	
20	
20 21	
∠ I วา	
22	
23	
24	
20 21 22 23 24 25 26 27 28 29 30	
26	
27	
28	
29	
31	
32	
33	
34 35	
36	
36 37	
2/	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
55	
57	
57	
58 59	
60	

1 2 3

BMJ Open

2				
3 4	1	• The tumour is located within the reach of the HIFU beam (based on pre-treatment		
5 6	2	dynamic contrast-enhanced (DCE-) MRI findings).		
7 8	3	• The distance of the tumour from the skin, nipple, and pectoral wall is at least 1.0 cm		
9 10	4	(based on pre-treatment DCE-MRI findings).		
11 12 13	5	• The target breast is expected to fit in the cup of the MR-HIFU breast system (based		
14 15	6	on pre-treatment MRI findings).		
16 17	7	• The patient is able to provide written informed consent and willing to comply with		
18 19	8	protocol requirements.		
20 21	9	Exclusion criteria		
22 23				
24 25	10	Patients will be excluded if any of the following conditions are observed:		
26 27	11	HER2-positive disease or classic invasive lobular carcinoma (ILC).		
28 29	12	A treatment plan with curative intent is available.		
30 31	13	Any prior chemotherapy treatment for invasive breast cancer (previous anti-		
32 33	14	hormonal therapy is allowed).		
34 35 36	15	Any prior therapy with anthracyclines.		
37 38	16	• The patient weighs \geq 90 kg (restriction of the HIFU table top).		
39 40	17	• Any concomitant malignancy or previous malignancy in the last 5 years, except		
41 42	18	basal cell or squamous cell cancer of the skin or in situ carcinoma of the cervix. Subjects with a		
43 44	19	prior contralateral breast malignancy more than 5 years ago can be included if they did not		
45 46 47	20	receive any chemotherapy.		
48 49	21	• Any previous malignancy in the unilateral breast (even if more than 5 years ago)		
50 51	22	• Prior sensitivity (including rash, dyspnoea, wheezing, urticarial, or other symptoms)		
52 53	23	attributed to any liposomal-encapsulated drug.		
54 55	24	Baseline laboratory values:		
56 57 58	25	Absolute Neutrophil Count (ANC) < 1.5 x 10^9/L		
58 59 60	26	Platelets < 75 x 10^9/L		
50				

1 2				
2 3 4	1		Haemoglobin	< 5.6 mmol/L (transfusion is allowed)
5 6	2		Total Bilirubin	> 1.5 times upper limit of normal
7 8	3		Alanine Transaminase (ALAT) and Aspa	artate Transaminase (ASAT)
9 10 11	4			> 2.5 times upper limit of normal
12 13	5			>5 times upper limit of normal in case of liver
14 15	6			metastases
16 17	7		Estimated Glomerular Filtration Rate <	30 ml/min/1.73m ²
18 19	8	•	World Health Organization	Performance Status (WHO-PS) >2.
20 21 22	9	•	Left Ventricular Ejection Fra	action <50% (validated by baseline scan).
23 24	10	•	History of: acute coronary s	syndrome in the last year, cerebral vascular accident in
25 26	11		the last year, abnormal cardiac stress t	esting within the last six months, symptomatic coronary
27 28	12		artery disease, uncontrolled hypertens	ion or cardiomyopathy, cardiac valvular surgery or
29 30 31	13		open-heart surgery in the last year or	known structural heart disease.
32 33	14	•	Any condition which may ir	nterfere with the hyperthermia portion of the trial such
34 35	15		as: functioning cardiac pacemaker; me	tal plates, rods or prosthesis of the chest wall, breast
36 37	16		prosthesis in the treated breast, severe	e numbness and/or tingling of the chest wall or breast,
38 39 40	17		skin grafts and/or flaps on the breast o	or chest wall, scar tissue or surgical clips in the HIFU
40 41 42	18		beam path.	
43 44	19	•	Active infection.	
45 46	20	•	Body temperature > 38.0 d	egrees Celsius on the day of a MR-HIFU treatment.
47 48 40	21	•	Concurrent use of any of th	ne following prohibited medications within a reasonable
49 50 51	22		wash-out time: protease inhibitors, cyc	closporine, carbamazepine, phenytoin, valproic acid,
52 53	23		paclitaxel, trastuzumab and other lipos	somal drugs (AbelectTM, Ambisome™, NyotranTM, etc.)
54 55	24		or lipid-complexed drugs. Caution will	be exercised with medications, dietary components and
56 57	25		herbal supplements that affect CYP2A	4, CYP2D6 or P-gp or have been described to interact
 ⁵⁸ ⁵⁹ 26 with doxorubicin in other ways. 60 				

Page 15 of 71

1

BMJ Open

2 3	1	• Contraindications to MR imaging (e.g., pacemaker in situ, severe claustrophobia,
4 5		
6 7	2	metal implants incompatible with the MRI-scan, body size incompatible with MR bore).
8 9	3	 Contraindications to gadolinium-based contrast agents and the tumour is not
10 11 12 13 14 15 16 17	4	sufficiently visible on MRI without contrast (including prior allergic reaction to gadolinium-
	5	based contrast agent, and/or renal failure).
	6	 Contraindications to sedation and analgesia with Propofol and Remifentanil,
	7	including history of Chronic Obstructive Pulmonary Disease (COPD) that results in the inability
18 19	8	to perform a physical activity corresponding with a Metabolic Equivalent (MET(57)) of 4;
20 21	9	dependence on artificial ventilation at home; sleep apnoea or an American Society of
22 23 24	10	Anaesthesiologists (ASA) classification \geq 4.
24 25 26 27 28 29 30 31 32 33 34 35	11	Inability to lie in prone position.
	12	A medical or psychiatric condition or other circumstances which would significantly
	13	decrease the chances of understanding the informed consent process, obtaining reliable data,
	14	achieving study objectives, or completing the study treatment and/or examinations.
	15	Endpoints
36 37	16	Primary endpoints are safety, tolerability and feasibility. These will be evaluated by
38 39	10	Thinary endpoints are safety, tolerability and leasibility. These will be evaluated by
40 41	17	the following assessments.
42 43 44 45	18	Safety and tolerability:
	19	Incidence and severity of Adverse Events and Severe Adverse Events
46 47 48	20	Incidence of Dose Limiting Toxicity (DLT, systemic and loco-regional)
49 50 51	21	 Necessity for dose adjustments, delay and early cessation
52 53	22	Incidence and severity of post-procedural pain
54 55 56	23	Patient reported tolerability (questionnaires)
57 58 59		
60		

1 2

3 4	1	Cardiotoxicity: Left Ventricular Ejection Fraction measurement and				
5 6 7	2	electrocardiogram abnormalities.				
8 9	3	Feasibility:				
10 11 12	4	• The number of cycles in which hyperthermia treatment was sufficient: at least				
13 14 15	5	30 minutes at the target temperature of 40-42 °C.				
16 17	6	• The number of completed cycles with MR-HIFU induced hyperthermia, LTLD				
18 19 20	7	and cyclophosphamide				
21 22 23	8	Quality of MR thermometry data acquired during the MR-HIFU treatment				
24 25	9	 Spatiotemporal temperature distribution in the tumour 				
26 27 28	10	 Total duration of the study procedures on a treatment day. 				
29 30 31	11	Secondary endpoints consist of efficacy parameters:				
32 33	12	 Assessment of distant radiological objective response rates 				
34 35 36	13	 Assessment of local radiological objective response rates 				
37 38 39	14	Study procedures				
40 41	15	The study design (Figure 2) was based on the AC regimen, a well-known				
42 43 44	16	chemotherapeutic regimen that consists of doxorubicin and cyclophosphamide. This				
45 46 47	17	regimen is used in the (neo-)adjuvant setting as well as in the first-line chemotherapy				
48 49	18	treatment of metastatic breast cancer. Standard of care for our study population				
50 51 52	19	consists of 6 cycles at 21-days intervals. In this study we will replace doxorubicin in				
53 54	20	this regimen with the combination of LTLD and MR-HIFU induced hyperthermia.				
55 56 57	21	All participants will receive procedural sedation and analgesia with propofol and				
58 59 60	22	remifentanil to limit patient movement during the treatment and to establish a				

Page 17 of 71

 BMJ Open

	1	regular breathing pattern that will facilitate respiratory gated MR thermometry [38].
	2	To prevent any hypersensitivity reactions to LTLD, the participants will also receive a
`	3	premedication regimen of steroids, H1- and H2- histamine antagonists. Anti-emetics
) <u>2</u>	4	will be administered according to standard-of-care hospital guidelines for the AC
3 1 5	5	regimen.
5	6	MR-HIFU hyperthermia will be performed on the MR-HIFU breast system, with the
3))	7	patient in prone position. We will aim for 60 minutes of hyperthermia at 40-42 °C to
2 2 8	8	the breast tumour, in four blocks of 15 minutes. After each block the MR
- - -	9	thermometry is restarted to minimize the possible influence of magnetic field drift or
) 7 }	10	patient displacement. When MR thermometry indicates that the target temperature is
))	11	reached, 50 mg/m ² of LTLD will be administered intravenously over 30 minutes, via a
<u>2</u> 3	12	peripherally inserted central catheter (PICC), while the patient is on the MR-HIFU
+ 5 5	13	breast system. Temperature will be monitored by respiratory navigator-gated MR
7 3 9	14	thermometry, using the proton resonance frequency shift method [39, 40]. In case the
)	15	target temperature is not reached, conventional doxorubicin (60 mg/m ²) will be
<u>2</u> 3 1	16	administered instead of LTLD. Shortly after MR-HIFU, 600 mg/m ² of
5	17	cyclophosphamide will be administered intravenously according to standard of care
3	18	in the AC regimen.
) <u>)</u>	19	Participants will receive up to six treatment cycles. Feasibility will be evaluated after
3 1 5	20	each MR-HIFU treatment and during the course of the cycles. Safety and tolerability
5	21	will be assessed three hours after MR-HIFU treatment, during telephone contact on
5))	22	day +1 and +7 and during a hospital visit on day +14 and +21 of each cycle, by

1	monitoring of adverse events, laboratory measurements and evaluation of pain.
2	Cardiotoxicity evaluations (LVEF and ECG) will be performed at baseline, after cycle 3
3	and after cycle 6. The participants will be asked to fill out the Dutch version of the
4	Functional Assessment of Cancer Therapy – Breast (FACT-B, version 4, FACIT)[41] at
5	baseline and after each treatment cycle, combined with a selection of questions
6	adapted from the Dutch version of the Cancer Therapy Satisfaction Questionnaire
7	(CTSQ, Pfizer 2007, modified with permission from Pfizer)[42, 43] in cycles 3 and 6.
8	Before starting the next cycle, any toxicities will be evaluated and if necessary, dose
9	reductions will be made. DLT will be categorized in systemic or loco-regional toxicity
10	(Table 1). Thus, we aim to distinguish systemic chemotherapy effects from local
11	effects of MR-HIFU hyperthermia and/or the high local doxorubicin concentration.
12	Planned dose adjustments for these categories have been established
13	(Supplementary materials 2). In case of a systemic DLT the LTLD dosage will be
14	decreased, while for loco-regional DLT the duration of hyperthermia will be
15	decreased. Cyclophosphamide dose will not be reduced. No dose increases will be
16	performed. Depending on the severity and nature of the toxicity, study treatment can
17	be delayed or even ceased. In case of solely loco-regional DLT, technical issues or
18	other feasibility issues that restrict the use of MR-HIFU treatment, the participant will
19	receive the standard of care AC regimen. If hyperthermia is insufficient (i.e. the target
20	
20	temperature of 40-42 °C is not reached or was only maintained for less than 30
20	temperature of 40-42 °C is not reached or was only maintained for less than 30 minutes) in two separate cycles, the treatment is not considered feasible for that

Page 19 of 71

BMJ Open

1	For the secondary endpoint of efficacy, MRI of the breast will be performed using a 3
2	Tesla MRI scanner with a dedicated breast coil, at baseline and after cycle 2 and 6 to
3	determine local radiological objective response. In addition, MRI of the breast will be
4	performed during each MR-HIFU treatment. However, the receiver coil in the MR-
5	HIFU breast system is not suited for clinical imaging. In case a complete radiological
6	response of the breast tumour is obtained after less than 6 cycles, the patient will
7	continue with the conventional AC regimen. ¹⁸ F -fluorodeoxyglucose (FDG-) Positron
8	Emission Tomography combined with Computed Tomography (PET/CT) of the thorax
9	and abdomen will be performed at baseline and CT or PET/CT after cycle 2 and cycle
10	6, to determine the distant objective response according to RECIST 1.1 [44] or
11	PERCIST 1.0 [45]. PET/CT will be performed for response evaluation in patients with
12	only PERCIST-measurable disease, such as patients with only bone metastases. If a
13	patient shows distant progression of disease, study participation will end and the
14	patient will be treated according to the standard of care. Additional specific reasons
15	for study withdrawal are dose limiting toxicity that warrants a delay in treatment
16	administration for longer than 14 days or a recurrence of dose limiting toxicity after
17	dose reduction of LTLD (Supplementary materials 2).
18	The participants will be followed for adverse events from the time of signing
19	informed consent until the end of study visit after six cycles of chemotherapy.
20	Afterwards patients will receive standard of care treatment.
21	If the patient consents to the biobank study, additional blood samples will be taken

22 from the PICC-line at seven time points (Figure 2) when the patient is already at the

2 3 4	1	hospital. Th
5 6 7	2	research. M
8 9	3	were obtain
10 11 12	4	will ask for o
13 14 15	5	<u>Concomitar</u>
16 17	6	All supporti
18 19 20	7	including tr
21 22 23	8	antiemetics
24 25	9	Certain con
26 27 28	10	nutritions a
29 30 31	11	use creams,
32 33	12	avoid additi
34 35 36	13	treatments
37 38 39	14	period (e.g.
40 41	15	increased re
42 43 44	16	events.
45 46 47	17	Interim ana
48 49	18	An interim a
50 51 52	19	after six par
53 54 55	20	first six pati
56 57	21	deemed ina
58 59 60	22	continue un

1 2

ese blood samples will be collected in the UMC Utrecht Biobank for future

- oreover, in case tissue samples of the breast tumour and/or metastases
- ed in standard care before inclusion or following study participation, we
- consent to perform additional analyses on these samples.
- nt care and prohibited interventions
- ive measures consistent with optimal medical care will be employed,
- ansfusion of blood and blood products, and treatment with antibiotics,
- antidiarrheals, and analgesics, as appropriate.
- comitant medications, a number of herbal supplements, food stuffs and
- re restricted during the study (Supplementary materials 3). Patients cannot
- ointments or lotions on the breast on the MR-HIFU treatment day, to
- onal risks during the procedure. Patients cannot use methods or
- that increase the body temperature or skin temperature during the study
- sauna, hot-water baths, warmth massages), because this could result in
- elease of doxorubicin in the warmed areas, possibly causing extra adverse
- lysis
- analysis of safety and efficacy will determine whether accrual will continue ticipants (Supplementary materials 4). Safety will be evaluated once the ents complete two treatment cycles. If safety is sufficiently proven or is dequate, the trial will end after six participants. Otherwise accrual will itil twelve patients have been treated, if necessary after dose adjustments.

Page 21 of 71

1 2

BMJ Open

3	
4	
5	
6	
7	
, 8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
50 51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

1	All patients who have signed informed consent will be evaluated for the primary
2	endpoints of safety, feasibility and tolerability. Patients who have been withdrawn
3	from the study because MR-HIFU induced hyperthermia was insufficient in two
, <u>4</u>	separate treatment cycles and who did not experience a DLT, will be replaced by
5 5	another participant for in the interim safety evaluation. If this happens to four
6	patients, the study will be terminated, because of insufficient feasibility.
,) 7	Systemic efficacy will be evaluated once the first six patients have received the CT
8	scan after cycle 2. If four or more of the first six participants show distant disease
9	progression at that time the trial will be stopped, as this suggests that efficacy against
, 10	disease outside the heated treatment field is inadequate. This early stopping rule was
) 11	based on a phase III trial with liposomal doxorubicin in metastatic breast cancer [46]
12	where 77.5% of the subjects were free of disease progression at two months post-
13	randomization (the 95% confidence interval of 2/6 patients does not contain 0.775).
, 3 14	An independent, qualified monitor will monitor the study procedures. An external
15	Data Safety Monitoring Board (DSMB) will review accumulating safety data at regular
16	intervals throughout the study, perform the interim safety and efficacy analyses and
5 5 17	monitor trial data integrity (DSMB charter in Supplementary materials 5).
18	Data analysis
19	Descriptive statistics will be used to describe the incidence and severity of adverse
20	events (National Cancer Institute Common Terminology Criteria for Adverse Events
21	version 5.0), the patient reported outcomes in the questionnaires and feasibility
3) 22	parameters including the number of completed study treatment cycles, duration of

3 4	1
4 5 6 7	2
8 9	3
10 11 12	4
13 14	5
15 16 17	6
18 19 20	7
21 22	8
23 24 25	9
26 27 28	10
29 30	11
31 32 33	12
34 35 36	13
37 38	14
39 40 41	15
42 43 44	16
45 46	17
47 48 49	18
50 51 52	19
53 54	20
55 56 57	21
58 59	22
60	

1 2

> study procedures and spatiotemporal temperature distribution during MR-HIFU treatment. For the secondary endpoint of efficacy, distant and local radiological objective response rates (RECIST 1.1) will be described.

5 Discussion

This is the first clinical trial that investigates the combination of LTLD and MR-HIFU
induced hyperthermia in breast cancer. In a small number of patients we will focus
primarily on safety, tolerability and feasibility of this procedure. We hypothesize that
the combination of LTLD and MR-HIFU hyperthermia leads to improved treatment of
the primary tumour, without changing the systemic doxorubicin concentration and
thus without interfering with systemic efficacy and toxicity. A future randomized
study with a control group receiving the standard of care AC regimen would be
needed to prove this. Including patients with *de novo* stage IV breast cancer provides
the unique possibility to monitor both local and systemic disease simultaneously.
While in this setting a survival benefit of treating the primary tumour has not been
proven, the study treatment (if proven safe and feasible) could in the future improve
outcomes in the neoadjuvant setting.
We aim to replace doxorubicin by LTLD plus MR-HIFU hyperthermia in all six cycles of

19 the AC regimen, because we expect this to maximize the local treatment effect. In

20 each cycle, the feasibility to achieve tumour hyperthermia at 40-42 °C for 30 minutes

- 21 will be verified with MR thermometry. If hyperthermia treatment is repeatedly
- 22 insufficient, or if (after any number of cycles) radiological complete response is

BMJ Open

1	already obtained, patients will continue on the standard-of-care AC regimen. The
2	number of MR-HIFU hyperthermia plus LTLD cycles that our patients are willing and
3	able to complete could be less than six, which would be an important feasibility
4	finding.
5	Our goal is to maintain an equivalent systemic efficacy compared to the standard-of-
6	care AC regimen using 60 mg/m ² conventional doxorubicin. Pharmacokinetic studies
7	showed that the area-under the curve (AUC0- ∞) of free/unencapsulated doxorubicin
8	in plasma of patients receiving LTLD 50 mg/m ² with local hyperthermia or RFA [33,
9	47, 48] was higher than the AUC0- ∞ of conventional doxorubicin 60 mg/m ² [49-51].
10	To be able to compare the AUCs we converted the AUC0- ∞ of the metabolite
11	doxorubicinol that was measured in the LTLD studies to the AUC0- ∞ of doxorubicin
12	[52-54] (Additional explanation in Supplementary materials 1). The 50 mg/m ² LTLD
13	dose was also recommended for and well-tolerated in the phase III trial in
14	combination with RFA [35]. Due to local toxicity, the recommended dose for LTLD
15	combined with local superficial hyperthermia for chest wall recurrences was
16	decreased to 40 mg/m ² [47]. In our study local (skin) toxicity is not expected because
17	a margin of at least 1.0 cm is preserved from the tumour to the skin, therefore the
18	LTLD dose of 50 mg/m ² was chosen. Real time MR thermometry and the lateral
19	configuration of the MR-HIFU breast system will help mitigate this risk. If however
20	local DLT do occur, the duration of hyperthermia will be decreased while maintaining
21	the LTLD dosage to avoid decreasing systemic efficacy. We will only decrease LTLD
22	dosage in case of systemic DLT. If despite these measures, systemic efficacy seems

inadequate, the trial will be halted prematurely based on the interim analysis for
 efficacy.

Because this is a small phase I feasibility study, the results will only provide a rough indication of local efficacy based on radiological response. To diminish the burden on participants, we will not perform tissue biopsies or breast surgery and therefore cannot describe the number of pathological complete responses or measure the concentration of doxorubicin in the tumour. Proof-of-concept that hyperthermia increases the tumour doxorubicin concentration has already been established in the Tardox study, although doxorubicin concentrations were not compared between heated and unheated tumours. With this phase I clinical trial, we aim to show that LTLD combined with MR-HIFU induced hyperthermia on a dedicated MR-HIFU breast system can safely replace doxorubicin in the AC regimen. We hypothesize that this combination will result in improved response of the primary tumour without compromising the systemic efficacy on metastatic sites or increasing systemic toxicity. If feasibility and tolerability are adequate, this approach could in the future lead to optimal loco-regional control with less extensive or even no surgery, in stage II or III breast cancer patients allocated to receive neo-adjuvant chemotherapy. Finally, it could also be suitable for other doxorubicin sensitive tumour types that benefit from enhanced local treatment, such as soft tissue sarcoma. Word Count

2

3

1 2 **BMJ** Open

3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16 17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31 32	
32 33	
33 34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48 49	
49 50	
50	
52	
53	
54	
55	
56	
57	
58	
59	
60	

า

4351 words

4 This study has obtained ethical approval by the Medical Research Ethics Committee 5 of the UMC Utrecht (METC Utrecht) on May 29th 2019 (Protocol NL67422.041.18, 6 METC number 18-702). This paper is based on protocol version 6, dated August 28th 7 2020. Substantial protocol amendments will also be evaluated by METC Utrecht and 8 communicated to relevant parties by the investigators. Informed consent will be 9 obtained from all patients by an authorized representative of the Principal 10 Investigator before study participation (Informed consent form in Supplementary 11 materials 6). The results of this study will be disseminated by publication in an academic peer-reviewed journal. 12

13 **Roles and responsibilities**

This is an investigator-driven single-centre clinical trial, with the UMC Utrecht as 14 15 sponsor and trial site. The UMC Utrecht is responsible for the study design, data 16 collection, data management, analysis, interpretation of data, writing and submission 17 of the report for publication. The Principal Investigator will rapport (serious) adverse 18 (device) events to the METC Utrecht, to the Central Committee on Research Involving 19 Human Subjects (CCMO), and to Celsion Corporation and Profound Medical 20 according to national guidelines. UMC Utrecht has liability insurance which provides 21 cover for damage to research subjects through injury or death caused by the study.

Profound Medical (manufacturer of the investigational medical device) will provide technical support during the trial and have provided input on the study protocol. Both manufacturers will be allowed to review and comment on draft publications prior to submission. The investigators at the UMC Utrecht will have ultimate authority over the publication. An external Data Safety Monitoring Board (two clinicians and one statistician) has been established and an independent qualified monitor (Julius Clinical) has been appointed to perform intensive monitoring. **Data management** The handling of personal data will comply with the General Data Protection Regulation (GDPR, in Dutch known as AVG). After informed consent is signed, each patient receives a unique subject number. A subject identification code list will be used to link the data to the subject. The key to this pseudonymization code will be available only to the investigators and employees of the research team. Research data that are relevant for the study will be collected by the investigators on electronical Case Report Forms (eCRFs) in Research Online, in compliance with the Good Clinical Practice (GCP) guidelines for electronic data collection. An audit trail will be available. The completed eCRFs will be reviewed, signed and dated by the Principal Investigator or Co-investigator. Scans, results and registrations of medical imaging will be collected on the Research Imaging Architecture (RIA), which is secured by password-protection and stores pseudonymized images. Data from the MR-HIFU device such as log files and MR images obtained during the MR-HIFU treatment that cannot be stored on the Research Imaging Architecture will be stored

BMJ Open

r	
2	
3	
4	
5	
ر د	
5 6 7 8	
7	
8	
0	
9	
9 10	
11	
12	
13	
14	
15	
16	
16 17	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
24	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
50 59	
60	

1	in a secured UMC Utrecht bulk-storage folder. Celsion and Profound will not receive
2	any patient's identifiable (personal) information. UMC Utrecht shall provide
3	pseudonymized data regarding the occurrence and severity of adverse device effects
4	to Profound Medical and regarding the occurrence and severity of adverse events to
5	Celsion Corporation. This cannot be refused by the patient and is obligatory for study
6	participation. If the patient consents (optional), additional pseudonymized data on
7	the study treatment, will also be provided to Profound Medical and Celsion
8	Corporation. Research data will be stored for 15 years after the end of study.
9	Biomaterial is stored in the Central biobank (blood) or at the UMC Utrecht pathology
10	department (tissue samples).
11	Patient and public involvement
12	Patient experiences have been the starting point for the grant proposal to the Dutch
12	r dient experiences have been the starting point for the grant proposal to the buten
13	Cancer Foundation and patients were involved in the design of the study and the
13	Cancer Foundation and patients were involved in the design of the study and the
13 14	Cancer Foundation and patients were involved in the design of the study and the choice of outcome measures. Patients will not be actively involved in recruitment or
13 14 15	Cancer Foundation and patients were involved in the design of the study and the choice of outcome measures. Patients will not be actively involved in recruitment or dissemination of study results, however information regarding the study can be
13 14 15 16	Cancer Foundation and patients were involved in the design of the study and the choice of outcome measures. Patients will not be actively involved in recruitment or dissemination of study results, however information regarding the study can be found by individual patients on the UMC Utrecht website and clinicaltrials.gov.
13 14 15 16 17	Cancer Foundation and patients were involved in the design of the study and the choice of outcome measures. Patients will not be actively involved in recruitment or dissemination of study results, however information regarding the study can be found by individual patients on the UMC Utrecht website and clinicaltrials.gov.
13 14 15 16 17 18	Cancer Foundation and patients were involved in the design of the study and the choice of outcome measures. Patients will not be actively involved in recruitment or dissemination of study results, however information regarding the study can be found by individual patients on the UMC Utrecht website and clinicaltrials.gov. Trial status Patient recruitment was initiated on March 10 th 2020. On the submission date of this
13 14 15 16 17 18 19	Cancer Foundation and patients were involved in the design of the study and the choice of outcome measures. Patients will not be actively involved in recruitment or dissemination of study results, however information regarding the study can be found by individual patients on the UMC Utrecht website and clinicaltrials.gov. Trial status Patient recruitment was initiated on March 10 th 2020. On the submission date of this article, no patients had been enrolled yet. Due to the COVID-19 outbreak, the study

JdM, BS, MB, SL, CM, EW and RD were all involved in the design of the study and in

3	
4	
5	
6 7	
8	
9	
9 10	
10	
11	
12	
13	
14	
15	
16	
17	
12 13 14 15 16 17 18 19	
19	
20	
21	
20 21 22 23 24	
22	
22	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
40 41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
57	
59	
60	

22

medical device.

1 2

1

2 writing the manuscript. PvD, HV and AW critically reviewed the design of the study providing additional 3 comments and suggestions. 4 5 **Funding statement** 6 This work was supported by the Dutch Cancer Foundation (project no. UU 2015-7 7891), Center for Translational Molecular Medicine (CTMM) in the projects 8 VOLTAVALO (project no. 09P-106) and HIFU-chem (project no. 03O-301) and by 9 "Friends of the UMC Utrecht". 10 **Acknowledgements** 11 We thank Roelien Kronemeijer of the trial bureau medical oncology and Heleen Klein Wolterink-Blok, research nurse medical oncology, for their work leading up to the 12 Medical Research Ethics Committee approval of the study and the start of patient 13 14 recruitment. 15 We thank Prof. Gert Storm for his work in the preceding HIFU-CHEM project that has 16 contributed to the current project. 17 We thank Christiaan van Kesteren for his help with the design of Figure 1. 18 We thank Celsion Corporation for their support relating the use and safety of 19 ThermoDox and their input during the design of the study. 20 Finally, we thank Profound Medical for their support relating the use and safety of the 21 MR-HIFU breast system in their role as legal manufacturer of this investigational

2 3 4	1	Competing interests statement		
5 6 7	2	The authors have no competing interest to declare.		
8 9	3	3 List of abbreviations		
10 11 12	4	AC	Doxorubicin (A) and cyclophosphamide (C)	
13 14	5	AF	Alkaline Phosphatase	
15 16 17	6	ALAT	Alanine Transaminase	
18 19 20	7	ANC	Absolute Neutrophil Count	
21 22 23	8	ASAT	Aspartate Transaminase	
23 24 25	9	AUC0-∞	Area Under the Curve 0-infinity	
26 27 28	10	ССМО	Central Committee on Research Involving Human Subjects	
29 30	11	CTSQ	Cancer Therapy Satisfaction Questionnaire	
31 32 33	12	DCE	Dynamic contrast-enhanced	
34 35 36	13	DLT	Dose Limiting Toxicity	
37 38	14	DSMB	Data Safety Monitoring Board	
39 40 41	15	eCRF	electronical Case Report Forms	
42 43 44	16	FACT-B	Functional Assessment of Cancer Therapy – Breast	
45 46	17	GCP	Good Clinical Practice	
47 48 49	18	GDPR	General Data Protection Regulation	
50 51 52	19	LTLD	Lyso-Thermosensitive Liposomal Doxorubicin	
53 54	20	MR-HIFU	Magnetic Resonance guided High Intensity Focused Ultrasound	
55 56 57 58 59 60	21	MRI	Magnetic Resonance Imaging	

3 4	1
5 6 7	2
8 9	3
10 11 12	4
13 14 15	5
16 17	6
18 19 20	
21 22	
23 24 25	
26 27	
28 29	
30 31 32	
33 34	
35 36	
37 38 39	
40 41	
42 43	
44 45 46	
40 47 48	
49 50	
51 52 53	
55 54 55	
56 57	
58 59 60	

L	(FDG-) PET/CT	¹⁸ F-Fluorodeoxyglucose Positron Emission	Tomography
---	---------------	--	------------

- combined with Computed Tomography
- PICC Peripherally inserted central catheter
- RFA Radiofrequency ablation
- .rt RIA

1		
2		
3 4	1	References
4 5		
6	2	1. van Ramshorst MS, van der Voort A, van Werkhoven ED, et al. Neoadjuvant
7	3	chemotherapy with or without anthracyclines in the presence of dual HER2 blockade for
8	4	HER2-positive breast cancer (TRAIN-2): a multicentre, open-label, randomised, phase 3
9	5	trial. <i>The Lancet Oncology</i> 2018;19(12):1630-40.
10	6	2. Ponce AM, Viglianti BL, Yu D, et al. Magnetic resonance imaging of temperature-
11 12	7	sensitive liposome release: drug dose painting and antitumor effects. J Natl Cancer Inst
12	8	2007;99(1):53-63.
14	9	3. Koechli OR, Sevin B, Perras JP, et al. Comparative chemosensitivity profiles in
15	10	three human breast cancer cell lines with the ATP-cell viability assay. Oncology
16	11	1995;51:552-8.
17	12	4. Besse HC, Barten-van Rijbroek AD, van der Wurff-Jacobs KMG, et al. Tumor drug
18	13	distribution after local drug delivery by hyperthermia, in vivo. <i>Cancers (Basel)</i>
19	14	2019;11(10).
20 21	15	5. Moehler M, Dimitrakopoulou-Strauss A, Gutzler F, et al. 18F-Labeled fluorouracil
21	16	Positron Emission Tomography and the prognoses of colorectal carcinoma patients with
22	17	metastases to the liver treated with 5-fluorouracil. <i>Cancer</i> 1998;83(2):245-53.
24	18	6. van der Veldt AA, Lubberink M, Mathijssen RH, et al. Toward prediction of
25	10	
26		efficacy of chemotherapy: a proof of concept study in lung cancer patients using
27	20	[(1)(1)C]docetaxel and positron emission tomography. <i>Clin Cancer Res</i>
28	21	2013;19(15):4163-73.
29	22	7. Budman DR, Berry DA, Cirrincione CT, et al. Dose and dose intensity as
30 21	23	determinants of outcome in the adjuvant treatment of breast cancer. Journal of the
31 32	24	National Cancer Institute, 1998;90(16):1205-11.
33	25	8. Henderson IC, Berry DA, Demetri GD, et al. Improved outcomes from adding
34	26	sequential Paclitaxel but not from escalating Doxorubicin dose in an adjuvant
35	27	chemotherapy regimen for patients with node-positive primary breast cancer. J Clin
36	28	Oncol 2003;21(6):976-83.
37	29	9. Khan SA. Surgical Management of de novo Stage IV Breast Cancer. <i>Semin Radiat</i>
38	30	Oncol 2016;26(1):79-86.
39	31	10. Headon H, Wazir U, Kasem A, et al. Surgical treatment of the primary tumour
40 41	32	improves the overall survival in patients with metastatic breast cancer: A systematic
42	33	review and meta-analysis. <i>Mol Clin Oncol</i> 2016;4(5):863-7.
43	34	11. Soran A, Ozmen V, Ozbas S, et al. The importance of primary surgery in patients
44	35	with de novo stage IV breast cancer; finalizing the protocol MF07-01 randomized clinical
45	36	trial. Poster P1-20-01 at San Antonio Breast Cancer Symposium 2019 2019.
46	37	12. Badwe R, Hawaldar R, Nair N, et al. Locoregional treatment versus no treatment
47	38	of the primary tumour in metastatic breast cancer: an open-label randomised controlled
48	39	trial. Lancet Oncol 2015;16(13):1380-8.
49 50	40	13. Tsukioki T, Shien T, Doihara H. Effect of local surgery on outcomes of stage IV
51	40 41	
52		breast cancer. <i>Translational Cancer Research</i> 2020;9(8):5102-7.
53	42	14. Khan SA, Zhao F, Solin LJ, et al. A randomized phase III trial of systemic therapy
54	43	plus early local therapy versus systemic therapy alone in women with de novo stage IV
55	44	breast cancer: A trial of the ECOG-ACRIN Research Group (E2108). <i>Journal of Clinical</i>
56	45	Oncology 2020;38(18_suppl; abstr LBA2).
57	46	15. Al-Jamal WT, Al-Ahmady ZS, Kostarelos K. Pharmacokinetics & tissue distribution
58 59	47	of temperature-sensitive liposomal doxorubicin in tumor-bearing mice triggered with
60	48	mild hyperthermia. <i>Biomaterials</i> 2012;33(18):4608-17.

BMJ Open

16. Needham D, Anyarambhatla G, Kong G, et al. A new temperature-sensitive liposome for use with mild hyperthermia: characterization and testing in a human tumor xenograft model. Cancer Res 2000;60:1197-201. 17. Needham D, Dewhirst MW. The development and testing of a new temperature-sensitive drug delivery system for the treatment of solid tumors. Adv Drug Deliv Rev 2001;53:285-305. Kong G, Anyarambhatla G, Petros WP, et al. Efficacy of Liposomes and 18. Hyperthermia in a Human Tumor Xenograft Model: Importance of Triggered Drug Release. Cancer Res 2000;60:6950-7. Ranjan A, Jacobs GC, Woods DL, et al. Image-guided drug delivery with magnetic 19. resonance guided high intensity focused ultrasound and temperature sensitive liposomes in a rabbit Vx2 tumor model. J Control Release 2012;158(3):487-94. Staruch RM, Ganguly M, Tannock IF, et al. Enhanced drug delivery in rabbit VX2 20. tumours using thermosensitive liposomes and MRI-controlled focused ultrasound hyperthermia. Int J Hyperthermia 2012;28(8):776-87. de Smet M, Hijnen NM, Langereis S, et al. Magnetic Resonance Guided High-21. Intensity Focused Ultrasound Mediated Hyperthermia Improves the Intratumoral Distribution of Temperature-Sensitive Liposomal Doxorubicin. Invest Radiol 2013;48:395-405. 22. Li L, ten Hagen TL, Hossann M, et al. Mild hyperthermia triggered doxorubicin release from optimized stealth thermosensitive liposomes improves intratumoral drug delivery and efficacy. J Control Release 2013;168(2):142-50. 23. Kim YS, Keserci B, Partanen A, et al. Volumetric MR-HIFU ablation of uterine fibroids: role of treatment cell size in the improvement of energy efficiency. Eur J Radiol 2012;81(11):3652-9. 24. Hurwitz MD, Ghanouni P, Kanaev SV, et al. Magnetic resonance-guided focused ultrasound for patients with painful bone metastases: phase III trial results. *J Natl Cancer* Inst 2014;106(5). 25. Hsiao YH, Kuo SJ, Tsai HD, et al. Clinical Application of High-intensity Focused Ultrasound in Cancer Therapy. J Cancer 2016;7(3):225-31. Chu W, Staruch RM, Pichardo S, et al. Magnetic Resonance-Guided High-Intensity 26. Focused Ultrasound Hyperthermia for Recurrent Rectal Cancer: MR Thermometry Evaluation and Preclinical Validation. Int J Radiat Oncol Biol Phys 2016;95(4):1259-67. Bing C, Patel P, Staruch RM, et al. Longer heating duration increases localized 27. doxorubicin deposition and therapeutic index in Vx2 tumors using MR-HIFU mild hyperthermia and thermosensitive liposomal doxorubicin. Int J Hyperthermia 2019;36(1):196-203. Zhu L, Partanen A, Talcott MR, et al. Feasibility and safety assessment of magnetic 28. resonance-guided high-intensity focused ultrasound (MRgHIFU)-mediated mild hyperthermia in pelvic targets evaluated using an in vivo porcine model. Int J *Hyperthermia* 2019;36(1):1147-59. Deckers R, Rome C, Moonen CT. The role of ultrasound and magnetic resonance in 29. local drug delivery. J Magn Reson Imaging 2008;27(2):400-9. Merckel LG, Bartels LW, Kohler MO, et al. MR-guided high-intensity focused 30. ultrasound ablation of breast cancer with a dedicated breast platform. Cardiovasc Intervent Radiol 2013;36(2):292-301. Deckers R, Merckel LG, Denis de Senneville B, et al. Performance analysis of a 31. dedicated breast MR-HIFU system for tumor ablation in breast cancer patients. Phys Med *Biol* 2015;60(14):5527-42.

1		
2		
3 4	1	32. Merckel LG, Knuttel FM, Deckers R, et al. First clinical experience with a dedicated
5	2	MRI-guided high-intensity focused ultrasound system for breast cancer ablation. <i>Eur</i>
6	3 4	Radiol 2016;26(11):4037-46. 33. Zagar TM, Vujaskovic Z, Formenti S, et al. Two phase I dose-
7 8	4 5	escalation/pharmacokinetics studies of low temperature liposomal doxorubicin (LTLD)
o 9	6	and mild local hyperthermia in heavily pretreated patients with local regionally
10	7	recurrent breast cancer. Int J Hyperthermia 2014;30(5):285-94.
11	8	34. Poon RT, Borys N. Lyso-thermosensitive liposomal doxorubicin: an adjuvant to
12	9	increase the cure rate of radiofrequency ablation in liver cancer. <i>Future Oncol</i>
13 14	10	2011;7(8):937-45.
15	11	35. Tak WY, Lin SM, Wang Y, et al. Phase III HEAT Study Adding Lyso-
16	12	Thermosensitive Liposomal Doxorubicin to Radiofrequency Ablation in Patients with
17	13	Unresectable Hepatocellular Carcinoma Lesions. <i>Clin Cancer Res</i> 2018;24(1):73-83.
18 19	14	36. Lyon PC, Gray MD, Mannaris C, et al. Safety and feasibility of ultrasound-triggered
20	15	targeted drug delivery of doxorubicin from thermosensitive liposomes in liver tumours
21	16	(TARDOX): a single-centre, open-label, phase 1 trial. <i>Lancet Oncol</i> 2018;19(8):1027-39.
22	17	37. Gray MD, Lyon PC, Mannaris C, et al. Focused Ultrasound Hyperthermia for
23 24	18	Targeted Drug Release from Thermosensitive Liposomes: Results from a Phase I Trial.
24	19	Radiology 2019;291(1):232-8.
26	20	38. van Breugel JM, Wijlemans JW, Vaessen HH, et al. Procedural sedation and
27	21	analgesia for respiratory-gated MR-HIFU in the liver: a feasibility study. <i>J Ther</i>
28	22	Ultrasound 2016;4:19.
29 30	23	39. Ishihara Y, Calderon A, Watanabe H, et al. A precise and fast temperature
31	24 25	 mapping using water proton chemical shift. <i>MRM</i> 1995;34:814-23. de Poorter J. Noninvasive MRI thermometry with the proton resonance frequency
32	23 26	method: study of susceptibility effects. <i>MRM</i> 1995;34:359-67.
33	20 27	41. Brady MJ, Cella DF, Mo F, et al. Reliability and Validity of the Functional
34 35	28	Assessment of Cancer Therapy-Breast Quality-of-Life Instrument. J Clin Oncol
36	29	1997;15:974-86.
37	30	42. Abetz L, Coombs JH, Keininger DL, et al. Development of the cancer therapy
38	31	satisfaction questionnaire: item generation and content validity testing. Value Health
39 40	32	2005;8 Suppl 1:S41-53.
40	33	43. Cheung K, de Mol M, Visser S, et al. Reliability and validity of the Cancer Therapy
42	34	Satisfaction Questionnaire in lung cancer. <i>Qual Life Res</i> 2016;25(1):71-80.
43	35	44. Eisenhauer EA, Therasse P, Bogaerts J, et al. New response evaluation criteria in
44 45	36	solid tumours: revised RECIST guideline (version 1.1). <i>Eur J Cancer</i> 2009;45(2):228-47.
46	37	45. Wahl RL, Jacene H, Kasamon Y, et al. From RECIST to PERCIST: Evolving
47	38	Considerations for PET response criteria in solid tumors. <i>J Nucl Med</i> 2009;50 Suppl
48	39	1:122S-50S.
49 50	40	46. Chan S, Davidson N, Juozaityte E, et al. Phase III trial of liposomal doxorubicin and
50 51	41	cyclophosphamide compared with epirubicin and cyclophosphamide as first-line
52	42 42	therapy for metastatic breast cancer. <i>Ann Oncol</i> 2004;15(10):1527-34.
53	43 44	47. Celsion Corporation. ThermoDox®, Lyso-Thermosensitive Liposomal Doxorubicin (LTLD), Investigator's Brochure. 2019.
54	44 45	48. Wood BJ, Poon RT, Locklin JK, et al. Phase I study of heat-deployed liposomal
55 56	43 46	doxorubicin during radiofrequency ablation for hepatic malignancies. <i>J Vasc Interv</i>
57	47	Radiol 2012;23(2):248-55 e7.
58	.,	
59		
60		

BMJ Open

49. Gabizon A, Catane R, Uziely B, et al. Prolonged circulation time and enhanced accumulation in malignant exudates of doxorubicin encapsulated in polyethylene-glycol coated liposomes. Cancer Res 1994;54(4):987-92. Swenson CE, Bolcsak LE, Batist G, et al. Pharmacokinetics of doxorubicin 50. administered i.v. as Myocet (TLC D-99; liposome-encapsulated doxorubicin citrate) compared with conventional doxorubicin when given in combination with cyclophosphamide in patients with metastatic breast cancer. Anticancer Drugs 2003;14(3):239-46. Joerger M, Huitema ADR, Richel DJ, et al. Population pharmacokinetics and 51. pharmacodynamics of doxorubicin and cyclophosphamide in breast cancer patients. Clin Pharmacokinet 2007;46(12):1051-68. Jacquet JM, Bressolle F, Galtier M, et al. Doxorubicin and doxorubicinol: intra- and 52. inter-individual variations of pharmacokinetic parameters. *Cancer Chemother Pharmacol* 1990;27(3):219-25. Callies S, de Alwis DP, Wright JG, et al. A population pharmacokinetic model for 53. doxorubicin and doxorubicinol in the presence of a novel MDR modulator, zosuguidar trihydrochloride (LY335979). *Cancer Chemother Pharmacol* 2003;51(2):107-18. Joerger M, Huitema AD, Meenhorst PL, et al. Pharmacokinetics of low-dose 54. doxorubicin and metabolites in patients with AIDS-related Kaposi sarcoma. Cancer *Chemother Pharmacol* 2005;55(5):488-96.

BMJ Open

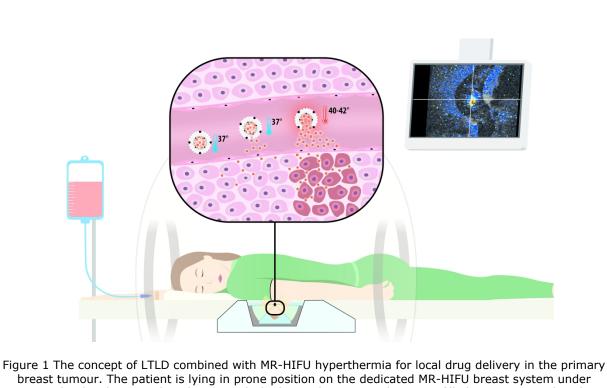
2 3 4	
5 6	
7 8	
9 10	
11 12	
13 14	
15 16	
17 18	
19 20	
21 22	
23 24	
25 26	
27 28	
4 5 6 7 8 9 10 11 12 13 14 15 6 7 8 9 10 11 12 13 14 15 16 17 18 201 21 223 24 25 26 27 28 301 323 34 35 36 37 38	
31 32	
33 34	
35 36	
37 38	
40	
41 42	
43 44 45	
45 46 47	
47 48 49	
50 51	
52 53	
54 55	
56 57	
58 59	
60	

1 Figu	res and	tables
--------	---------	--------

2 Figure 1 The concept of LTLD combined with MR-HIFU hyperthermia for local drug 3 delivery in the primary breast tumour. The patient is lying in prone position on the 4 dedicated MR-HIFU breast system under procedural sedation and analgesia, with the breast hanging in the water-filled cup. HIFU-induced hyperthermia is administered to 5 6 the tumour for 60 minutes. Real-time MR thermometry (screen on the right) allows 7 for precise control of the target temperature of 40-42 °C in the tumour. After 8 intravenous infusion, LTLD circulates through the vasculature and releases a small 9 amount of doxorubicin at 37°C. However, when LTLD reaches the heated tumour it 10 releases a high amount of doxorubicin intravascularly within seconds. We hypothesize that the combination of LTLD and MR-HIFU hyperthermia will increase the tumour 11 12 concentration of doxorubicin without interfering with systemic treatment efficacy and 13 toxicity. 14 15 Figure 2 Study procedures. The standard of care palliative AC regimen consists of 6 16 cycles of doxorubicin and cyclophosphamide at 21-days intervals. In this study we will 17 replace doxorubicin with the combination of LTLD and MR-HIFU induced 18 hyperthermia, in up to six cycles. After informed consent, the baseline procedures will

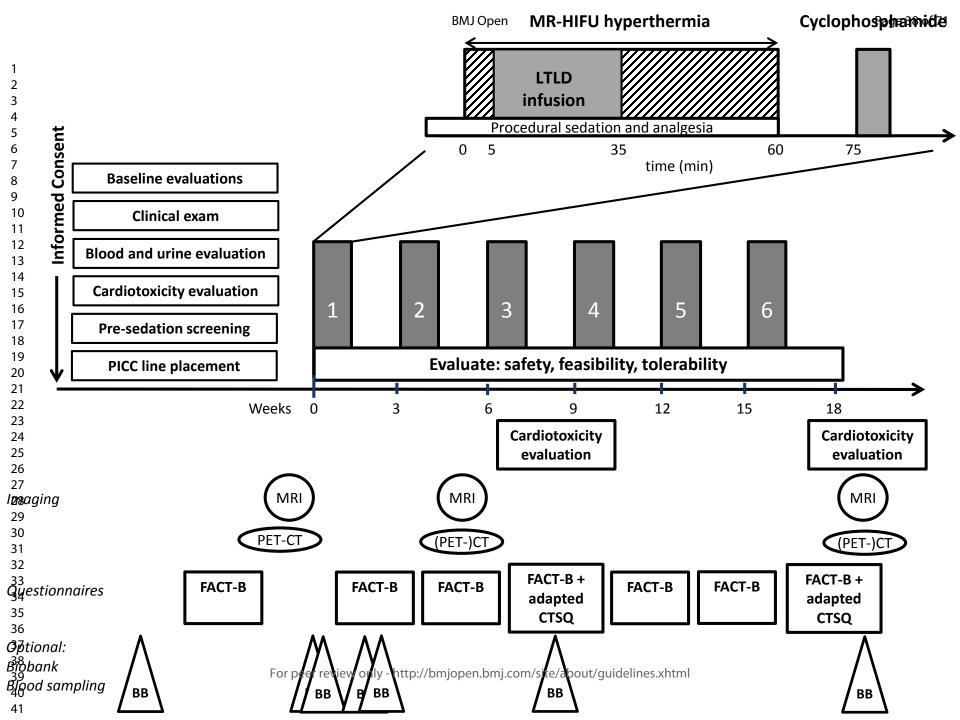
19 be performed as mentioned. During the cycles, the primary endpoints of safety

20 (adverse events), feasibility and tolerability will be monitored, including cardiotoxicity


21 evaluation and questionnaires on specified time points as indicated in the bottom of

the figure. Imaging to determine local (MRI) and systemic ((PET/)CT) response will be

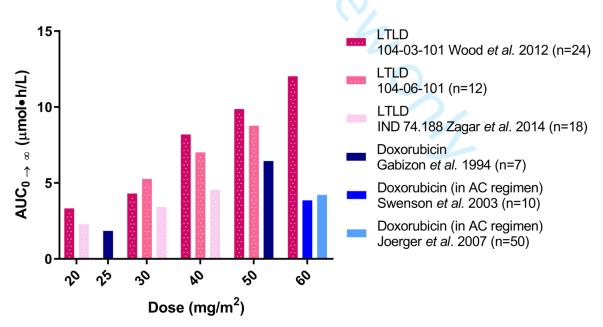
- performed at baseline, after cycle two and after cycle six. Optionally, the patient can
- consent to additional blood sampling for future research, which will be stored in the
- Biobank.


Table 1 Definitions of Dose Limiting Toxicity

Dose	limiting systemic toxicity
А	Hematologic DLT
	defined as Grade 3 anaemia, Grade 4 thrombocytopenia, febrile neutropenia,
	or Grade 4 neutropenia \geq 7 days in duration.
В	Non-hematologic DLT (non-loco-regional)
	defined as Grade 3 or greater toxicity with the exceptions of alopecia, fatigue,
	nausea or vomiting and loco-regional effects.
	Including Cardiotoxicity DLT, defined as:
	Grade 3 or greater cardiac disorders OR
	 a decline in LVEF of > 15% while the LVEF remains > 40% OR
	• a decline to an LVEF of \leq 40%.
Dose	limiting loco-regional toxicity
C	Loco-regional DLT
	defined as post-procedural effects (e.g. pain or skin effects) on the treated
	breast warranting dose adjustment or delay.

breast tumour. The patient is lying in prone position on the dedicated MR-HIFU breast system under procedural sedation and analgesia, with the breast hanging in the water-filled cup. HIFU-induced hyperthermia is administered to the tumour for 60 minutes. Real-time MR thermometry (screen on the right) allows for precise control of the target temperature of 40-42 °C in the tumour. After intravenous infusion, LTLD circulates through the vasculature and releases a small amount of doxorubicin at 37°C. However, when LTLD reaches the heated tumour it releases a high amount of doxorubicin intravascularly within seconds. We hypothesize that the combination of LTLD and MR-HIFU hyperthermia will increase the tumour concentration of doxorubicin without interfering with systemic treatment efficacy and toxicity.

210x127mm (600 x 600 DPI)


BMJ Open

1 2 3 4 5 6 7	Supplementary materials:	
8 9 10 11	Supplement 1 Comparison of AUC0-∞ of free doxorubicin for LTLD and conv doxorubicin.	ventional S2
12 13 14	Supplement 2 Dose adjustments in the i-GO study.	S 4
15 16 17	Supplement 3 Restrictions to concomitant medications and products	S10
18 19 20 21	Supplement 4 Flow-chart interim analysis	S21
22 23 24	Supplement 5 Data Safety Monitoring Board Charter	S22
25 26 27 28 29	Supplement 6 Patient informed consent form in English	S29
30 31 32 33		
34 35 36 37		
38 39 40 41		
42 43 44 45		
46 47 48		
49 50 51 52		
53 54 55 56		
57 58		

Supplement 1 Comparison of AUC0- ∞ of free doxorubicin for LTLD and conventional doxorubicin.

In order to obtain a systemic dose of free doxorubicin (due to leakage of LTLD at 37 °C) that is as similar to conventional doxorubicin at 60 mg/m² (which is the standard of care treatment for the patients that will be enrolled in this study) as possible (to avoid undertreatment) we will start at the dose of 50 mg/m² LTLD, and we will apply dose adjustments when necessary. To compare the systemic dose of free doxorubicin after LTLD plus hyperthermia to the systemic dose of conventional doxorubicin, we summarized the pharmacokinetic data of the three studies with LTLD in which total plasma doxorubicin and the metabolite doxorubicinol were measured with a validated assay (studies 104-03-101 [1], 104-06-101 [2], and IND #174,188 [3]). In these studies the Area Under the Curve from t=0 to infinity (AUC0-∞) of the metabolite doxorubicinol was measured. Note that in these studies LTLD was administered with hyperthermia or RFA treatment. Pharmacokinetic data on LTLD without heating are not available. The mean values were converted to the AUC0-∞ of 'free doxorubicin' based on the mean ratios between doxorubicinol and doxorubicin found in three studies (0.3826, 0.47 and 0.514 respectively, with a mean of 0.456) [4-6]. We compared these AUC0-∞ values of 'free doxorubicin' from the LTLD studies with the AUC0-∞ values of doxorubicin in pharmacokinetic studies of conventional doxorubicin [7-9]. Figure S2 displays the AUC0-∞ of three studies with conventional doxorubicin (actual doxorubicin values are portrayed) and the AUC0- ∞ of three studies with LTLD (calculated 'free doxorubicin' values are portrayed). The figure shows that the calculated 'free doxorubicin' after LTLD 50 mg/m² is at least equal to that of conventional doxorubicin at 60 mg/m².

Figure S2: Comparison of the AUC0- ∞ of "free" plasma doxorubicin for LTLD + heat (calculated based on doxorubicinol concentration) and conventional doxorubicin.

Supplementary References

1. Wood BJ, Poon RT, Locklin JK, et al. Phase I study of heat-deployed liposomal doxorubicin during radiofrequency ablation for hepatic malignancies. *J Vasc Interv Radiol* 2012;23(2):248-55 e7.

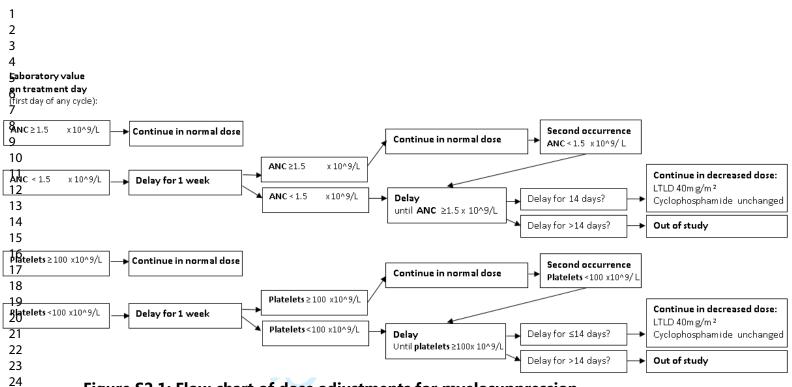
- 2. Celsion Corporation. ThermoDox®, Lyso-Thermosensitive Liposomal Doxorubicin (LTLD), Investigator's Brochure. 2019. 3. Zagar TM, Vujaskovic Z, Formenti S, et al. Two phase I dose-escalation/pharmacokinetics studies of low temperature liposomal doxorubicin (LTLD) and mild local hyperthermia in heavily pretreated patients with local regionally recurrent breast cancer. Int J Hyperthermia 2014;30(5):285-94. 4. Jacquet JM, Bressolle F, Galtier M, et al. Doxorubicin and doxorubicinol: intra- and inter-individual variations of pharmacokinetic parameters. Cancer Chemother Pharmacol 1990;27(3):219-25. 5. Joerger M, Huitema AD, Meenhorst PL, et al. Pharmacokinetics of low-dose doxorubicin and metabolites in patients with AIDS-related Kaposi sarcoma. Cancer Chemother Pharmacol 2005;55(5):488-96. 6. Callies S, de Alwis DP, Wright JG, et al. A population pharmacokinetic model for doxorubicin and doxorubicinol in the presence of a novel MDR modulator, zosuguidar trihydrochloride (LY335979). Cancer Chemother Pharmacol 2003;51(2):107-18.
- 7. Gabizon A, Catane R, Uziely B, et al. Prolonged circulation time and enhanced accumulation in malignant exudates of doxorubicin encapsulated in polyethylene-glycol coated liposomes. Cancer Res 1994;54(4):987-92.
- 8. Swenson CE, Bolcsak LE, Batist G, et al. Pharmacokinetics of doxorubicin administered i.v. as Myocet (TLC D-99: liposome-encapsulated doxorubicin citrate) compared with conventional doxorubicin when given in combination with cyclophosphamide in patients with metastatic breast cancer. Anticancer Drugs 2003;14(3):239-46.
- 9. Joerger M, Huitema ADR, Richel DJ, et al. Population pharmacokinetics and pharmacodynamics of doxorubicin and cyclophosphamide in breast cancer patients. Clin Pharmacokinet 2007;46(12):1051-68.

Supplement 2 Dose adjustments in the i-GO study.

Individual dose adjustments and/or delays may be made based on the emergence of specific adverse events.

Adverse events consist of:

- Systemic toxicity
- Locoregional toxicity


S2.1 Systemic toxicity Myelosuppression

Dose adjustments in case of myelosuppression are summarized in figure S2-1.

If ANC <1.5 x 10^9/L, then the LTLD and cyclophosphamide doses will be held and reevaluated for treatment in one week. Any second occurrence of ANC <1.5 x10^9/L will require a decrease in LTLD dose to 40 mg/m². The cyclophosphamide will remain unchanged. LTLD and cyclophosphamide will be administered at day 14 (two weeks after the scheduled dose) if the ANC \geq 1.5 x 10^9/L. In case of recurrence of ANC <1.5 x10^9/L with the decreased LTLD dose, study participation will end and the patient will continue treatment with the standard of care AC regimen.

If platelets are < 100×10^9 /L, then the LTLD and cyclophosphamide doses will be held and re-evaluated for treatment in one week. Any second occurrence of platelets < 100×10^9 /L will require a decrease in LTLD dose to 40 mg/m². The cyclophosphamide will remain unchanged. These doses will be administered at day 14 (two weeks after the scheduled dose) if the platelets are $\ge 100 \times 10^9$ /L. In case of recurrence of platelets < 100×10^9 /L with the decreased LTLD dose, study participation will end and the patient will continue treatment with the standard of care AC regimen.

If a patient requires drug-withholding for more than 14 days, then the patient will be withdrawn from the study.

Figure S2.1: Flow chart of dose adjustments for myelosuppression

Hypersensitivity reactions

No dose reductions will be made for hypersensitivity reactions.

Table S2: Suggested Management for Hypersensitivity Reactions

Treatment Guidelines
Consider decreasing the rate of
infusion until recovery from
symptoms, stay at bedside and
monitor patient
Complete study drug infusion at
the initial planned rate
WITHDRAW FROM STUDY
WITHDRAW FROM STUDY

Abnormal Liver Tests

If a patient develops abnormal liver tests, they will be evaluated for causal factors such as bile duct obstruction or liver pathology, with an abdominal ultrasound. If a cause is found, this must be resolved before continuing the treatment. If no other cause than the study treatment is found (or the cause cannot be resolved), patients will have the following dose reductions (summarized in figure S2-2).

If bilirubin $\geq 25 \ \mu$ mol/L, then the LTLD and cyclophosphamide doses will be held and reevaluated for treatment in one week. Any second occurrence of bilirubin $\geq 25 \ \mu$ mol/L will require a dose adjustment to $40 \ mg/m^2$ LTLD. If the bilirubin is still 25-50 μ mol/L after one week, the patient will be treated with a decrease in LTLD dose to 25 mg/m² (50% of the original dose) and unchanged cyclophosphamide dose. If the bilirubin has normalized < 25 μ mol/L after one week, the patient will be treated with a decrease in LTLD dose to 40 mg/m², the cyclophosphamide dose will remain unchanged. In case bilirubin $\geq 25 \ \mu$ mol/L recurs after previous LTLD dose reduction, study participation will end and the patient will continue treatment with the standard of care AC regimen.

If the bilirubin \ge 50 µmol/L, treatment will be delayed until < 50 µmol/L. If a patient requires drug-withholding for more than 14 days, then she will be withdrawn from the study.

If bilirubin <25µmol/L and AF \leq 600 U/L, but ASAT and ALAT are mildly elevated (1.6-3.5xULN), the patient will be treated with a decrease in LTLD dose to 40 mg/m² and unchanged cyclophosphamide dose,without delay. In case mildly elevated ASAT or ALAT recur after previous LTLD dose reduction, study participation will end and the patient will continue treatment with the standard of care AC regimen.

If AF > 5xULN (>600U/L) or ASAT > 3,5xULN (>105U/L) or ALAT > 3,5xULN (>123 U/L), treatment will be delayed until liver tests have recovered (bili<25 µmol/L, AF ≤5xULN and ASAT/ALAT≤3.5xULN). Then the patient will be treated with a decrease in LTLD dose to 40 mg/m² and unchanged cyclophosphamide dose. In case the elevated AF (> 5xULN), ASAT (> 3,5xULN) or ALAT (> 3,5xULN) recur after the LTLD dose reduction, study participation will end and the patient will continue treatment with the standard of care AC regimen. If a patient requires drug-withholding for more than 14 days, then she will be withdrawn from the study.

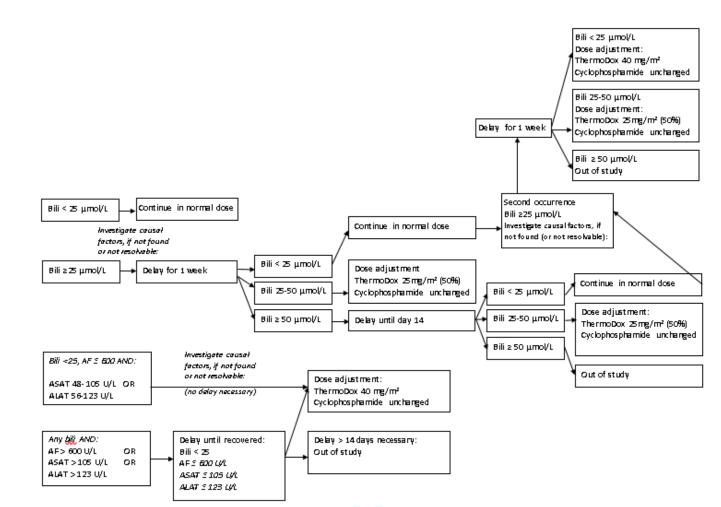


Figure S2.2: Flow chart of dose adjustments for abnormal liver tests

Mucositis

If mucositis is present on any treatment day, then treatment should be held until mucositis has resolved. If mucositis of Grade \geq 3 occurs, then reduce the dose of LTLD to 40 mg/m², while the cyclophosphamide dose remains unchanged for subsequent cycles. In case mucositis of grade \geq 3 recurs after the LTLD dose reduction, study participation will end and the patient will continue treatment with the standard of care AC regimen. If a patient requires drug-withholding for more than 14 days, then the patient will be withdrawn from the study.

Ventricular Function

Patients who are receiving protocol therapy will be removed from study treatment under the following conditions:

Signs (tachycardia, S3, elevated jugular venous pressure) AND symptoms of congestive heart failure (edema, dyspnea, paroxysmal nocturnal dyspnea, orthopnea) OR a decline in LVEF of > 15% while the LVEF remains > 40% OR

a decline to an LVEF of <u><</u> 40%.

Patients in this category should be followed with an ejection fraction assessment every three months until stable.

Other adverse events

For other non-hematologic toxicity \geq grade 3, no dose modification is required. Instead, such subjects will not be re-treated until the severity of the non-hematologic toxicity drops to \leq grade 1. If a patient requires drug-withholding for more than 14 days, then the patient will be removed from the trial.

S2.2 Locoregional toxicity

Post-procedural pain

If a patient experiences post-procedural pain in the treated breast with:

- a Numeric Rate Scale (NRS) of 7 or higher (severe pain) for more than 60 minutes within 24u hours without pain medication, OR
- a NRS of 5 or higher (moderate to severe pain) for more than 60 minutes within 24u hours that does not respond to adequate pain medication,
- Any pain that the patients finds unacceptable or unbearable

then in the next cycle the hyperthermia time will be reduced by 25%: 45 minutes of MR-HIFU treatment. This level of pain is also considered a dose limiting loco-regional toxicity (loco-regional DLT).

If the patient experiences the above specified level of pain again after the hyperthermia time reduction, de time will be reduced further to 30 minutes of MR-HIFU treatment.

If the above specified level of pain still persists/recurs the patient will be withdrawn from the trial.

Skin effects

If a grade 1 (CTCAE) skin burn is occurs on the treated breast on any treatment day, then treatment should be held until the skin burn has resolved.

If a patient requires treatment withholding for more than 14 days, then the patient will be removed from the trial.

If the skin burn is resolved in \leq 14 days the hyperthermia time in the next cycle will be reduced by 25%: 45 minutes of MR-HIFU treatment. If a grade 1 skin burn recurs after dose reduction the hyperthermia time will be further reduced to 30 minutes of MR-HIFU treatment. If the burn recurs after that, the patient will be withdrawn from the study.

If a grade 2 burn occurs on the treated breast the patient will immediately be withdrawn from the study.

For other adverse effects of the skin of the treated breast, that are suspected to be related to the study treatment, treatment will be delayed until the severity of the skin toxicity drops to \leq grade 1. The hyperthermia time will be reduced by 25% in the next cycle. If a patient requires treatment withholding for more than 14 days, then the patient will be removed from the trial. Skin burns and other adverse effects of the skin of the treated breast of grade 1 or higher are considered dose limiting loco-regional toxicities (loco-regional DLTs).

S2.3 Dose adjustments, dose delay or withdrawal from study, based on technical difficulties

In the study design we specified that we aim to perform 60 minutes of hyperthermia to the primary tumor at a temperature of 40°C-42°C, however, the ability to achieve this is also a feasibility parameter. It is possible that in certain patients, the aim will not be achieved, which will lead to an individual (unintended) adjustment of hyperthermia dose in that case. Furthermore, if MR-thermometry is insufficiently accurate to provide a safe MR-HIFU treatment, that treatment is stopped for safety reasons and the patient will receive the standard treatment of doxorubicin and cyclophosphamide.

If we experience technical difficulties during the MR-HIFU treatment (such as dysfunction of the MR-HIFU method, loss of power, mechanical difficulties) and we cannot guarantee the safety and feasibility of an individual patient's MR-HIFU treatment, the patient will receive the standard treatment of doxorubicin and cyclophosphamide.

After the technical difficulties have been resolved, the patient can still receive MR-HIFU and LTLD in the next treatment cycle or cycles.

If for one patient, hyperthermia treatment was for any reason insufficient (i.e. the target temperature 40-42°C was not reached or was only maintained for less than 30 minutes), in two separate treatment cycles, the patient will be excluded from the study, because the treatment is not considered feasible for that patient.

If the target temperature of 40-42°C is not reached, LTLD will not be administered (paragraph 8.3.15). Instead, conventional doxorubicin will be administered. However, if the temperature is initially reached, LTLD infusion is started and shortly afterwards the temperature becomes and remains insufficient, LTLD infusion will be continued as planned. In this case it is no longer possible to replace LTLD with conventional doxorubicin, as this would lead to an unreliable dose. If this scenario occurs twice the patient will be excluded from the study, as described above.

Supplement 3 Restrictions to concomitant medications and products

Concurrent use of any of the following medications is strictly prohibited: protease inhibitors, cyclosporine, carbamazepine, phenytoin, valproic acid, paclitaxel, trastuzumab and other liposomal drugs (AbelectTM, Ambisome[™], NyotranTM, etc.) or lipid-complexed drugs

Doxorubicin is a substrate of CYP3A4, CYP2D6 and P-glycoprotein (P-gp). As detailed in in table S3-1, inducers and inhibitors of these enzymes, as well as medication that acts with doxorubicin via other pathways could result in drug interactions. Caution will be exercised with regard to all the medications mentioned in table S3-1, for interactions are theoretically possible. If deemed necessary, clinically safe and feasible, these medications will be withheld or substituted before participation in the study.

Pre-specified exceptions were made for cyclophosphamide, dexamethasone, propofol, aprepitant and clemastine. These medications will be used as explained in appendix C.

Liposomal drugs (AbelectTM, Ambisome[™], NyotranTM, etc.), or lipid-complexed drugs, or intravenous fat emulsions could change the pharmacokinetic profile of LTLD and should not be administered to study subjects while on the trial.

Subjects may take any medication that is not restricted by the protocol and would not be expected to interfere with the intent and conduct of the study. Chronic medications should be dosed on a stable regimen, if possible. In case of medications restricted by the protocol, adequate washout times must be observed. All medications at the time of screening and within 30 days prior to study treatment and other treatments taken by the subject during the study, including those treatments initiated prior to enrollment (ICF signing), must be recorded.

Table S3.1 Concomitant medications and products with possible interactions

Sources: (1-6)	Increased risk of toxicity	CYP3A4	CYP2D6	P-gp	Wash-out
Antineoplastic therapy				~	
bortezomib		inhibitor			
cyclophosphamide ¹	Cardiotoxicity / hemorrhagic cystitis	inhibitor			
cytarabine	Miscellaneous ²				
dasatinib		inhibitor			
docetaxel		inhibitor			
etoposide		inhibitor			
5-fluorouracil	Cardiotoxicity				
ifosfamide		inhibitor			
imatinib		inhibitor			
lapatinib				inhibitor	
lomustine		inhibitor			
6-mercaptopurin: 6-MP / purinethol	Hepatotoxicity				
methotrexate	Hepatotoxicity				
methoxsalen		inhibitor			
mitoxantrone		inhibitor			
nafcillin		inducer			
paclitaxel	Cardiotoxicity				
plicamycin***	Hematologic				
nfamycin agents (all)		inducer			14 days
nifabutin		inducer**			14 days
nifampicin		inducer**		inducer**	14 days
nfapentine		inducer			14 days

¹ Pre-specified exceptions are described below

https://kennisbank.knmp.nl/article/Informatorium_Medicamentorum/G1126.html

*** Prohibited medication in the Phase I trial at Duke (IND#74,188)

² Necrotizing colitis manifested by typhlitis (caecal inflammation), bloody stools, and severe and sometimes fatal infections have been associated with a combination of doxorubicin given by intravenous push daily for 3 days and cytarabine given by continuous infusion daily for 7 or more days. Source: Pfizer 2010.

^{*} Mentioned as powerful inhibitor/inducer in the KNMP Kennisbank.

Note: Relevance of an interaction also depends on properties of the substrate, such as therapeutical width, biological availability or another route of metabolism.

^{**} Mentioned as inhibitor/inducer in the KNMP Kennisbank

https://kennisbank.knmp.nl/article/Informatorium_Medicamentorum/G1126.html

	Increased risk of toxicity	CYP3A4	CYP2D6	P-gp	Wash-ou
sora fenib ³	Possible dose				
	modification				
streptozocin***	Hematologic				
teniposide		inhibitor			
trastuzumab	Cardiotoxicity				24 weeks
vinblastine		inhibitor			
vincristine		inhibitor			
vinorelbine		inhibitor			
(anti-) Hormonal medic	ation				
abirateron			inhibitor		
anastrozole		inhibitor			
danazol		inhibitor			
drospirenone		inhibitor			
ethinyl estradiol		inhibitor			
mestranol		inhibitor			
mifepristone		inhibitor			
progesterone ⁴	Hematologic	inhibitor			
tamoxifen		inhibitor			
testosterone		inhibitor			
Calcium channel blocke	ers				
amlodipine		inhibitor			
diltiazem	Cardiotoxicity	inhibitor			7 days
felodipine		inhibitor			
nicardipine (cardene)		inhibitor			
nifedipine		inhibitor			
nisoldipine		inhibitor			
verapamil	Cardiotoxicity	inhibitor		inhibitor**	7 days
	Hospital pharmacist's advie	ce: in case oj	f this interacti	on, no action is	needed
Bètablockers					1
propranolol	Cardiotoxicity				
carvedilol				inhibitor	
Angiotensin receptor bl	ockers		1		I
irbesartan		inhibitor			
losartan		inhibitor			

³ In clinical studies, both an increase of 21% and 47%, and no change in the AUC of doxorubicin were observed with concomitant treatment with sorafenib 400 mg twice daily. The clinical significance of these findings is unknown. Source: Pfizer 2010.

⁴ In a published study, progesterone was given intravenously to patients with advanced malignancies (ECOG PS< 2) at high doses (up to 10 g over 24 hours) 12 concomitantly with a fixed doxorubicin dose (60 mg/m²) via bolus injection. Enhanced doxorubicin-induced neutropenia and thrombocytopenia were observed. Source: Pfizer 2010.

^{*} Mentioned as powerful inhibitor/inducer in the KNMP Kennisbank.

Note: Relevance of an interaction also depends on properties of the substrate, such as therapeutical width, biological availability or another route of metabolism.

https://kennisbank.knmp.nl/article/Informatorium_Medicamentorum/G1126.html

^{**} Mentioned as inhibitor/inducer in the KNMP Kennisbank

https://kennisbank.knmp.nl/article/Informatorium_Medicamentorum/G1126.html

^{***} Prohibited medication in the Phase I trial at Duke (IND#74,188)

Table S3.1 Concomitant medications and products with possible interactions (continued)

	Increased risk of toxicity	CYP3A4	CYP2D6	P-gp	Wash-ou
amiodarone	•	inhibitor	inhibitor	inhibitor**	6 months
dronedarone				inhibitor	
propafenon			inhibitor	inhibitor	
quinidine (kinidine)		inhibitor	powerful*	inhibitor**	
			inhibitor		
Statins					
atorvastatin		inhibitor			
fluvastatin		inhibitor			
lovastatin		inhibitor			
pravastatin		inhibitor			
-					
oncolytics, decreasing the an	e: the concentration of phenyto tiepileptic effect. Dose adjustr	nent is neede		can be affected	d by
barbiturate agents	TT	inducer		L	
	Hospital pharmacist's advi	ce: interactio	n is only theor	retical, no actio	on is needed
carbamazepine ⁵		inducer**		inducer**	
fosphenytoin ⁵		inducer			
pentobarbital		inducer			
phenobarbital ***		inducer**		inducer**	
phenytoin ^{5***}		inducer**		inducer**	
primidone		inducer**		inducer**	
oxcarbazepine		inducer			
valproic acid (depakine) ⁵		inhibitor			
Antidepressants					
bupropion			powerful*		
			inhibitor		
desipramine		inhibitor			
duloxetine			inhibitor		
fluoxetine		powerful*			
		inhibitor			
fluvoxamine		inhibitor			7 days
mirtazapine		inhibitor			
nefazo done		inhibitor			7 days
norfluoxetine		?	inhibitor		
paroxetine		inhibitor	powerful* inhibitor		
selegiline		inhibitor	annontor		
sertraline		inhibitor	inhibitor		
tranylcypromine	1	inhibitor			
trazodone	1	inhibitor			
venlafaxine		inhibitor			

⁵ The levels of carbamazepine, phenytoin and valproic acid can temporarily be affected by doxorubicin, with the risk of sub effective anti-epileptic dosage.

- https://kennisbank.knmp.nl/article/Informatorium_Medicamentorum/G1126.html ** Mentioned as inhibitor/inducer in the KNMP Kennisbank
- https://kennisbank.knmp.nl/article/Informatorium_Medicamentorum/G1126.html
- *** Prohibited medication in the Phase I trial at Duke (IND#74,188)

^{*} Mentioned as powerful inhibitor/inducer in the KNMP Kennisbank.

Note: Relevance of an interaction also depends on properties of the substrate, such as therapeutical width, biological availability or another route of metabolism.

3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Table S3.1 Concomitant medications and products with possible interactions (continued)
--

	Increased risk of toxicity	CYP3A4	CYP2D6	P-gp	Wash-ou		
Antipsychotics							
clozapine	Hematologic	inhibitor					
haloperidol		inhibitor					
olanzapine		inhibitor					
pimozide		inhibitor					
	Increased risk of toxicity	CYP3A4	CYP2D6	P-gp	Wash-ou		
risperidone		inhibitor					
ziprasidone		inhibitor					
Thyreostatics ***							
thionamids: e.g.	Hematologic						
carbimazole	Hematologic						
propylthiouracil	Hematologic						
thiamazol/methimazole	Hematologic	inhibitor					
Immune suppressive agent							
Immune suppressive agents azathioprine***	Hematologic/						
azadiiopiine	Immune suppressive						
cyclosporine/cyclosporine		inhibitor		inhibitor**			
***		1 11					
	Hospital pharmacist's advice: The combination of anthracyclines and ciclosporin should be avoided						
interferon	Hematologic						
sirolimus	Internationogie	inhibitor					
tacrolimus		inhibitor					
tactomitus		hindhoi					
Antibiotics		-					
azithromycin		inhibitor					
chloramphenicol***	Hematologic	inhibitor					
clarithromycin		powerful*		inhibitor	7 days		
		inhibitor					
ciprofloxacin		inhibitor					
doxycycline		inhibitor					
erythromycin		powerful*		inhibitor **	7 days		
		inhibitor					
norfloxacin		inhibitor					
quinupristin		inhibitor					
telithromycin		inhibitor					
tetracycline		inhibitor					
troleandomycin		inhibitor			7 days		
Antimycotics							
amphotericin B***	Nephrotoxicity						
clotrimoxazole		inhibitor					
fluconazole		inhibitor			7 days		
flucytosine***	Hematologic						
itraconazole	Ĭ	powerful*		inhibitor	7 days		
		inhibitor					
ketoconazole		powerful*		inhibitor**	7 days		
		inhibitor					

* Mentioned as powerful inhibitor/inducer in the KNMP Kennisbank.

Note: Relevance of an interaction also depends on properties of the substrate, such as therapeutical width, biological availability or another route of metabolism.

https://kennisbank.knmp.nl/article/Informatorium_Medicamentorum/G1126.html

** Mentioned as inhibitor/inducer in the KNMP Kennisbank

https://kennisbank.knmp.nl/article/Informatorium_Medicamentorum/G1126.html

*** Prohibited medication in the Phase I trial at Duke (IND#74,188)

Table S3.1 Concomitant medications and products with possible interactions (continued)

	Increased risk of toxicity		CYP2D6	P-gp	Wash-ou
metronidazole		inhibitor			
miconazole		inhibitor			
posaconazol		inhibitor			
sulconazole		inhibitor			
terbinafine			inhibitor		
voriconazole		powerful* inhibitor			7 days
the local pharmacist, doxoru	: In case of HIV-protease inhi bicinis discouraged in this gro	oup.	teraction will	always be disc	ussed with
atazanavir		Inhibitor			
amprenavir		Inhibitor			7 days
boceprevir		Inhibitor			
cobicistat		powerful* inhibitor		inhibitor**	
delavirdine		Inhibitor			7 days
efavirenz		inducer			
fosamprenavir		Inhibitor			
ganciclovir***	Hematologic				
indinavir		Inhibitor			7 days
interferon***	Hematologic				
lopinavir	-	Inhibitor		inhibitor**	7 days
nelfinavir		Inhibitor			7 days
nevirapine		Inducer			
ntonavir		powerful* Inhibitor	powerful* inhibitor	inhibitor**	7 days
saquinavir		Inhibitor		inhibitor	7 days
simeprevir				inhibitor**	Ĺ.
telaprevir				inhibitor	
tipranavir				inhibitor	
zidovudine***	Hematologic				
Miscellaneous anti-infectiou	is agents	1 1 1 1 1	I	1	1
clofazimine		Inhibitor			
isoniazid		Inhibitor			
mefloquine		Inhibitor			
pentamidine		Inhibitor			
primaquine		Inhibitor			
quinine (kinine)		Inhibitor	inhibitor		
Glucocorticoids ⁶	1			1	
betamethasone		inducer			
cortisone (> 50 mg)		inducer			14 days
dexamethasone (>1.5 mg ⁷)	1	inducer		inducer	14 days

* Mentioned as powerful inhibitor/inducer in the KNMP Kennisbank.

Note: Relevance of an interaction also depends on properties of the substrate, such as therapeutical width, biological availability or another route of metabolism.

https://kennisbank.knmp.nl/article/Informatorium_Medicamentorum/G1126.html
** Mentioned as inhibitor/inducer in the KNMP Kennisbank

https://kennisbank.knmp.nl/article/Informatorium_Medicamentorum/G1126.html

*** Prohibited medication in the Phase I trial at Duke (IND#74,188)

Table S3.1 Concomitant medications and	products with poss	sible interactions (continued)
		· · · · · · · · · · · · · · · · · · ·

	Increased risk of toxicity	CYP3A4	CYP2D6	P-gp	Wash-out
hydrocortisone (> 40 mg		inducer			14 days
methylprednisolone (>8mg ^s),		inducer			14 days
prednisolone		inducer			
prednisone (> 10 mg)		inducer			14 days
Sedatives					
dexmedetomidine		inhibitor			
diazepam		inhibitor			
midazolam		inhibitor			
propofol ⁹		inhibitor			
Pain medication					
colchicine***	Hematologic				
diclofenac		inhibitor			
dihydroergotamine		inhibitor			
ergotamine		inhibitor			
Fentanyl		inhibitor			
lidocaine		inhibitor			
paracetamol		inhibitor			
	Hospital pharmacists advic is needed	e: This intere	action is not c	linically rele	want, no action
Antacids					
Hospital pharmacists advice:	This interaction is not clinica	ally relevant,	no action is n	eeded	
rennies	Modify gastric acidity				1 hour before
					and after
mylanta / maalox (aluminum	Modify gastric acidity				1 hour
hydroxide, magnesium					before
hydroxide simethicone)					and after
tums	Modify gastric acidity				1 hour
					before
					and after
Other GI agents					
aprepitant 10		inhibitor			7 days

- https://kennisbank.knmp.nl/article/Informatorium_Medicamentorum/G1126.html ** Mentioned as inhibitor/inducer in the KNMP Kennisbank
- https://kennisbank.knmp.nl/article/Informatorium_Medicamentorum/G1126.html
- *** Prohibited medication in the Phase I trial at Duke (IND#74,188)

⁸ Methylprednisolone at a single high dose (32mg) did not affect CYP3A4 activity and treatment with 8mg methylprednisolone daily for 9 days did not result in clinically significant induction of CYP3A3. (Villikka et al 2001)

^{*} Mentioned as powerful inhibitor/inducer in the KNMP Kennisbank.

Note: Relevance of an interaction also depends on properties of the substrate, such as therapeutical width, biological availability or another route of metabolism.

Table S3.1 Concomitant medications and products with possible interactions (continued)

	Increased risk of toxicity	CYP3A4	CYP2D6	P-gp	Wash-ou
cimetidine		inhibitor	inhibitor		7 days
lansoprazole		inhibitor		inhibitor	
nizatidine		inhibitor			
omeprazole		inhibitor		inhibitor	
•	Hospital pharmacists advic	e: This interc	action is not c	linically releve	nt, no action
	is needed				
pantoprazole				inhibitor	
rabeprazole		inhibitor			
Histamine antagonists					
azelastine		inhibitor			
cimetidine		inhibitor			
clemastine ¹¹		inhibitor			
diphenhydramine			inhibitor		
	•				
Herbal or dietary ingredient	s or supplements	inhibitor			
callene	II			1::111	
	Hospital pharmacists advic is needed	e: 1 nis interc	101101 15 101 0	linically releve	ini, no actio
cannabis oil				inhibitor	
				(10)	
citrus fruits (other than		inhibitor			7 days
grapefruit: sour orange/bitter					
orange, pomelo,					
sweetie/oroblanco)					
echinacea		inducer			14 days
		(11) inducer	inhibitor		14 1
evening primrose oil		(12)	(12)		14 days
ginkgo biloba		inducer			14 days
		(12)			
ginseng	not conclusive(11, 13)				14 days
golden seal (yellow root,		inhibitor	inhibitor		
Hydrastis Canadensis)		(14)	(14)		
grape fruit (or juice)		inhibitor			7days
grape seed		inhibitor			14 days
		(13)			
kava (piper methysticum)	not conclusive (13)				14 days
St. John's Wort (hypericum)		inducer**		inducer**	14 days
turmeric (curcuma longa)		inhibitor		inhibitor	
		(15)		(16)	
valerian	not conclusive (14)				14 days
Other					
acetazolamide (Diamox)		inhibitor			
aminoglutethimide		inducer			1

11 Pre-specified exceptions are described below

* Mentioned as powerful inhibitor/inducer in the KNMP Kennisbank.

Note: Relevance of an interaction also depends on properties of the substrate, such as therapeutical width, biological availability or another route of metabolism.

https://kennisbank.knmp.nl/article/Informatorium_Medicamentorum/G1126.html

** Mentioned as inhibitor/inducer in the KNMP Kennisbank

https://kennisbank.knmp.nl/article/Informatorium_Medicamentorum/G1126.html

*** Prohibited medication in the Phase I trial at Duke (IND#74,188)

Table S3.1 Concomitant medications and products with possible interactions (continued)

	Increased risk of toxicity	CYP3A4	CYP2D6	P-gp	Wash-ou
bromocriptine		inhibitor			
bosentan		inducer**			
chlorzoxazone		inhibitor			
cinacalcet			inhibitor		
conivaptan		inhibitor			
coumarins (vitamin K	Possible fluctuation of				
antagonists)	coagulation times.				
	Increased susceptibility to				
	bleeding when				
	thrombocytopenia occurs.				
	Hospital pharmacist's advi LMWH)	ce: Change t	o another anti	coagulant is a	udvised (e.g.
disulfiram		inhibitor			
entacapone		inhibitor			
glibenclamide/glyburide		inhibitor			
hydralazine		inhibitor			
live viruse vaccines	miscellaneous ¹²				
methadone		inhibitor			
mirabegron			inhibitor**		
modafinil		inducer			
orphenadrine		inhibitor			
oxybutynin		inhibitor			
pergolide		inhibitor			
pilocarpine		inhibitor			
ranolazine		inhibitor		inhibitor	
sildenafil		inhibitor			
ticlopidine		inhibitor			
zalfirlukast		inhibitor			
Caution with (not strictly p	orohibited, consider monitori				
digoxin	Doxorubicin can lower it's				
uric acidlowering agents	Doxorubicin can increase serum uric acid concentration (such as				
	sulfinpyrazone*** and pro)		
sorafenib	It might increase the doxorubicin dose				
dexrazoxane ¹³	It might result in lower resp	onse rates to	doxorubicin		

¹² Administration of live or live-attenuated vaccines in patients immunocompromised by chemotherapeutic agents including doxorubicin, may result in serious or fatal infections. Vaccination with a live vaccine should be avoided in patients receiving doxorubicin. Killed or inactivated vaccines may be administered; however, the response to such vaccines may be diminished. Source: Pfizer 2010

¹³ In a clinical study of women with metastatic breast cancer, the concurrent use of the cardioprotectant, dexrazoxane, with the initiation of a regimen of fluorouracil, doxorubicin, and cyclophosphamide (FAC) was associated with a lower tumor response rate. Source: Pfizer 2010.

^{*} Mentioned as powerful inhibitor/inducer in the KNMP Kennisbank.

Note: Relevance of an interaction also depends on properties of the substrate, such as therapeutical width, biological availability or another route of metabolism.

https://kennisbank.knmp.nl/article/Informatorium_Medicamentorum/G1126.html
** Mentioned as inhibitor/inducer in the KNMP Kennisbank

https://kennisbank.knmp.nl/article/Informatorium_Medicamentorum/G1126.html

^{***} Prohibited medication in the Phase I trial at Duke (IND#74,188)

S3.2 Pre-specified exceptions (possible interactions accepted)

1. Cyclophosphamide

"The addition of cyclophosphamide to doxorubicin treatment does not affect exposure to doxorubicin, but may result in an increase in exposure to doxorubicinol, a metabolite. Doxorubicinol only has 5% of the cytotoxic activity of doxorubicin. Concurrent treatment with doxorubicin has been reported to exacerbate cyclophosphamide-induced hemorrhagic cystitis."(2) Concurrent cyclophosphamide treatment sensitizes the heart to the cardiotoxic effects of doxorubicin(17). However, since the AC regimen is frequently studied and used in daily practice, we anticipate a similar incidence of adverse events due to this interaction.

6. Glucocorticoids (dexamethasone)

Dexamethasone in the doses administered as premedication in this study induces CYP3A4 (7, 18), which could lower the doxorubicin concentration. However in the previous phase I and II dose finding studies (19), similar dosages of dexamethasone were administered (24 hours prior to treatment "dexamethasone 8 to 10 mg or an equivalent dose of a similar steroid consistent with local practice, every 12 hours x 3 doses" and 30 minutes prior to administration "IV Dexamethasone 20 mg"), therefore this interaction is accounted for in the maximum tolerable dose.

We will to administer dexamethasone in the premedication regimen as specified in the protocol, according to our local practice for the prevention of allergic reactions. Additional dosages of glucocorticoids (above the specified dosages) are prohibited.

9. Propofol

A dosage-dependent inhibitory effect of propofol on cytochrome P450 3A4 has been described(20), indicating that a minimum clinical dosage could induce a significant inhibition of CYP 3A4 activity.

There is only one in vivo study were propofol decreased the clearance of midazolam, possibly via competitive inhibition of hepatic CYP3A4(21). Since no adverse events due to administration of propofol in combination with CYP3A4 substrates have been reported, we anticipate no severe interaction and administrate propofol as specified in the protocol.

10. Aprepitant

As described by Dushenkov et al. "coadministration of aprepitant with antineoplastics may result in SS pharmacokinetic alterations in serum levels of cytotoxics, with the best documentation for cyclophosphamide, ifosfamide and erlotinib. (...) To date, there are no data convincingly linking adverse outcomes due to coadministration of aprepitant and antineoplastics"(22).

Since the use of aprepitant as antiemetic in the dosages specified in the protocol is part of our hospital's standard practice for the AC chemotherapy regimen, and there is no convincing evidence against it, we will administer aprepitant as specified in the protocol. Additional dosages of aprepitant will be prohibited.

11. Clemastine

Clemastine may inhibit CYP3A4 activity and therefore alter doxorubicin metabolism. However clemastine is an essential part of the premedication regimen in our hospital for the prevention of allergic reactions. Since there are no reports in literature of clinically significant interactions with clemastine, and H1- antihistamine agents were also used in the dose finding study(19), we anticipate no severe interactions in our study and will administer clemastine as specified in the protocol.

References:

1. Celsion Corporation. ThermoDox®, Lyso-Thermosensitive Liposomal Doxorubicin (LTLD), Investigator's Brochure. 2016. 2. Pfizer. Doxorubicin hydrochloride for injection, USP. USP. 2010; Available at: http://www.accessdata.fda.gov/drugsatfda_docs/label/2010/050467s070lbl.pdf. Zorginstituut Nederland, Farmacokinetiek, Farmacotherapeutisch Kompas, Brought up to 3 date on December 1st 2016;Available at: https://www.farmacotherapeutischkompas.nl/bladerenvolgens-boek/inleidingen/inl-farmacokinetiek. Lynch T, Price A. The Effect of Cytochrome P450 Metabolism on Drug Response, Interactions, 4. and Adverse Effects. American Family Physician. 2007;76(3):391-6. Haddad A, Davis M, Lagman R. The pharmacological importance of cytochrome CYP3A4 in the 5. palliation of symptoms: review and recommendations for avoiding adverse drug interactions. Support Care Cancer. 2007;15(3):251-7. 6. KNMP Kennisbank. Informatorium Medicamentorum. Version 2.3.1.5 (2016); available at: https://kennisbank.knmp.nl/article/Informatorium_Medicamentorum/intro.html. McCune JS, Hawke RL, LeCluyse EL, Gillenwater HH, Hamilton G, Ritchie J, et al. In vivo and in 7. vitro induction of human cytochrome P4503A4 by dexamethasone. Clin Pharmacol Ther. 2000;68(4):356-66. Villikka K, Kivisto KT, Neuvonen PJ. The effect of dexamethasone on the pharmacokinetics of 8. triazolam. Pharmacol Toxicol. 1998;83(3):135-8. 9 Villikka K, Varis T, Backman JT, Neuvonen PJ, Kivisto KT. Effect of methylprednisolone on CYP3A4-mediated drug metabolism in vivo. Eur J Clin Pharmacol. 2001;57(6-7):457-60. Zhu HJ, Wang JS, Markowitz JS, Donovan JL, Gibson BB, Gefroh HA, et al. Characterization of 10. P-glycoprotein inhibition by major cannabinoids from marijuana. J Pharmacol Exp Ther. 2006;317(2):850-7. Hermann R, von Richter O. Clinical evidence of herbal drugs as perpetrators of 11 pharmacokinetic drug interactions. Planta Med. 2012;78(13):1458-77. Jalloh MA, Gregory PJ, Hein D, Risoldi Cochrane Z, Rodriguez A. Dietary supplement 12 interactions with antiretrovirals: a systematic review. Int J STD AIDS. 2016. 13. Wanwimolruk S, Phopin K, Prachayasittikul V. Review article: cytochrome p450 enzyme mediated herbal drug interactions (part 2). EXCLI Journal. 2014;13:869-96. Gurley BJ, Gardner SF, Hubbard MA, Williams DK, Gentry WB, Khan IA, et al. In vivo effects of 14 goldenseal, kava kava, black cohosh, and valerian on human cytochrome P450 1A2, 2D6, 2E1, and 3A4 phenotypes. Clin Pharmacol Ther. 2005;77(5):415-26. Shamsi S, Tran H, Tan RS, Tan ZJ, Lim LY. Curcumin, Piperine, and Capsaicin: A Comparative 15 Study of Spice-Mediated Inhibition of Human Cytochrome P450 Isozyme Activities. Drug Metab Dispos. 2017;45(1):49-55. Lopes-Rodrigues V, Sousa E, Vasconcelos MH. Curcumin as a Modulator of P-Glycoprotein in 16 Cancer: Challenges and Perspectives. Pharmaceuticals (Basel). 2016;9(4). Pfizer. Product information Adriamycin® Solution for Injection available at: 17 http://wwwpfizercomau/sites/g/files/g10005016/f/201311/PL Adriamycin 212pdf. Version pfpadrii10612 (2012). Czock D, Keller F, Rasche FM, Häussler U. Pharmacokinetics and Pharmacodynamics of 18. Systemically Administered Glucocorticoids. Clin Pharmocokinet. 2005;44(1):61-98. Zagar TM, Vujaskovic Z, Formenti S, Rugo H, Muggia F, O'Connor B, et al. Two phase I dose-19 escalation/pharmacokinetics studies of low temperature liposomal doxorubicin (LTLD) and mild local hyperthermia in heavily pretreated patients with local regionally recurrent breast cancer. Int J Hyperthermia. 2014;30(5):285-94. Yang L-Q, Yu W-F, Cao Y-F, Gong B, Chang Q, Yang G-S. Potential inhibition of cytochrome 20 P450 3A4 by propofol in human primary hepatocytes. Wold J Gastroenterol. 2003;9(9):1959-62. Hamaoka N, Oda Y, Hase I, Mizutani K, Nakamoto T, Ishizaki T, et al. Propofol decreases the 21. clearance of midazolam by inhibiting CYP3A4: an in vivo and in vitro study. Clin Pharmacol Ther. 1999;66:110-7. 22 Dushenkov A, Kalabalik J, Carbone A, Jungsuwadee P. Drug interactions with aprepitant or fosaprepitant: Review of literature and implications for clinical practice. J Oncol Pharm Pract. 2016.

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

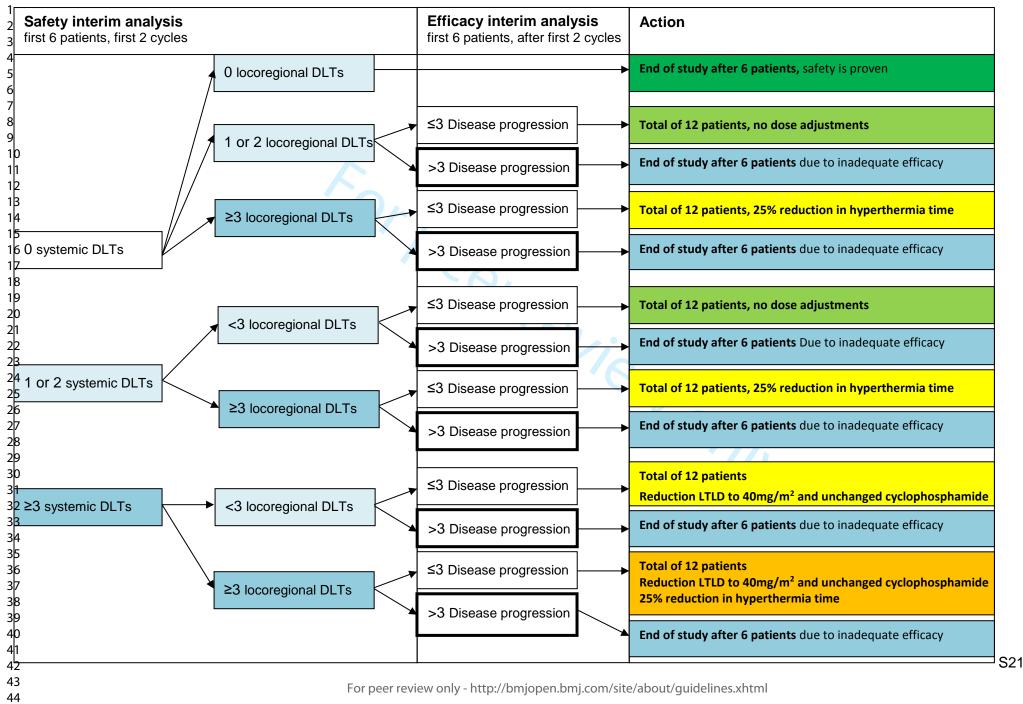
52

53

54

55

56


57

58

59 60

BMJ Open

Supplement 4 Flow-chart interim analysis

Supplement 5 Data Safety Monitoring Board Charter

DMC (DSMB) charter for the i-GO study

Version 3, 14-01-2019

1. INTRODUCTION	
Name (and sponsor's ID) of trial plus	<u>Trial name:</u>
ISRCTN and/or EUDRACT number	Image-guided targeted doxorubicin delivery with hyperthermia to optimize loco-regional control in breast cancer; the i-GO feasibility study.
	Phase I Feasibility Study of High-Intensity Focused Ultrasound-Induced Hyperthermia (HIFU), Lyso-Thermosensitive Liposomal Doxorubicin (LTLD), an Cyclophosphamide for Metastatic Breast Cancer
	 <u>Trial sponsor</u>: Imaging division and Cancer Center, University Medical Cent (UMC) UTRECHT
	 <u>Type of trial</u>: Investigational drug trial and investigational medical devi trial
	<u>Number of patients to be included</u> : 6-12
	 <u>Number of sites:</u> single center (UMC Utrecht)
	Estimated trial duration: 3 years
	• EUDRACT number: 2015-005582-23
	<u>METC protocol number</u> : NL67422.041.18 <u>ClinicalTrials.gov Identifier:</u> to be determined
	 <u>Principal investigator</u>: B.B.M. Suelmann
	<u>Coordinating investigator</u> : J. S. de Maar
Objectives of trial, including	Primary objective: To determine safety, tolerability and feasibility of the
interventions being investigated	administration of LTLD + HIFU inducing local hyperthermia, combined with cyclophosphamide in metastatic breast cancer patients.
	Secondary objective: Efficacy; to assess pathologic and clinically objective response from study treatment
	A flow chart of the trial design is included (Figure 1).
Outline of scope of charter	The purpose of this document is to describe the roles and responsibilities of the
	independent DMC for the i-GO trial, including the timing of meetings, methods of providing information to and from the DMC, frequency and format of meetings, statistical issues and relationships with other committees.
2. ROLES AND RESPONSIBILITIES	
A broad statement of the aims of the committee	"To safeguard the interests of trial participants, assess the safety and efficacy of the interventions during the trial, and monitor the overall conduct of the clinica trial."
Terms of reference	The DMC should receive and review the progress and accruing data of this trial and provide advice on the conduct of the trial to the Principal Investigator. The DMC should inform the Principal Investigator and Head of Department of Medical Oncology if, in their view:
	the results are likely to convince a broad range of clinicians, including those supporting the trial and the general clinical community, that the study treatme is clearly contraindicated or unsafe, and there was a reasonable expectation the this new evidence would materially influence patient management.

Specific roles of DMC	Interim review of the trial's progress including updated figures on recruited data quality, and main outcomes and safety data.
	A selection of specific aspects could be compiled from the following list:
	 assess data quality, including completeness (and by so doing enco collection of high quality data)
	 monitor recruitment figures and losses to follow-up
	• monitor evidence for treatment harm (eg toxicity data, SAEs, deaths)
	• Monitor the interim safety and efficacy analysis as specified in the protocol in section 10.4
	 decide whether to recommend that the trial continues to recruit partic or whether recruitment should be terminated either for everyone some participant subgroups
	suggest additional data analyses
	• advise on protocol modifications suggested by investigators or sponso to inclusion criteria, trial endpoints, or sample size)
	monitor compliance with previous DMC recommendations
	 considering the ethical implications of any recommendations made DMC
	assess the impact and relevance of external evidence
3. B EFORE OR EARLY IN THE TRIAL	
	member has major reservations about the trial (eg the protocol or the log they should report these to the PI and may decide not to accept the invi- to join. DMC members should be independent and constructively critical ongoing trial, but also supportive of aims and methods of the trial.
Whether the DMC will meet before the start of the trial	It is recommended that, if possible, the DMC meets before the trial starts of in the course of the trial, to discuss the protocol, the trial, any analysis plan, meetings, and to have the opportunity to clarify any aspects with the pri- investigators. The DMC should meet within one year of recruit commencing.
Any issues specific to the disease under	Issues specific to the disease under study:
study	 The population consists of patients with metastatic breast cancer IV disease), who have not received previous chemotherapy or su (previous antihormonal therapy is permitted) It concerns a non-curable disease. Median survival is approximation

Any specific regulatory issues	The DMC should be aware of any regulatory implications of their recommendations.
Any other issues specific to the treatment under study	 The investigational drug (ThermoDox) and the co-intervention cyclophosphamide are chemotherapeutics As with the majority of chemotherapy regimens, toxicities can be expected including bone-marrow toxicity, nausea, fatigue, stomatitis alopecia, constipation, and musculoskeletal chest pain. These adverse events are expected in standard treatment as well. All chemotherapy agents are potentially teratogenic and mutagenic. Specific regulations apply for the administration and handling o chemotherapy (UMC Utrecht protocols will be followed) The study treatment consists of an investigational drug as well as ar investigational device.
Whether members of the DMC will have a contract	• Membership of the DMC (in agreement with the contents of this charter) will be accepted by the individual members and confirmed in writing and after submission of a signed and dated curriculum vitae (CV). The signed CV will be kept in the study file at the clinical trial bureau Medical Oncology.
	• DMC members will sign a non-conflict of interest statement (Annex 1) in regard to this study which will be in the study file at the clinical trial bureau Medical Oncology.
4. COMPOSITION	
Membership and size of the DMC	The members will be independent of the trial (eg will not be involved with the trial in any other way or have some competing interest that could impact on the trial). Any competing interests, both real and potential, will be declared.
	The members of the DMC for this trial are:
	(1) Hanneke van Laarhoven
	Medical oncologist at the Academic Medical Center (AMC Amsterdam
	Clinician, experienced in the field of (medical) oncology and experienced in performing clinical trials
	(2) Harm van Tinteren
	Head of scientific administration/biometrics department at th Antoni van Leeuwenhoek (AVL) hospital. Biostatistical reviewer.
	(3) Geertjan van Tienhoven
	Radiation oncologist at the Academic Medical Center (AMC Amsterdam
	Clinician, experienced in the field of (radiation) oncology and experienced in performing clinical trials
The Chair, how they are chosen and the	Hanneke van Laarhoven will be the chair of the DMC.
Chair's role. (Likewise, if relevant, the vice-Chairman)	The Chair has previous experience of serving on DMCs and experience of chairing meetings, and is able to facilitate and summarize discussions. The Chair was chosen by the investigators.
The responsibilities of the DMC statistician	The DMC membership will include a statistician to provide independent statistical expertise.
The responsibilities of the trial statistician	The project team will not have a trial statistician, this is not considered necessary based on the trial design.
	The coordinating investigator will produce the report to the DMC.
The responsibilities of the PI	The PI, may be asked, and should be available, to attend open sessions of the DMC meeting.

Clarification of whether the DMC are advisory (make recommendations) or executive (make decisions)	The DMC makes recommendations to the investigators.
Payments to DMC members	Members will be reimbursed for travel expenses and for the costs of teleconferencing (if applicable).
The need for DMC members to disclose information about any competing interests	Competing interests should be disclosed. These are not restricted to finance matters – involvement in other trials or intellectual investment could be relevant. Although members may well be able to act objectively despite su connections, complete disclosure enhances credibility. (See Annex 1)
	DMC members should not use interim results to inform trading in pharmaceutical shares, and careful consideration should be given to trading stock of companies with competing products.
6. ORGANISATION OF DMC MEETINGS	
Expected frequency of DMC meetings	The DMC will meet approximately five times, during the trial. The exact frequency of meetings will depend upon trial events. The DMC will meet at least yearly.
Whether meetings will be face-to-face or by teleconference	The first meeting should ideally be face-to-face to facilitate full discussion allow members to get to know each other. It is recommended that all subsequent meetings should be face-to-face if possible, with teleconference a second option.
How DMC meetings will be organised, especially regarding open and closed sessions, including who will be present in each session	 The format of the meetings will be: 1. Open session: Introductory meeting Before start of the trial. 2. Closed session: first data evaluation Once the first three patients completed two treatment cycles (if necessary extra open session for clarification of specific concerns) 3. Closed session: safety and efficacy interim analysis Once the first six patients completed two treatment cycles. (if necessary extra open session for clarification of specific concerns) 4. (If applicable) Closed session: further safety and efficacy analysis Once the first twelve patients completed two treatment cycles. (if necessary extra open session for clarification of specific concerns) 5. Closed session: follow up data evaluation, final evaluation
	The closed session will be restricted to the DMC members. The minutes of closed session will be recorded by one of the members of the DMC. Minute from the closed session will be recorded separately from the minutes of the open session and stored securely by the Chair. Closed session minutes, finalized by signature of the Chair, will be maintained in confidence and retained until discarded in accordance with applicable statutory regulation. The open session will be attended by representatives of the study investigators (in general the coordinating investigator). Data presented in t open session may include enrolment data, individual AE data, baseline characteristics, overall data accuracy and compliance data or issues, and ot administrative data. Minutes of the open session will be recorded by one o the members of the DMC. Minutes will be finalized upon signature of the C and maintained in the study file at the clinical trial bureau Medical Oncolog accordance with applicable statutory regulation.

7. TRIAL DOCUMENTATION AND PROCEDURES TO ENSURE CONFIDENTIALITY AND PROPER COMMUNICATION	
Intended content of material to be available in open sessions	<u>Open sessions</u> : Accumulating information relating to recruitment and data quality (eg data return rates, treatment compliance) will be presented. Toxicit details based on pooled data will be presented and total numbers of events for the primary outcome measure (safety, tolerability and feasibility) and other outcome measures may be presented, at the discretion of the DMC.
Intended content of material to be available in closed sessions	The same material will be available in the closed and open sessions.
Will the DMC be blinded to the treatment allocation	Not applicable.
Who will see the accumulating data and interim analysis	The DMC members perform the interim analysis (safety and efficacy), based the data provided by the coordinating investigator, and report their recommendations to the principal investigator.
	DMC members do not have the right to share confidential information with anyone outside the DMC, including the PI.
Who will be responsible for identifying and circulating external evidence (eg from other trials/ systematic reviews)	Identification and circulation of external evidence (eg from other trials/ systematic reviews) is not the responsibility of the DMC members. The PI or the trials office team will collate any such information.
To whom the DMC will communicate the decisions/ recommendations that are reached	The DMC will report its recommendations in writing to the PI.
Whether reports to the DMC be available before the meeting or only at/during the meeting	The DMC will receive the report from the coordinating investigator at least 2 weeks before any meetings.
What will happen to the confidential papers after the meeting	The DMC members should destroy their reports after each meetings. Fresh copies of previous reports will be circulated with the newest report before each meeting.
8. DECISION MAKING	7/.
What decisions/recommendations will	Possible recommendations could include:
be open to the DMC	No action needed, trial continues as planned
	• Early stopping due, for example, to clear harm of a treatment, futility external evidence
	Stopping recruitment within a subgroup
	Extending recruitment or extending follow-up
	Sanctioning and/or proposing protocol changes
The role of formal statistical methods, specifically which methods will be used	The planned statistical analyses are described in chapter 10 of the study protocol.
and whether they will be used as guidelines or rules	Specifically, an interim safety evaluation and an interim efficacy evaluation whe performed (section 10.4 of the study protocol) :
	In summary, at the interim evaluations:

	The trial will continue to accrue until a total of 12 subjects have been treat both the following occur:
	• a maximum of three of the first six subjects show disease progressio cycle 2; AND:
	• either one or two systemic DLTs (dose limiting toxicities) were seen a the first two cycles of the first six subjects OR
	•(if no systemic DLTs were seen) any locoregional DLT was seen among the two cycles of the first six subjects
	Specific criteria for dose adjustments for the entire study population are a specified in section 10.4 of the study protocol.
How decisions or recommendations will be reached within the DMC	Every effort should be made for the DMC to reach an unanimous decision However, if this is not possible, the majority vote will decide.
	It is important that the implications (eg ethical, statisticial, practical, finance for the trial be considered before any recommendation is made.
	The Chair will summarise discussions and encourage consensus; it may be for the Chair to give their own opinion last.
When the DMC is quorate for decision- making	Effort should be made for all members to attend. The coordinating investig will try to ensure that a date is chosen to enable this. Members who cannot attend in person should be encouraged to attend by teleconference. If, at shouce, any DMC members cannot attend at all then the DMC may still meet least one statistician and one clinician, including the Chair will be present. DMC is considering recommending major action after such a meeting the DC chair should talk with the absent members as soon after the meeting as porto check they agree. If they do not, a further teleconference should be arran with the full DMC.
Can DMC members who cannot attend the meeting input	If the report is circulated before the meeting, DMC members who will not able to attend the meeting may pass comments to the DMC Chair for consideration during the discussions.
What happens to members who do not attend meetings	If a member does not attend a meeting, it should be ensured that the member available for the next meeting. If a member does not attend a second meet they should be asked if they wish to remain part of the DMC. If a member of not attend a third meeting, they should be replaced.
Whether different weight will be given to different endpoints (eg safety/efficacy)	Safety and efficacy interim analyses are equally important and both deter whether the trial will be continued, as specified in section 10.4 of the stud protocol.
Any specific issues relating to the trial design that might influence the proceedings, eg cluster trials,	The safety interim analysis and efficacy interim analysis will both be perforonce the first six patients completed two treatment cycles.
equivalence trials, multi-arm trials	It is possible (and expected) that when the sixth patient completes her sec treatment cycle, the first patient will already have completed all treatment cycles.

Page 66 of 71

58 59 60

To whom will the DMC report their The DMC will report their recommendations/decisions in the form of a letter to recommendations/decisions, and in the PI and coordinating investigator, within 2 weeks. A copy of the letter will be what form kept in the study file at the Clinical trial bureau Medical Oncology. Whether minutes of the meeting be As described in chapter 6 of this charter minutes of the meetings will be taken made and, if so, by whom and where by one of the DMC members and will be kept at the clinical trial bureau. they will be kept What will be done if there is "If the DMC has serious problems or concerns with the PI's decision a meeting disagreement between the DMC and should be held. The information to be shown would depend upon the action the body to which it reports proposed and the DMC's concerns. Depending on the reason for the disagreement confidential data will often have to be revealed to all those attending such a meeting. The meeting should be chaired by a senior member of the trials office staff or an external expert who is not directly involved with the trial." **10. AFTER THE TRIAL** Publication of results At the end of the trial there may be a meeting to allow the DMC to discuss the final data with principal trial investigators and give advice about data interpretation. The trial results will be published in a correct and timely manner. The information about the DMC that DMC members should be named and their affiliations listed in the main report. will be included in published trial A brief summary of the timings and conclusions of DMC meetings should be reports included in the body of this paper. Any constraints on DMC members The DMC may discuss issues from their involvement in the trial when divulging information about their permission is agreed with the PI. deliberations after the trial has been published I hereby declare that I have read the charter and that I agree with its contents. Name:

BMJ Open

Signed: _____

9. REPORTING

Date: ____

Supplement 6.1 Patient informed consent form in English The i-GO study: treatment of breast cancer using chemotherapy encapsulated in

temperature sensitive nanoparticles, in combination with local warming of the tumour.

- I have read the information letter. I was able to ask questions. My questions have been sufficiently answered. I had sufficient time to decide whether or not I will participate.
- I know that participation is voluntary. I also know that at any moment, I can decide not to participate after all or to quit the study. I don't have to provide a reason for that.
- I give consent to inform my general practitioner, treating medical specialist(s) and pharmacy that I participate in this study.
- I give consent to request information (medical data, laboratory results and previously made scans) from my general practitioner and treating medical specialist(s) from other hospitals.
- I give consent to notify my general practitioner and/or treating medical specialist(s) about unexpected findings that are or could be of importance to my health.
- I know that I cannot become pregnant during the study.
- I consent to collect and use my data and blood samples in the way and for the causes that are described in the information letter.
- I know that, in order to monitor the study, certain persons will have access to all my data. These persons are stated in the information letter. I give consent for access by these persons.
- I give consent to keep my data at the UMC Utrecht for 15 years after this study.
 - l □ do

□ do not

give consent to use my personal data for future research on the topic of breast cancer, during the 15 year that the data have to be kept.

l □ do

_

🗆 do not

give consent to approach me after this study for a follow-up study or other research on the topic of breast cancer.

- I know that, in case I have side effects of the treatment, coded data on the side effects will be provided to Profound Medical and Celsion. These data cannot be traced back to me personally.

l □ do

🗆 do not

give consent to provide coded data (other than side effects) to Profound Medical and Celsion. These data cannot be traced back to me personally.

- I want to participate in this study.

Name study subject:

Signature:

Date : __ / __ / __

BMJ Open

Patient informed consent form i-GO study NL67422.041.18 – version 5, 06-08-2020 page 2/3

I declare that I have fully informed this subject on the mentioned study.

If, during the duration of the study, information will become available that could affect the subject's consent, then I will timely inform her about that.

Name investigator (or representative):

Signature:

Date: __ / __ / __

for occurrence with any only

 BMJ Open

Patient informed consent form	n i-GO stud	ly
NL67422.041.18 – version 5, 06-08-	2020 pag	ge 3/3

3 4	Supplement 6.2 Patient informed consent form for Biobank research in English
5 6	Biobank research of the i-GO study
7	(This is a separate part of the i-GO study, for which you can give consent separately)
8	- I
9	
10	do not give consent to draw extra blood which will be coded and kept <u>indefinitely</u> in
11 12	the Central Biobank of the UMC Utrecht, for future research on the topic of breast cancer.
12	- I 🗆 do
14	□ do not
15	give consent to use my body material that has been obtained during breast biopsies, breast
16	surgery or biopsies of metastases (to confirm my diagnosis or after the end of this study), to
17	
18	use this body material for further research and to keep it, as is explained in the patient
19 20	information letter.
20	- I 🗆 do
22	□ do not
23	give consent to keep my data at the UMC Utrecht for longer than 15 years and to use it for
24	future research on the topic of breast cancer.
25	
26	- I know that I can withdraw my consent to the Biobank research at any moment. I don't have to
27 28	provide a reason for that.
29	
30	
31	Name study subject:
32	
33	
34	Signature: Date : / /
35 36	
37	
38	
39	
40	
41	I declare that I have fully informed this subject on the mentioned study.
42 43	If, during the duration of the study, information will become available that could affect the subject's
44	consent, then I will timely inform her about that.
45	
46	
47	Name investigator (or representative):
48	
49	Signature: Date: / /
50 51	
52	
53	
54	
55	
56	
57	
58	

Reference to SPIRIT 2013 Checklist for:

Study protocol of the i-GO study, a phase I feasibility study of Magnetic Resonance guided High-Intensity Focused Ultrasound-induced hyperthermia, Lyso-Thermosensitive Liposomal Doxorubicin and cyclophosphamide in de novo stage IV breast cancer patients.

The SPIRIT 2013 Checklist contains recommended items to address in a clinical trial protocol and related documents.

The SPIRIT checklist is copyrighted by the SPIRIT Group under the Creative Commons "Attribution-NonCommercial-NoDerivs 3.0 Unported"

Section/item	Item no.	Mentioned in study
		protocol on page
Administrative inform	ation	
Title	1	Title page
Trial registration	2a	Page 4, line12,
		Page 26, line 16
	2b	Complete study protocol
Protocol version	3	Page 24, line 6
Funding	4	Page 27, lines 6-9
Roles and	5a	Page 24, line 14 through
responsibilities		page 25 line 7
		Page 26, lines 1-4
	5b	Page 24, lines 14-15
	5c	Page 24, line 14 through
		page 25 line 7
	5d	Page 24, line 14 through
		page 25 line 7
Introduction		0
Background and	6a	Page 6-10
rationale		· / /
	6b	Not applicable
Objectives	7	Page 7, lines 2-8
		Page 10, lines 19-22
		Page 14, line 16
		Page 23, lines 11-13
Trial design	8	Page 10, lines 19-22
Methods: Participants	, interventions, and o	outcomes
Study setting	9	Page 24, lines 14-15
Eligibility criteria	10	Page 11, line 15 trough
		page 14, line 14.
Interventions	11a	Page 15, line 14 through
		page 19, line 4
	11b	Page 17, lines 19-22

Page 18, lines 12-17

2		
3 4		
5		1
6 7		1
8 9 10	Outcomes	1
11 12	Participant timeline	1
13	Sample size	1
14 15	Recruitment	1
15 16	Methods: Assignment of	f in
17	Allocation	1
18 19	Blinding (masking)	1
20	Methods: Data collection	n, r
21 22	Data collection methods	1
23		1
24 25	Data management	1
26 27	Data management	1
28	Statistical methods	2
29 30		
31		2
32		2
33 34	Methods: monitoring	
35 36	Data monitoring	2
37 38		2
39 40		
41	Harms	2
42 43		
44		
45 46		
47 48	Auditing	2
49	Ethics and dissemination	<u> </u>
50 51	Research ethics approval	2
52		2
53 54	Protocol amendments	2
55 56	Consent or assent	2
57 58		2
59 60		
00		

		J -, ·
	11c	Not applicable
	11d	Page 19, lines 5-16
		Supplement 3
Outcomes	12	Page 14 line 15 through
		page 15 line 13.
Participant timeline	13	Figure 2
Sample size	14	Page 11, lines 8-10
Recruitment	15	Page 11, lines 10-14
Methods: Assignment of	finterventions (for contro	lled trials)
Allocation	16	Not applicable
Blinding (masking)	17	Not applicable
Methods: Data collection	n, management, and analy	sis
Data collection methods	18a	Page 25, line 8 through
	~	page 26 line 2.
	18b	Page 20, lines 1-5.
Data management	19	Page 25, line 8 through
		page 26 line 10.
Statistical methods	20a	Page 20, line 19, through
		page 21, line 3
	20b	Not applicable
	20c	Page 20, lines 1-5.
Methods: monitoring	L.	
Data monitoring	21a	Page 20, lines 14-17,
		supplement 5
	21b	Page 19 line 17 through
		page 20 line 17,
		supplement 4
Harms	22	Page 16, line 20 through
		page 17 line 3,
		page 24, lines 17-20,
		page 18, lines 18-19
Auditing	23	Page 20, line 14,
		page 25, lines 6-7
Ethics and dissemination	1	
Research ethics approval	24	Page 4, line 8,
		page 24, lines 4-6
Protocol amendments	25	Page 24, lines 7-8
Consent or assent	26a	Page 24, lines 8-11,
		supplement 6
	26b	Page 18, lines 21-22
		supplement 6

Confidentiality	27	Page 25, line 8 trrough
		page 26 line 10
Declaration of interests	28	Page 28, line 2
Access to data	29	Page 25, line 8 trrough
		page 26 line 10
Ancillary and post-trial	30	Page 24, line 20-21
care		
Dissemination policy	31a	Page 24, line 11-12
	31b	Not applicable
	31c	Not applicable
Appendices		
Informed consent	32	Supplement 6
materials		
Biological specimens	33	Page 18, line 21, through
		page 19 line 4

page 19 line 4

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml