Chemistry–A European Journal

Supporting Information

Diversely Functionalised Cytochalasins through Mutasynthesis and Semi-Synthesis

Chongqing Wang,^[a] Christopher Lambert,^[b, d] Maurice Hauser,^[a] Adrian Deuschmann,^[a] Carsten Zeilinger,^[a] Klemens Rottner,^[c, d] Theresia E. B. Stradal,^[c] Marc Stadler,^[b] Elizabeth J. Skellam,^[a] and Russell J. Cox^{*[a]}

1.0	Ferm	entation and Metabolite Preparation and Characterisation	2
	1.01	Strains and Culture Conditions	2
	1.02	Fermentation and Extraction Protocols	2
	1.03	Feeding Studies	2
	1.04	Analytical LCMS	3
	1.05	Preparative LCMS	3
	1.06	HRMS	3
	1.07	NMR	3
	1.08	IR	3
	1.09	4'-lodo cytochalasin H 1e	4
	1.10	4'-(O-Prop-2-enyl) cytochalasin H 1f	8
	1.11	4'-(O-Propargyl) cytochalasin H 1g	12
	1.12	4'-Azido cytochalasin H 1h	16
2.0	Synth	etic Procedures and Characterisation	20
	2.01	4'-Amino cytochalasinH 1i	20
	2.02	4'-(1-(4-Methyltriazolyl)) cytochalasin H 5a	25
	2.03	4'-(1-(4-Phenyltriazolyl)) cytochalasin H 5b	30
	2.04	4'-(1-(4- <i>p</i> -Bromophenyltriazolyl)) cytochalasin H 5c	35
	2.05	Biotin propargyl ester 6a	40
	2.06	Biotin but-3-ynyl ester 6b	44
	2.07	Biotin pent-4-ynyl ester 6c	48
	2.08	4'-Biotin-triazole-linkedcytochalasin H 7a	52
	2.09	4'-Biotin-triazole-linkedcytochalasin H /b	5/
	2.10	4 -Biolin-Inazole-linkedcylochalasin H /C	6Z
	2.11	A' O Rightin linked extechologin H 0	0/ 72
	2.12	Δ Proparayl popicillin C 10	77
	2.13	Cytochalasin H penicillin G adduct 11	78
	2.14	A'-Perulane linked cytochalasin H 13	84
	2.15	4'-Coumarin dve-linked cytoclasin H 15	89
	2.10	Dve-linked cytochalasin 17	94
	2 18	Dye-Linked cytochalasin 11	100
	2.19	4'-Dve-Linked cytochalasin H 21	105
	2.20	4'-Prop-1-vnvl cvtochalsin H 22	110
	2.21	4'-Pinacolborolanyl cytochalasin H 23	115
	2.22	4'-4' Cvtochalasin H dimer 24	115
	2.23	Cytochalasin H dimer 25	125
	2.24	Bis acetylene linker 26	129
	2.25	Dimeric cytochalasin H 27	129
3.0	In viv	o Procedures	134
	3.01	Growth Inhibition of Fungal Strains	134
	3.02	Cytotoxicity Assays	135
	3.03	In vivo Effects on Actin Cytoskeleton	136
4.0	Refer	ences	141

1.0 Fermentation and Metabolite Preparation and Characterisation

1.01 Strains and Culture Conditions

M. grisea NI980 is a *Digitaria smutsii* isolate obtained from our collaborators and was used as the wild-type strain in this study. Strains were cultivated on Oatmeal Agar (OMA) (4% w/v oat meal, 0.5% w/v sucrose, 2% agar) or Complete Medium (CM) agar at 25°C. For cytochalasan production, strains were cultivated in Soy Sauce Sucrose (SSS) medium (5% v/vsoy sauce, 5% w/v sucrose, in autoclaved tap water) or DPY liquid medium (2% w/v dextrin from potato starch, 1% w/v polypeptone, 0.5% w/v gar) for 7 days at 25 °C, 110 rpm.

1.02 Fermentation and Extraction Protocols

For extraction, *M. grisea* spores were collected from MG agar plates incubated for 7 days and inoculated into 500mL Erlenmeyer flasks containing 100 mL DPY. The spores were allowed to grow in the liquid culture for 7-8 days on shakers at 110 rpm at 25 °C. The cells were blended in the fermentation broth, filtered to remove the mycelium, and transferred into a separating funnel. An equal volume of EtOAc was added into the separating funnel and the aqueous layer was extracted twice. The organic solvent from the two extractions was combined and dried with MgSO₄, filtered and evaporated to dryness. The crude extract was dissolved into 1 mL HPLC grade MeOH.

1.03 Feeding Studies

200 mg of *O*-Methyl-L-tyrosine **3a** (purchased from Sigma-Aldrich) was dissolved into double distilled water (final concentration: 10 mg / mL) and filter sterilized. 200 µl of this solution was fed to the $\Delta pyiA$ knock-out strain inoculated into 500 mL Erlenmeyer flasks containing 100 mL DPY. The feeding was repeated at 24 hour intervals four times. On the 7th day the cultures were extracted using the method described above.

200 mg of *O*-Propylene-L-tyrosine **3f** was dissolved into double distilled water (final concentration: 10 mg / mL) and filter sterilized. 200 µl of this solution was fed to the $\Delta pyiA$ knock-out strain inoculated into 500 mL Erlenmeyer flasks containing 100 mL DPY. The feeding was repeated at 24 hour intervals four times. On the 7th day the cultures were extracted using the method described above.

200 mg of *O*-Propyne-L-tyrosine **3g** was dissolved into double distilled water (final concentration: 10 mg / mL) and filter sterilized. 200 µl of this solution was fed to the $\Delta pyiA$ knock-out strain inoculated into 500 mL Erlenmeyer flasks containing 100 mL DPY. The feeding was repeated at 24 hour intervals four times. On the 7th day the cultures were extracted using the method described above.

200 mg of *para*-fluoro- / chloro- /bromo- /iodo-phenylalanine (**3b-3e**, purchased from Sigma-Aldrich) was dissolved into double distilled water (final concentration: 10 mg / mL), stirred at 60 °C until dissolved completely and filer sterilized. 200 μ l of this solution was fed to the $\Delta pyiA$ knock-out strain inoculated into 500 mL Erlenmeyer flasks containing 100 mL DPY. The feeding was repeated at 24 hour intervals four times. On the 7th day the cultures were extracted using the method described above.

200 mg of *para*-azido-phenylalanine **3h** (purchased from abcr) was dissolved into double distilled water (final concentration: 10 mg / mL) and filter sterilized. 200 μ l of this solution was fed to the $\Delta pyiA$ knock-out strain inoculated into 500 mL Erlenmeyer flasks containing 100 mL DPY. The feeding was repeated at 24 hour intervals four times. On the 7th day the cultures were extracted using the method described above.

1.04 Analytical LCMS

LCMS data were obtained using a Waters LCMS system comprising of a Waters 2767 autosampler, Waters 2545 pump system and a Phenomenex Kinetex column (2.6 μ , C₁₈, 100 Å, 4.6 × 100 mm) equipped with a Phenomenex Security Guard precolumn (Luna C₅ 300 Å) eluted at 1 mL/min. Detection was performed by Waters 2998 diode array detector between 200 and 600 nm; Waters 2424 ELSD and Waters SQD-2 mass detector operating simultaneously in ES⁺ and ES⁻ modes between 100 m/z and 650 m/z. Solvents were A, HPLC-grade H₂O containg 0.05% formic acid; and B, HPLC-grade CH₃CN containing 0.045% formic acid. Gradients were as follows: Method 1 (optimised for non-polar compounds): 0 min, 10% B; 10 min 90% B; 12 min, 90% B; 13 min, 10% B and 15 min, 10% B.

1.05 Preparative LCMS

Compounds were purified using a Waters massdirected autopurification system consisting of a Waters 2545 pump and Waters 2767 autosampler. The chromatography column was a Phenomenex Kinetex Axia column (5 μ , C₁₈, 100 Å, 21.2 × 250 mm) fitted with a Luna C₅ 300 Å Phenomenex Security Guard precolumn. The column was eluted at 20 mL/min at 22 °C. Solvents used were A, H₂O + 0.05% formic acid; and B, CH₃CN + 0.045% formic acid. All solvents were HPLC grade. The column outlet was split (100:1) and the minority flow was supplemented with HPLC-grade MeOH + 0.045% formic acid to 1000 μ L/min and diverted for interrogation by diode array (Waters 2998) and evaporative light-scattering (Waters 2424) detectors. The flow was also analysed by mass spectrometry (Waters SQD-2 in ES⁺ and ES⁻ modes). Desired compounds were collected into glass test tubes. Combined fractions were evaporated *in vacuo*, then dissolved directly in HPLC-grade MeOH to make the final concentration 10 mg / mL, 300 µl solution was loaded into the columnfor purification.

1.06 HRMS

HRMS was obtained using a UPLC system (Waters Acquity Ultraperformance, running the same method and column as above) connected to a Q-TOF Premier mass spectrometer.

1.07 NMR

A Bruker Avance 500 instrument equipped with a cryo-cooled probe at 500 MHz (¹H)/125 MHz (¹³C) and 600 MHz (¹H)/150 MHz (¹³C) were used for all NMR analysis. Standard parameters were used for the collection of 2D spectra (¹H, ¹H-correlation spectroscopy [COSY], heteronuclear single-quantum coherence [HSQC] and HMBC) in the indicated solvents. 1H and 13C spectra are referenced relative to residual protonated solvents. All δ values are quoted in ppm and all *J* values in Hz.

1.08 IR

Infrared Spectra were recorded using a Shimadzu IRAffinity-1S fourier transform infrared spectrophotometer and quest atr diamond extended range accessory (black).

1.09 4'-lodo Cytochalasin H 1e

Chemical Formula: C₃₀H₃₈INO₅ Exact Mass: 619.1795

Position	δ _H	М	J _{H-H} /Hz	δ _c	HSQC	HMBC H to C	H-H COSY
1	-	-	-	174.3	-	-	-
2	5.46	brs	-	-	-	-	-
3	3.23	ddd	1.1, 4.8, 9.6	53.5	СН	1', 1, 4, 5	4, 5, 10
4	2.13	dd	3.6, 5.1	50.5	СН	1, 3, 5	3, 5, 10
5	2.80	m	-	32.7	СН	1', 3	4, 11, 12
6	-	-	-	147.9	-	-	-
7	3.84	dd	1.3, 10.8	69.7	СН	5, 6, 8, 12, 13	8, 12
8	2.95	dd	9.8, 10.8	47.2	СН	7, 9, 13, 20, 21	7, 13
9	-	-	-	51.7	-	-	-
10a	2.63	dd	9.5, 13.5	45.2	CH₂	1', 3	3, 4, 12
10b	2.82	dd	4.8, 13.5	-	-	-	-
11	0.99	d	6.7	14.0	CH₃	4, 5, 6	5
12a	5.12	brs	-	114.3	CH ₂	5, 6, 7	5, 7, 11
12b	5.37	brs	-	-	-	-	-
13	5.78	ddd	1.4, 9.6,	127.1	СН	7, 8, 15	8, 14, 15
			15.5				
14	5.43	ddd	4.8, 10.3,	138.8	СН	9, 15	13, 15
			15.5				
15a	1.82	m	-	42.7	CH₂	13, 14, 16, 17	13, 14,
15b	2.05	m	-	-	-	-	-
16	1.81	m	-	28.5	СН	13, 14, 17	22
17a	1.60	m	-	53.9	CH ₂	18, 19	-
17b	1.89	m	-	-	-	-	-
18	-	-	-	74.4	-	-	-
19	5.55	brs	-	138.3	СН	-	20
20	5.88	dd	2.9, 16.4	126.0	СН	18, 19	19
21	5.58	brs	-	77.2	СН	8, 9, 19, 20, 23	-
22	1.07	d	6.5	26.4	CH₃	15, 16, 17	16
23	1.37	S	-	31.1	CH₃	17, 18, 19	-
1'	-	-	-	131.0	-	-	-
2' 6'	6.93	d	8.2	131.1	2 x CH	3', 4', 5', 10	3', 5'
3' 5'	7.67	d	8.2	138.0	2 x CH	1', 4'	2', 6'
4'	-	-	-	137.3	-	-	-
24	-	-	-	170.2	-	-	-
25	2.27	S	-	20.9	CH₃	21, 24	-

HRMS (*m/z*): calculated for [C₃₀H₃₈NO₅I + Na]: 642.1692, found: 642.1693.

1.10 4'-(O-prop-2-enyl) Cytochalasin H 1f

Chemical Formula: C₃₃H₄₃NO₆ Exact Mass: 549.3090

Position	δ _н	М	J _{H-H} /Hz	δc	HSQC	HMBC H to C	H-H COSY
1	-	-	-	174.4	-	-	-
2	5.50	brs	-	-	-	-	-
3	3.23	ddd	1.1, 5.0, 9.6	54.0	СН	1', 1, 4, 5	4, 5, 10
4	2.12	dd	3.8, 5.0	50.2	CH	1, 3, 5, 6, 10,	3, 5, 10
						21	
5	2.79	m	-	33.0	СН	1′, 3	4, 11, 12
6	-	-	-	147.9	-	-	-
7	3.87	dd	1.6, 10.7	69.8	СН	6, 12	8, 12
8	2.96	t	10.7	47.3	СН	7, 9, 13, 20, 21	7, 13
9	-	-	-	51.9	-	-	-
10a	2.62	dd	9.4, 13.6	44.8	CH ₂	1′, 3	3, 4, 12
10b	2.81	dd	4.9, 13.6	-	-	-	-
11	0.99	d	6.7	14.1	CH₃	4, 5, 6	5
12a	5.13	brs	-	114.0	CH ₂	5, 6, 7	5, 7, 11
12b	5.37	brs	-	-	-	-	-
13	5.75	ddd	1.4, 9.7,	127.1	СН	7, 8, 15	8, 14, 15
			15.4				
14	5.42	ddd	4.8, 10.1,	138.7	СН	9, 15	13, 15
			15.4				,
15a	1.84	m	-	42.8	CH ₂	13, 14, 16, 17	13, 14,
15b	2.05	m	-	-	-	-	-
16	1.81	m	-	28.6	СН	13, 14, 17	22
17a	1.60	dd	3.0. 14.4	53.7	CH ₂	18.19	-
17b	1.89	m	3.0, 14.4	-	-	-	-
18	-	-	-	74.4	-	-	-
19	5.57	dd	2.3, 16.2	138.1	СН	-	20
20	5.89	dd	3.0, 16.2	126.0	СН	18, 19	19
21	5.57	dd	2.6, 3.0	77.4	СН	8, 9, 19, 20, 21	-
			,			23	
22	1.07	d	6.3	26.6	CH₃	15. 16. 17	16
23	1.37	S	-	31.2	CH₃	17, 18, 19	-
1'	-	-	-	129.5	-	-	-
2' 6'	7.07	d	8.3	130.0	2 x CH	3', 4', 5', 10	3', 5'
3' 5'	6.88	d	8.3	115.1	2 x CH	1'. 4'	2'. 6'
4'	-	_	-	157.7	-	-	-
24	-	-	-	170.1	-	-	-
25	2.27	S	-	20.9	CH₃	21, 24	-
7'	4.54	t	1.6	68.8	CH ₂	, 4', 8', 9'	8', 9'
8′	6.06	dddd	5.3. 10.5.	133.2	CH	7'	7'. 9'
-			15.8, 22.6		2	-	.,.
9a'	5.30	dd	1.6. 3.2	117.6	CH ₂	7'. 8'	7'. 8'
9b'	5.41	m	-	-	-	-	-

HRMS (*m/z*): calculated for [C₆₀H₇₆N₂O₁₀ + Na]: 572.2988, found: 572.2993.

1.11 4'-(O-propargyl) Cytochalasin H 1g

Chemical Formula: C₃₃H₄₁NO₆ Exact Mass: 547.2934

Position	δ _H	М	J _{H-H} /Hz	δ _c	HSQC	HMBC H to C	H-H COSY
1	-	-	-	174.2	-	-	-
2	5.50	brs	-	-	-	-	-
3	3.24	ddd	1.1, 5.0, 9.6	53.8	СН	1', 1, 4, 5	4, 5, 10
4	2.13	dd	3.8, 5.0	50.5	СН	1, 3, 5, 6, 10,	3, 5, 10
						21	
5	2.80	m	-	32.9	СН	1', 3	4, 11, 12
6	-	-	-	147.8	-	-	-
7	3.85	dd	1.6, 10.7	69.6	СН	6, 12	8, 12
8	2.96	t	10.7	47.2	СН	7, 9, 13, 20, 21	7, 13
9	-	-	-	51.8	-	-	-
10a	2.61	dd	9.4, 13.6	44.8	CH ₂	1', 3	3, 4, 12
10b	2.82	dd	4.9, 13.6	-	-	-	-
11	1.03	d	6.7	14.1	CH₃	4, 5, 6	5
12a	5.13	brs	-	114.2	CH ₂	5, 6, 7	5, 7, 11
12b	5.37	brs	-	-	-	-	-
13	5.76	ddd	1.4, 9.7,	127.1	СН	7, 8, 15	8, 14, 15
			15.4				
14	5.41	ddd	4.8, 10.1,	138.8	СН	9, 15	13, 15
			15.4				
15a	1.83	m	-	42.8	CH ₂	13, 14, 16, 17	13, 14,
15b	2.05	m	-	-	-	-	-
16	1.81	m	-	28.5	СН	13, 14, 17	22
17a	1.60	dd	3.0, 14.4	53.6	CH ₂	18, 19	-
17b	1.82	dd	3.0, 14.4	-	-	-	-
18	-	-	-	74.4	-	-	-
19	5.54	dd	2.3, 16.2	138.2	СН	-	20
20	5.89	dd	3.0, 16.2	126.0	СН	18, 19	19
21	5.58	dd	2.6, 3.0	77.5	СН	8, 9, 19, 20, 21	-
						23	
22	1.07	d	6.3	26.4	CH₃	15, 16, 17	16
23	1.37	S	-	31.2	CH₃	17, 18, 19	-
1'	-	-	-	130.4	-	-	-
2' 6'	7.09	d	8.3	130.2	2 x CH	3', 4', 5', 10	3', 5'
3' 5'	6.96	d	8.3	115.4	2 x CH	1', 4'	2', 6'
4'	-	-	-	156.7	-	-	-
24	-	-	-	170.2	-	-	-
25	2.26	S	-	20.9	CH₃	21, 24	-
7'	4.70	d	2.4	55.9	CH_2	4', 8', 9'	9'
8′	-	-	-	78.5	-	-	-
9′	2.54	m	-	75.9	СН	7', 8'	7′

HRMS (*m/z*): calculated for [C₃₃H₄₁NO₆ + Na]: 570.2832, found: 570.2830.

1.12 4'-Azido Cytochalasin H 1h

Chemical Formula: C₃₀H₃₈N₄O₅ Exact Mass: 534.2842

Position	δ _н	М	J _{H-H} /Hz	δc	HSQC	HMBC H to C	H-H COSY
1	-	-	-	174.2	-	-	-
2	5.47	brs	-	-	-	-	-
3	3.22	ddd	1.1, 5.0, 9.6	53.7	СН	1', 1, 4, 5	4, 5, 10
4	2.11	dd	3.8 <i>,</i> 5.0	50.3	CH	1, 3, 5, 6, 10,	3, 5, 10
						21	
5	2.77	m	-	32.8	CH	1', 3	4, 11, 12
6	-	-	-	147.7	-	-	-
7	3.84	dd	1.4, 10.2	69.8	CH	5, 6, 8, 12, 13	8, 12
8	2.93	t	10.2	47.3	CH	7, 9, 13, 20, 21	7, 13
9	-	-	-	51.6	-	-	-
10a	2.65	dd	9.3, 13.6	44.9	CH ₂	1′, 3	3, 4, 12
10b	2.84	dd	4.9, 13.6	-	-	-	-
11	0.96	d	6.7	14.1	CH₃	4, 5, 6	5
12a	5.10	brs	-	114.2	CH ₂	5, 6, 7	5, 7, 11
12b	5.35	brs	-	-	-	-	-
13	5.74	ddd	1.4, 9.7,	127.1	СН	7, 8, 15	8, 14, 15
			15.5				
14	5.42	ddd	4.8, 10.2,	138.7	СН	9, 15	13, 15
			15.5				
15a	1.82	m	-	42.8	CH_2	13, 14, 16, 17	13, 14,
15b	2.04	m	-	-	-	-	-
16	1.79	m	-	28.6	СН	13, 14, 17	22
17a	1.58	dd	3.1, 14.3	53.9	CH ₂	18, 19	-
17b	1.87	dd	3.2, 14.3	-	-	-	-
18	-	-	-	74.3	-	-	-
19	5.56	dd	3.8, 15.2	138.1	СН	-	20
20	5.83	m	-	125.8	СН	9, 18, 19	19
21	5.55	brs	-	77.3	СН	19, 20, 24	-
22	1.05	d	6.4	26.6	CH₃	15, 16, 17	16
23	1.35	S	-	31.3	CH₃	17, 18, 19	-
1'	-	-	-	133.8	-	-	-
2' 6'	7.14	d	8.4	130.4	2 x CH	3', 4', 5', 10	3′, 5′
3′ 5′	6.99	d	8.4	119.1	2 x CH	1', 4'	2', 6'
4'	-	-	-	138.9	-	-	-
24	-	-	-	170.2	-	-	-
25	2.25	S	-	21.0	CH₃	21, 24	-

HRMS (m/z): calculated for [C₃₀H₃₈N₄O₅ + Na]: 557.2727, found: 557.2727.

IR (powder, cm⁻¹): 3388, 2920, 2112, 1685, 1506, 1369, 1280, 1226, 1045, 1014, 962, 534.

2.0 Synthetic Procedures and Characterisation

2.01 4'-Amino Cytochalasin H 1i

To a stirred solution of **1h** (10 mg, 0.019 mmol, 1.0 eq) in 2.0 mL dioxane-water mixture (4.4:1, v/v) was added TCEP (7.0mg, 0.028 mmol, 1.5 eq). The mixture was stirred at room temperature for 1 hour and the solvent was removed *in vacuo*. The residue was dissolved in EtOAc (2 mL) and washed with water (2 mL x 2). The organic phase was dried over MgSO₄, filtered and evaporated to dryness *in vacuo*. The residue was dissolved in MeOH and purified by LCMS to afford 6.7 mg of desired product (70.2%, 0.013 mmol) as a white solid.

HRMS (m/z): calculated for [C₆₀H₇₆N₂O₁₀ + Na]: 531.2835, found: 531.2830.

Position	δ _Η	М	J _{H-H} /Hz	δc	HSQC	HMBC H to C	H-H COSY
1	-	-	-	174.1	-	-	-
2	5.56	brs	-	-	-	-	-
3	3.20	ddd	1.1, 4.7, 9.4	53.9	СН	1', 1, 4, 5	4, 5, 10
4	2.11	dd	4.4, 4.7	50.2	СН	1, 3, 5, 6, 10,	3, 5, 10
						21	
5	2.80	m	-	32.9	СН	1′, 3	4, 11, 12
6	-	-	-	148.1	-	-	-
7	3.86	dd	1.4, 10.8	69.6	СН	6, 12	8, 12
8	2.96	dd	9.8, 10.8	47.2	СН	7, 9, 13, 20, 21	7, 13
9	-	-	-	51.8	-	-	-
10a	2.56	dd	9.8, 13.7	44.8	CH ₂	1′, 3	3, 4, 12
10b	2.75	dd	4.6, 13.7	-	-	-	-
11	1.02	d	6.7	14.1	CH₃	4, 5, 6	5
12a	5.13	brs	-	113.9	CH ₂	5, 6, 7	5, 7, 11
12b	5.37	brs	-	-	-	-	-
13	5.76	ddd	1.3, 9.6,	127.1	СН	7, 8, 15	8, 14, 15
			15.4				
14	5.40	ddd	4.9, 10.2,	138.7	СН	9, 15	13, 15
			15.4				
15a	1.82	m	-	42.6	CH ₂	13, 14, 16, 17	13, 14,
15b	2.06	m	-	-	-	-	-
16	1.81	m	-	28.4	СН	13, 14, 17	22
17a	1.58	dd	2.9, 14.3	53.8	CH ₂	18, 19	-
17b	1.89	m	3.1, 14.3	-	-	-	-
18	-	-	-	74.4	-	-	-
19	5.53	dd	2.3, 17.2	138.0	СН	-	20
20	5.89	dd	2.1, 17.2	126.0	СН	18, 19	19
21	5.58	m	-	77.2	СН	8, 9, 19, 20, 21	-
						23	
22	1.06	d	6.3	26.5	CH₃	15, 16, 17	16
23	1.37	S	-	31.2	CH₃	17, 18, 19	-
1'	-	-	-	130.0	-	-	-
2' 6'	6.95	d	8.3	129.8	2 x CH	3', 4', 5', 10	3', 5'
3′ 5′	6.65	d	8.3	115.3	2 x CH	1', 4'	2', 6'
4'	-	-	-	145.3	-	-	-
24	-	-	-	170.1	-	-	-
25	2.25	S	-	20.9	CH₃	21, 24	-

2.02 4'-(1-(4-methyltriazolyl)) Cytochalasin H 5a

To a stirred solution of **1h** (10 mg, 0.019 mmol, 1.0 eq) and propyne (2.0 mg, 0.038 mmol, 2.0 eq, purchased from Acros) in DMF (2 mL) was added CuI (0.2 mg, 0.95 μ mol, 0.05 eq) and DIPEA (1.2 mg, 9.5 μ mol, 0.5 eq). The mixture was stirred at room temperature for 12 hours under nitrogen and the solvent was removed *in vacuo*. The residue was dissolved in EtOAc (2 mL) and washed with water (2 mL x 2). The organic phase was dried over MgSO₄, filtered and evaporated to dryness *in vacuo*. The residue was dissolved in MeOH and purified by LCMS to afford 8.2 mg of desired product **5a** (76.4%, 0.014 mmol) as a white solid.

HRMS (*m/z*): calculated for [C₆₀H₇₆N₂O₁₀ + Na]: 597.3053, found: 597.3061.

Position	δ _н	М	J _{н-н} /Нz	δ _c	HSQC	HMBC H to C	H-H COSY
1	-	-	-	174.3	-	-	-
2	5.56	brs	-	-	-	-	-
3	3.31	m	-	53.5	СН	1', 1, 4, 5	4, 5, 10
4	2.18	dd	3.8, 5.0	50.2	СН	1, 3, 5, 6, 10	3, 5, 10
5	2.80	m	-	32.7	СН	1', 3	4, 11, 12
6	-	-	-	147.7	-	-	-
7	3.87	dd	1.3, 10.8	70.0	СН	6, 12	8, 12
8	2.96	m	-	47.3	СН	7, 9, 13, 20, 21	7, 13
9	-	-	-	51.7	-	-	-
10a	2.77	m	-	45.1	CH₂	1', 3	3, 4, 12
10b	2.95	m	-	-	-	-	-
11	1.00	d	6.7	14.1	CH₃	4, 5, 6	5
12a	5.14	brs	-	114.4	CH₂	5, 6, 7	5, 7, 11
12b	5.38	brs	-	-	-	-	-
13	5.78	ddd	1.4, 9.7,	127.0	СН	7, 8, 15	8, 14, 15
			15.4				
14	5.43	ddd	4.8, 10.1,	138.8	СН	9, 15	13, 15
			15.4				
15a	1.83	m	-	42.7	CH₂	13, 14, 16, 17	13, 14,
15b	2.06	m	-	-	-	-	-
16	1.81	m	-	28.6	СН	13, 14, 17	22
17a	1.61	m	-	53.8	CH_2	18, 19	-
17b	1.92	dd	3.0, 14.4	-	-	-	-
18	-	-	-	74.3	-	-	-
19	5.59	brs	-	138.2	СН	-	20
20	5.85	dd	3.0, 16.2	125.9	СН	18, 19	19
21	5.58	brs	-	77.2	СН	8, 9, 19, 20, 23	-
22	1.07	d	6.5	26.6	CH₃	15, 16, 17	16
23	1.37	S	-	31.2	CH₃	17, 18, 19	-
1'	-	-	-	137.8	-	-	-
2' 6'	7.33	d	8.5	130.4	2 x CH	3', 4', 5', 10	3′, 5′
3′ 5′	7.70	d	8.5	120.8	2 x CH	1', 4'	2', 6'
4'	-	-	-	120.9	-	-	-
24	-	-	-	170.2	-	-	-
25	2.28	S	-	21.0	CH₃	24	-
4''	-	-	-	144.2	-	-	-
5"	7.73	s	-	118.9	СН	4"	-
6"	2.47	S	-	11.0	CH₃	4" <i>,</i> 5"	-

2.03 4'-(1-(4-phenyltriazolyl)) Cytochalasin H 5b

To a stirred solution of **1h** (10 mg, 0.019 mmol, 1.0 eq) and phenylacetylene (4 mg, 0.038 mmol, 2.0 eq, purchased from Acros) in DMF (2 mL) was added CuI (0.2 mg, 0.95 μ mol, 0.05 eq) and DIPEA (1.2 mg, 9.5 μ mol, 0.5 eq). The mixture was stirred at room temperature for 12 hours under nitrogen and the solvent was removed *in vacuo*. The residue was dissolved in EtOAc (2 mL) and washed with water (2 mL x 2). The organic phase was dried over MgSO₄, filtered and evaporated to dryness *in vacuo*. The residue was dissolved in MeOH and purified by LCMS to afford 7.4 mg of desired product (61.8%, 0.011 mmol) as a white solid.

HRMS (m/z): calculated for [C₄₀H₄₆N₁O₆ + Na]: 659.3223, found: 659.3218.

	Ин.
2" [
3" N N 1"	
4" 7"6" 5"	5b
8" 🤇 // 11"	phenyl acetylene-Pyr H
	C ₃₈ H ₄₄ N ₄ O ₅
9" 10"	Exact Mass: 636.3312

Position	δ _H	М	J _{H-H} /Hz	δc	HSQC	HMBC H to C	H-H COSY
1	-	-	-	174.2	-	-	-
2	5.56	brs	-	-	-	-	-
3	3.32	m	-	53.3	СН	1', 1, 4, 5	4, 5, 10
4	2.17	dd	3.8, 5.0	50.2	СН	1, 3, 5, 6, 10	3, 5, 10
5	2.80	m	-	32.7	СН	1′, 3	4, 11, 12
6	-	-	-	147.7	-	-	-
7	3.85	dd	1.6, 10.7	69.7	СН	6, 12	8, 12
8	2.95	m	-	47.1	СН	7, 9, 13, 20, 21	7, 13
9	-	-	-	51.6	-	-	-
10a	2.65	m	-	44.9	CH ₂	1′, 3	3, 4, 12
10b	2.81	m	-	-	-	-	-
11	0.99	d	6.7	13.9	CH₃	4, 5, 6	5
12a	5.13	brs	-	114.2	CH₂	5, 6, 7	5, 7, 11
12b	5.37	brs	-	-	-	-	-
13	5.74	ddd	1.4, 9.7, 15.4	126.9	СН	7, 8, 15	8, 14, 15
14	5.44	ddd	4.8, 10.1, 15.4	138.6	СН	9, 15	13, 15
15a	1.82	m	-	42.8	CH₂	13, 14, 16, 17	13, 14,
15b	2.05	m	-	-	-	-	-
16	1.79	m	-	28.3	СН	13, 14, 17	22
17a	1.58	dd	2.9, 14.4	53.9	CH ₂	18, 19	-
17b	1.89	m	-	-	-	-	-
18	-	-	-	74.4	-	-	-
19	5.58	brs	2.3, 16.2	138.1	СН	-	20
20	5.87	dd	3.0, 16.2	125.6	СН	18, 19	19
21	5.59	brs	-	77.0	СН	8, 9, 19, 20, 23	-
22	1.06	d	6.5	26.5	CH₃	15, 16, 17	16
23	1.35	S	-	31.1	CH₃	17, 18, 19	-
1'	-	-	-	136.3	-	-	-
2' 6'	7.34	d	8.5	130.3	2 x CH	3', 4', 5', 10	3', 5'
3' 5'	7.78	d	8.5	120.8	2 x CH	1', 4'	2', 6'
4'	-	-	-	138.1	-	-	-
24	-	-	-	170.2	-	-	-
25	2.26	s	-	20.9	CH₃	24	-
4''	-	-	-	148.5	-	-	-
5"	8.18	s	-	117.0	СН	4''	-
6"	-	-	-	129.6	-	-	-
7" 11"	7.92	dd	1.4, 8.4	125.7	2 x CH	4'', 9''	8", 10"
9"	7.40	dd	8.4, 18.6	128.5	СН	7", 11"	8", 10"
8" 10"	7.47	dd	7.4, 8.4	128.7	2 x CH	6"	7", 11"

2.04 4'-(1-(4-p-bromophenyltriazolyl)) Cytochalasin H 5c

To a stirred solution of **1h** (10 mg, 0.019 mmol, 1.0 eq) and *p*-bromophenylacetylene (6.8 mg, 0.038 mmol, 2.0 eq, purchased from Acros) in DMF (2 mL) was added CuI (0.2 mg, 0.95 μ mol, 0.05 eq) and DIPEA (1.2 mg, 9.5 μ mol, 0.5 eq). The mixture was stirred at 80 °C for 12 hours under nitrogen and the solvent was removed *in vacuo*. The residue was dissolved in EtOAc (2 mL) and washed with water (2 mL x 2). The organic phase was dried over MgSO₄, filtered and evaporated to dryness *in vacuo*. The residue was dissolved in MeOH and purified by LCMS to afford 8.1 mg of desired product (60.6%, 0.011 mmol) as a white solid.

HRMS (m/z): calculated for $[C_{38}H_{43}N_4O_5Br + Na]$: 737.2315, found: 737.2313.

Position	δ _н	М	J _{н-н} /Нz	δc	HSQC	HMBC H to C	H-H COSY
1	-	-	-	174.4	-	-	-
2	5.56	brs	-	-	-	-	-
3	3.33	m	-	53.4	СН	1', 1, 4, 5	4, 5, 10
4	2.18	dd	3.8, 5.0	50.3	СН	1, 3, 5, 6, 10	3, 5, 10
5	2.81	m	-	32.7	СН	1', 3	4, 11, 12
6	-	-	-	147.6	-	-	-
7	3.88	dd	1.6, 10.7	69.9	СН	6, 12	8, 12
8	2.95	m	-	47.2	СН	7, 9, 13, 20, 21	7, 13
9	-	-	-	51.7	-	-	-
10a	2.80	m	-	44.9	CH ₂	1′, 3	3, 4, 12
10b	2.97	m	-	-	-	-	-
11	1.02	d	6.7	14.1	CH₃	4, 5, 6	5
12a	5.15	brs	-	114.3	CH ₂	5, 6, 7	5, 7, 11
12b	5.39	brs	-	-	-	-	-
13	5.76	ddd	1.4, 9.7, 15.4	127.0	СН	7, 8, 15	8, 14, 15
14	5.41	ddd	4.8, 10.1, 15.4	138.7	СН	9, 15	13, 15
15a	1.83	m	-	42.7	CH ₂	13. 14. 16. 17	13. 14.
15b	2.06	m	-	-	-	-	- , ,
16	1.81	m	-	28.5	СН	13, 14, 17	22
17a	1.61	dd	2.9, 14.4	53.7	CH ₂	18, 19	-
17b	1.89	dd	3.0, 14.4	-	-	-	-
18	-	-	-	74.4	-	-	-
19	5.58	brs	-	138.3	СН	-	20
20	5.88	dd	3.0, 16.2	125.7	СН	18, 19	19
21	5.58	brs	-	77.1	СН	8, 9, 19, 20, 23	-
22	1.07	d	6.5	26.5	CH₃	15, 16, 17	16
23	1.35	S	-	31.2	CH₃	17, 18, 19	-
1'	-	-	-	136.1	-	-	-
2' 6'	7.38	d	8.5	130.5	2 x CH	3', 4', 5', 10	3', 5'
3′ 5′	7.78	d	8.5	121.0	2 x CH	1', 4'	2', 6'
4'	-	-	-	120.9	-	-	-
24	-	-	-	170.2	-	-	-
25	2.28	S	-	20.9	CH₃	24	-
4''	-	-	-	147.5	-	-	-
5"	8.20	S	-	117.4	СН	4"	-
6"	-	-	-	129.1	-	-	-
7" 11"	7.82	dd	1.4, 8.4	127.4	2 x CH	4'', 9''	8", 10"
8" 10"	7.61	dd	7.4, 8.4	132.0	2 x CH	6"	7", 11"

2.05 Biotin propargyl ester 6a

To a stirred solution of **biotin** (100.0 mg, 0.41 mmol, 1.0 eq, purchased from Sigma-Aldrich) and propargyl bromide (0.1mL, 0.82 mmol, 2.0 eq, purchased from Acros) in dry THF (4 mL) was added K_2CO_3 (50.0 mg, 0.49 mmol, 1.2 eq). The mixture was stirred at 55 °C for 12 hours under nitrogen and the solvent was removed *in vacuo*. The residue was dissolved in EtOAc (4 mL) and washed with water (3 mL x 2). The organic phase was dried over MgSO₄, filtered and evaporated to dryness *in vacuo*. The residue was dissolved in MeOH and purified by LCMS to afford 69.0 mg of desired product (59.7%, 0.230 mmol) as a white solid.

¹**H NMR (500 MHz, CDCl₃):** δ (Hz) = 4.70 (d, J = 2.5 Hz, 2H), 4.56 (m, 1H), 4.37 (m, 2H), 3.20 (m, 1H), 2.95 (dd, J = 5.0 and 12.9 Hz, 1H), 2.77 (d, J = 12.9 Hz, 1H), 2.51 (t, J = 2.5 Hz, 2H), 2.41 (t, J = 7.1 Hz, 2H), 1.73 (m, 2H), 1.50 (m, 2H), 1.27 (m, 2H).

¹³C NMR (125 MHz, CDCl₃): δ = 172.6, 163.1, 79.5, 75.5, 62.0, 60.3, 55.2, 51.9, 40.6, 33.6, 29.8, 28.3, 24.6.

HRMS (m/z): calculated for [C₁₃H₁₈N₂O₃S + Na]: 305.0936, found: 305.0936.

· · ·	-
n	-
•••	c.
-	-

Position	δн	м	J _{H-H} /Hz	δς	HSOC	HMBC H to C	H-H COSY
4"	2.51	t	2.5	75.5	СН	5", 6"	5"
5"	-	-	-	79.5	-	-	6"
6"	4.70	d	2.5	51.9	CH ₂	4", 6"	5"
7"	-	-	-	172.6	-	-	-
8"	2.41	t	7.1	33.6	CH ₂	7", 9"	9"
9a''	1.50	m	-	28.3	CH_2	8", 10"	8"
9b''	1.73	m	-	-	-	-	-
10''	1.27	m	-	29.8	CH ₂	-	-
11"	1.73	m	-	24.6	CH ₂	9", 12"	12"
12"	3.20	m	-	55.2	СН	9"	11", 15"
13a''	2.77	d	12.9	40.6	CH ₂	12", 14"	14"
13b''	2.95	dd	5.0, 12.9	-	-	-	-
14"	4.56	m	-	60.3	CH	12", 13", 17"	13", 15"
15"	4.37	m	-	62.0	CH	12", 13", 17"	12", 14"
17"	-	-	-	163.1	-	-	-

2.06 Biotin but-3-ynyl ester 6b

To a stirred solution of **biotin** (100.0 mg, 0.41 mmol, 1.0 eq, purchased from Sigma-Aldrich) and 1-bromo-but-3-yne (80.0 mg, 0.61 mmol, 1.5 eq, purchased from Sigma-Aldrich) in dry THF (4 mL) was added K_2CO_3 (50.0 mg, 0.49 mmol, 1.2 eq). The mixture was stirred at 55 °C for 12 hours under nitrogen and the solvent was removed *in vacuo*. The residue was dissolved in EtOAc (4 mL) and washed with water (3 mL x 2). The organic phase was dried over MgSO₄, filtered and evaporated to dryness *in vacuo*. The residue was dissolved in MeOH and purified by LCMS to afford 100.2 mg of desired product (82.6%, 0.313 mmol) as a white solid.

¹**H NMR (500 MHz, CDCl₃):** δ (Hz) = 4.54 (m, 1H), 4.35 (m, 1H), 4.21 (t, *J* = 6.8 Hz 2H), 3.19 (m, 1H), 2.96 (dd, *J* = 5.1 and 12.8 Hz, 1H), 2.75 (dd, *J* = 1.0 and 12.8 Hz, 1H), 2.55 (ddd, *J* = 2.7, 6.8 and 13.5 Hz 2H), 2.39 (t, *J* = 7.4 Hz, 2H), 1.73 (m, 2H), 1.71 (m, 1H), 1.46 (m, 1H), 1.28 (m, 2H).

¹³C NMR (125 MHz, CDCl₃): δ = 173.3, 163.1, 80.1, 69.9, 62.0, 61.9, 60.1, 55.2, 40.6, 33.7, 29.7, 28.1, 24.7.

HRMS (m/z): calculated for $[C_{14}H_{20}N_2O_3S + Na]$: 319.1092, found: 319.1087.

Position	δ _Η	Μ	J _{H-H} /Hz	δc	HSQC	HMBC H to C	H-H COSY
3"	2.04	dd	2.6, 5.3	69.9	СН	4", 5", 6"	5"
4"	-	-	-	80.1	-	-	-
5″	2.55	ddd	2.7, 6.8,	19.0	CH ₂	3", 4", 6"	3", 6"
			13.5				
6"	4.21	t	6.8	62.0	CH₂	-	5"
7"	-	-	-	173.3	-	-	-
8"	2.39	t	7.4	33.7	CH₂	7", 9", 11"	9"
9a''	1.46	m	-	28.1	CH₂	8", 12"	8"
9b''	1.71	-	-	-	-	-	-
10"	1.28	m	-	29.7	CH ₂	-	
11"	1.73	m	-	24.7	CH₂	9", 12"	12"
12"	3.19	m	-	55.2	СН	9"	11", 15"
13a''	2.75	dd	1.0, 12.8	40.6	CH₂	12", 14"	14"
13b''	2.96	dd	5.1, 12.8	-	-	-	-
14"	4.54	m	-	60.1	CH	12", 13", 17"	13", 15"
15"	4.35	m	-	61.9	СН	12", 13", 17"	12", 14"
17"	-	-	-	163.1	-	-	-

2.07 Biotin pent-4-ynyl ester 6c

To a stirred solution of **biotin** (100.0 mg, 0.41 mmol, 1.0 eq, purchased from Sigma-Aldrich) and 1-bromopent-4-yne (90.0 mg, 0.61 mmol, 1.5 eq, purchased from Alfa Aesar) in dry THF (4 mL) was added K_2CO_3 (50.0 mg, 0.49 mmol, 1.2 eq). The mixture was stirred at 55 °C for 12 hours under nitrogen and the solvent was removed *in vacuo*. The residue was dissolved in EtOAc (4 mL) and washed with water (3 mL x 2). The organic phase was dried over MgSO₄, filtered and evaporated to dryness *in vacuo*. The residue was dissolved in MeOH and purified by LCMS to afford 96.0 mg of desired product (75.6%, 0.288 mmol) as a white solid.

¹**H NMR (500 MHz, CDCl₃):** δ (Hz) = 4.53 (m, 1H), 4.33 (m, 1H), 4.19 (t, *J* = 6.3 Hz 2H), 2.92 (dd, *J* = 5.0 and 12.8 Hz, 1H), 2.78 (d, *J* = 12.8 Hz, 1H), 2.29 (m, 2H), 1.99 (t, *J* = 2.6 Hz, 1H), 1.87 (m, 2H), 1.73 (m, 2H), 1.71 (m, 1H), 1.48 (m, 1H), 1.28 (m, 2H).

¹³C NMR (125 MHz, CDCl₃): δ = 173.6, 163.6, 83.1, 69.5, 62.9, 62.0, 60.1, 40.3, 29.7, 28.6, 27.6, 24.8, 24.7, 15.4.

HRMS (m/z): calculated for [C₁₅H₂₂N₂O₃S + Na]: 333.1249, found: 333.1246.

Position	δ _H	Μ	J _{<i>H₋H</i>} /Hz	δ _c	HSQC	HMBC H to C	H-H COSY
3"	1.99	t	2.6	69.5	СН	4", 5", 6"	5″
4"	-	-	-	83.1	-	-	-
5"	2.29	m	-	15.4	CH_2	3", 4", 6"	3", 6"
6''	1.87	m	-	27.6	CH_2	-	5″
7"	4.19	t	6.3	62.9	-	-	-
8''	-	-	-	173.6	CH_2	7", 9", 11"	9"
9a''	1.48	m	-	28.6	CH ₂	8", 12"	8"
9b''	1.73	m	-	-	-	-	-
10"	1.28	m	-	29.7	CH ₂	-	-
11"	1.73	m	-	24.7	CH ₂	9", 12"	12"
12"	1.71	m	-	24.8	СН	9"	11", 15"
13a''	2.78	d	12.8	40.3	CH ₂	12", 14"	14"
13b''	2.92	dd	5.0, 12.8	-	-	-	-
14"	4.53	m	-	60.1	СН	12", 13", 17"	13", 15"
15"	4.33	m	-	62.0	СН	12", 13", 17"	12", 14"
17"	-	-	-	163.6	-	-	-

2.08 4'-Biotin-triazole-linked Cytochalasin H 7a

To a stirred solution of **1h** (10 mg, 0.019 mmol, 1.0 eq) and **6a** (10.7 mg, 0.038 mmol, 2.0 eq) in DMF (2 mL) was added CuI (0.2 mg, 0.95 μ mol, 0.05 eq) and DIPEA (1.2 mg, 9.5 μ mol, 0.5 eq). The mixture was stirred at room temperature for 12 hours under nitrogen and the solvent was removed *in vacuo*. The residue was dissolved in EtOAc (2 mL) and washed with water (2 mL x 2). The organic phase was dried over MgSO₄, filtered and evaporated to dryness *in vacuo*. The residue was dissolved in MeOH and purified by LCMS to afford 8.6 mg of desired product (56.4%, 0.010 mmol) as a light yellow solid.

HRMS (m/z): calculated for [C₄₃H₅₆N₆O₈S + Na]: 839.3778, found: 839.3773.

Position	δ _н	м	J _{H-H} /Hz	δ _c	HSQC	HMBC H to C	H-H COSY
1	-	-	-	174.8	-	-	-
3	3.33	m	-	53.7	СН	1',4, 5	4, 5, 10
4	2.15	t	4.3	50.5	СН	3, 5	3, 5, 10
5	2.82	m	-	32.9	СН	1', 3	4, 11, 12
6	-	-	-	147.9	-	-	-
7	3.86	d	10.8	69.6	СН	5, 6, 8, 12, 13	8, 12
8	2.97	m	-	47.2	СН	1, 7, 9, 13, 21	7, 13
9	-	-	-	51.9	-	-	-
10a	2.74	m	-	45.1	CH ₂	1', 3	3, 4, 12
10b	2.94	dd	4.8, 13.5	-	-	-	-
11	1.07	d	6.7	14.4	CH₃	4, 5, 6	5
12a	5.15	brs	-	114.2	CH₂	5, 6, 7	5, 7, 11
12b	5.39	brs	-	-	-	-	-
13	5.74	ddd	1.4, 9.6,	127.0	СН	7, 8, 15	8, 14, 15
			15.5				
14	5.42	ddd	4.8, 10.3,	138.8	СН	9, 15	13, 15
			15.5				
15a	1.82	m	-	42.8	CH₂	13, 14, 16, 17	13, 14,
15b	2.06	m	-	-	-	-	-
16	1.82	m	-	28.5	СН	13, 14, 17	22
17a	1.61	m	-	53.8	CH ₂	18, 19	-
17b	1.91	m	-	-	-	-	-
18	-	-	-	74.3	-	-	-
19	5.58	brs	-	138.2	СН	-	20
20	5.88	dd	2.7, 16.5	125.9	СН	18, 19	19
21	5.52	brs	-	77.4	СН	8, 9, 19, 20, 23	-
22	1.06	d	6.5	26.5	CH₃	15, 16, 17	16
23	1.35	S	-	31.2	CH₃	17, 18, 19	-
1'	-	-	-	130.6	-	-	-
2' 6'	7.33	d	8.2	130.6	2 x CH	3', 4', 5', 10	3′, 5′
3′ 5′	7.75	d	8.2	120.9	2 x CH	1', 4'	2', 6'
4'	-	-	-	138.2	-	-	-
24	-	-	-	170.2	-	-	-
25	2.27	S	-	21.0	CH₃	21, 24	-
4"	-	-	-	145.1	-	-	-
5"	8.16	S	-	119.6	СН	4"	-
6''	5.34	S	-	25.5	CH₂	4", 5", 7"	7"
8"	-	-	-	173.5	-	-	-
9"	2.43	t	6.9	33.6	CH ₂	8", 10"	10'', 12''
10''	1.67	m	-	28.3	CH ₂	8", 9", 11", 12", 13"	9", 11"

	11"	1.48	m	-	28.1	CH_2	9", 10",12", 12"	10"
	12"	1.73	m	-	24.6	CH ₂	13 11", 13", 14",	9"
	13"	3.15	m	-	55.3	СН	11", 14"	14''
	14''	4.25	dd	4.4, 7.8	61.6	СН	16"	13", 18"
	16''	-	-	-	163.3	-	-	-
	18''	4.48	m	-	60.1	СН	13", 16"	14'', 19''
	19a''	2.69	m	-	40.6	CH ₂	13", 18"	18''
	19b''	2.94	m	-	-	-	-	-
-								

2.09 4'-Biotin-triazole-linked Cytochalasin H 7b

To a stirred solution of **1h** (10 mg, 0.019 mmol, 1.0 eq) and **6b** (11.2 mg, 0.038 mmol, 2.0 eq) in DMF (2 mL) was added CuI (0.2 mg, 0.95 μ mol, 0.05 eq) and DIPEA (1.2 mg, 9.5 μ mol, 0.5 eq). The mixture was stirred at room temperature for 12 hours under nitrogen and the solvent was removed *in vacuo*. The residue was dissolved in EtOAc (2 mL) and washed with water (2 mL x 2). The organic phase was dried over MgSO₄, filtered and evaporated to dryness *in vacuo*. The residue was dissolved in MeOH and purified by LCMS to afford 9.6 mg of desired product (61.9%, 0.011 mmol) as a white solid.

HRMS (m/z): calculated for [C₄₄H₅₈N₆O₈S + Na]: 853.3935, found: 853.3936.

Position	δ _Η	Μ	J _{H-H} /Hz	δ _c	HSQC	HMBC H to C	H-H COSY
1	-	-	-	175.2	-	-	-
3	3.33	m	-	53.9	СН	1',4, 5	4, 5, 10
4	2.13	m	-	50.4	СН	3, 5	3, 5, 10
5	2.83	m	-	32.9	СН	1′, 3	4, 11, 12
6	-	-	-	147.7	-	-	-
7	3.87	dd	1.7, 11.0	69.5	СН	5, 6, 8, 12, 13	8, 12
8	2.97	dd	5.0, 11.0	47.1	СН	1, 7, 9, 13, 21	7, 13
9	-	-	-	52.4	-	-	-
10a	2.73	dd	1.1, 12.9	45.1	CH ₂	1′, 3	3, 4, 12
10b	2.93	dd	5.0, 12.9	-	-	-	-
11	1.10	d	6.7	14.3	CH₃	4, 5, 6	5
12a	5.15	brs	-	114.1	CH ₂	5, 6, 7	5, 7, 11
12b	5.40	brs	-	-	-	-	-
13	5.74	m	-	126.8	СН	7, 8, 15	8, 14, 15
14	5.44	m	-	138.8	СН	9, 15	13, 15
15a	1.80	m	-	42.7	CH ₂	13, 14, 16, 17	13, 14,
15b	2.06	m	-	-	-	-	-
16	1.80	m	-	28.6	СН	13, 14, 17	22
17a	1.61	m	-	53.6	CH ₂	18, 19	-
17b	1.88	m	-	-	-	-	-
18	-	-	-	74.2	-	-	-
19	5.55	brs	-	138.2	СН	-	20
20	5.87	dd	2.9, 16.4	125.7	СН	18, 19	19
21	5.49	brs	-	77.3	СН	8, 9, 19, 20, 23	-
22	1.07	d	6.5	26.5	CH₃	15, 16, 17	16
23	1.35	S	-	31.2	CH₃	17, 18, 19	-
1'	-	-	-	130.7	-	-	-
2' 6'	7.34	d	8.2	130.6	2 x CH	3', 4', 5', 10	3', 5'
3' 5'	7.74	d	8.2	120.6	2 x CH	1', 4'	2', 6'
4'	-	-	-	137.9	-	-	-
24	-	-	-	170.1	-	-	-
25	2.26	S	-	20.9	CH₃	21, 24	-
4"	-	-	-	145.1	-	-	-
5"	7.93	S	-	119.6	СН	4''	-
6"	3.18	m	-	25.6	CH ₂	4", 5", 7"	7"
7"	4.21	m	-	61.7	CH_2	6", 8"	6"
8"	-	-	-	173.4	-	-	-
9"	2.39	m	-	33.7	CH ₂	8", 10"	10'', 12''
10''	1.71	m	-	28.2	CH_2	8", 9", 11", 12", 13"	9", 11"
11"	1.46	m	-	28.1	CH_2	9", 10",12", 13"	10''
12"	1.69	m	-	24.6	CH_2		9"

13"	3.16	m	-	55.2	CH	11", 14"	14''
14''	4.34	m	-	61.8	CH	16''	13", 18"
16''	-	-	-	163.2	-	-	-
18''	4.53	m	-	60.0	CH	13", 16"	14'', 19''
19a''	2.72	m	-	40.5	CH_2	13", 18"	18''
19b''	2.95	m	-	-	-	-	-

2.10 4'-Biotin-triazole-linked Cytochalasin H 7c

To a stirred solution of **1h** (10 mg, 0.019 mmol, 1.0 eq) and **6c** (11.7 mg, 0.038 mmol, 2.0 eq) in DMF (2 mL) was added CuI (0.2 mg, 0.95 μ mol, 0.05 eq) and DIPEA (1.2 mg, 9.5 μ mol, 0.5 eq). The mixture was stirred at room temperature for 12 hours under nitrogen and the solvent was removed *in vacuo*. The residue was dissolved in EtOAc (2 mL) and washed with water (2 mL x 2). The organic phase was dried over MgSO₄, filtered and evaporated to dryness *in vacuo*. The residue was dissolved in MeOH and purified by LCMS to afford 10.1 mg of desired product (63.8%, 0.011 mmol) as a white yellow solid.

HRMS (m/z): calculated for [C₄₅H₆₀N₆O₈S + Na]: 867.4091, found: 867.4095.

Position	δ _н	М	J _{H-H} /Hz	δ _c	HSQC	HMBC H to C	H-H COSY
1	-	-	-	175.2	-	-	-
3	3.33	ddd	0.9, 4.8, 9.6	53.7	СН	1',4, 5	4, 5, 10
4	2.15	m	-	50.2	СН	3, 5	3, 5, 10
5	2.81	m	-	32.8	СН	1′, 3	4, 11, 12
6	-	-	-	147.7	-	-	-
7	3.88	dd	1.5, 10.8	69.7	СН	5, 6, 8, 12, 13	8, 12
8	2.94	m	-	47.2	СН	1, 7, 9, 13, 21	7, 13
9	-	-	-	52.4	-	-	-
10a	2.75	m	-	45.0	CH_2	1′, 3	3, 4, 12
10b	2.93	m	-	-	-	-	-
11	1.04	d	6.6	14.2	CH₃	4, 5, 6	5
12a	5.14	brs	-	114.2	CH_2	5, 6, 7	5, 7, 11
12b	5.39	brs	-	-	-	-	-
13	5.74	ddd	1.4, 9.6, 15.5	127.1	СН	7, 8, 15	8, 14, 15
14	5.45	ddd	4.8, 10.3, 15 5	138.7	СН	9, 15	13, 15
15a	1 82	m	-	42.6	CH ₂	13 14 16 17	13 14
15b	2.06	m	-	-	-		
16	1.80	m	-	28.4	СН	13, 14, 17	22
17a	1.61	m	-	53.7	CH ₂	18, 19	
17b	1.91	m	-	-	-		-
18	-	-	-	74.2	-	_	-
19	5.54	brs	-	138.2	СН	_	20
20	5.84	dd	2.7. 16.5	125.8	СН	18. 19	19
21	5.52	brs	-	77.2	СН	8, 9, 19, 20, 23	-
22	1.06	d	6.5	26.2	CH₃	15. 16. 17	16
23	1.36	S	-	31.3	CH₃	17, 18, 19	-
1'	-	-	-	130.7	-	-	-
2'6'	7.33	d	8.2	130.4	2 x CH	3', 4', 5', 10	3'. 5'
3' 5'	7.72	d	8.2	120.8	2 x CH	1'. 4'	2', 6'
4'	-	-	-	137.9	-	_ / ·	_ , _
24	-	-	-	170.1	-	_	-
25	2.27	s	-	21.0	CH₃	21.24	-
4"	-	-	-	147.6	-	, _	-
5″	7.83	s	-	119.1	СН	4''	-
6"	2.13	m	-	28.1	CH ₂	4". 5". 7"	7"
7"	1.89	m	-	27.6	CH ₂	6". 8"	6"
8"	4.18	m	-	63.1	CH ₂	-	-
- 9"	-	-	-	173.6	2	-	-
10"	2.37	m	-	33.8	CH ₂	8", 10"	9", 11"
11"	1.70	m	-	28.2	CH ₂	8", 9",	10"
17a 17b 18 19 20 21 22 23 1' 2' 6' 3' 5' 4' 24 25 4'' 24 25 4'' 5'' 6'' 7'' 8'' 9'' 10'' 11''	1.61 1.91 - 5.54 5.84 5.52 1.06 1.36 - 7.33 7.72 - 2.27 - 7.83 2.13 1.89 4.18 - 2.37 1.70	m m - brs dd brs d s - d d - s - s m m m - m m m	- - - 2.7, 16.5 - 6.5 - - 8.2 8.2 8.2 - - - - - - - - - - - - - - - - - - -	 53.7 74.2 138.2 125.8 77.2 26.2 31.3 130.7 130.4 120.8 137.9 170.1 21.0 147.6 119.1 28.1 27.6 63.1 173.6 33.8 28.2 	CH2 - CH CH CH CH3 CH3 - 2 × CH 2 − CH2 CH2 CH2 CH2 CH2	18, 19 - - - 18, 19 8, 9, 19, 20, 23 15, 16, 17 17, 18, 19 - 3', 4', 5', 10 1', 4' - 21, 24 - 4'' 4'', 5'', 7'' 6'', 8'' - 8'', 10'' 8'', 9'',	- 20 19 - 16 - 3', 5' 2', 6' - - - - - 7'' 6'' - 9'', 11'' 10''

12"	1.48	m	-	28.2	CH₂	11",12", 13" 9", 10", 12", 13"	9"
13''	1.69	m	-	24.7	СН	11", 13", 14"	14''
14''	3.19	m	-	55.2	СН	11"	13", 15", 18"
15"	4.33	m	-	61.7	СН	14", 17", 20"	14'', 19''
17''	-	-	-	163.3	-	-	-
19''	4.52	m	-	60.0	СН	13", 16"	15", 20"
20a''	2.74	m	-	40.6	CH₂	13", 18"	18''
20b"	2.93	m	-	-	-	-	-

8.0

7.5

7.0

6.5

6.0

5.5

5.0

4.5 4.0 f2 (ppm) 3.5

3.0

2.5

2.0

1.5

1.0

0.5

To a stirred solution of **biotin** (100.0 mg, 0.41 mmol, 1.0 eq, purchased from Sigma-Aldrich) and **2** (98.0 mg, 0.45 mmol, 1.1 eq, purchased from Acros) in dry THF (4 mL) was added EDCI (94.0 mg, 0.49 mmol, 1.2 eq) and DMAP (10.0 mg, 0.082 mmol, 0.2 eq). The mixture was stirred at room temperature for 12 hours under nitrogen and the solvent was removed *in vacuo*. The residue was dissolved in EtOAc (4mL) and washed with water (3 mL x 2). The organic phase was dried over MgSO₄, filtered and evaporated to dryness *in vacuo*. The residue was dissolved in MeOH and purified by LCMS to afford 111.5 mg of desired product (61.3%, 0.239 mmol) as a white solid.

HRMS (m/z): calculated for [C₁₈H₃₂N₆O₅S + Na]: 467.2053, found: 467.2052.

(C	3
Ć	(3
٩	÷	,

				-			
Position	δ _н	M	J _{<i>н₋н</i>} /Hz	δ _c	HSQC	HMBC H to C	H-H COSY
4''	3.40	t	5.6	50.5	CH ₂	5"	5"
5"	3.65	m	-	69.6	CH ₂	4", 6"	4"
6''9''	3.59	m	-	69.8	CH ₂	7", 8"	-
7" 8"	3.62	m	-	70.2	CH ₂	6", 9"	-
10"	3.50	m	-	69.3	CH ₂	9", 11"	11"
11"	3.32	dd	5.6, 11.2	38.3	CH_2	10", 13"	10"
12"	6.58	S	-	-	-	-	-
13''	-		-	172.8	-	-	-
14''	2.15	dd	1.0, 7.9	35.4	CH ₂	13", 15", 16"	15"
15''	1.62	m	-	25.3	CH ₂	13", 14", 16"	14", 16"
16''	1.39	m	-	28.1	CH ₂	14", 15", 17",	15"
						18"	
17''	1.57	m	-	27.9	CH ₂	18", 19"	-
18''	3.18	-	-	55.4	CH	17"	-
19''	4.27	m	-	61.4	CH ₂	18", 21", 23",	23''
						24"	
20''	5.28	s	-	-	-	-	-
21"	-			163.2	-	-	-
22"	5.59	S	-	-	-	-	-
23"	4.46	m	-	59.9	CH	18", 19", 21",	19'', 24''
						23"	
24a''	2.68	d	12.7	40.1	CH ₂	18'', 19''	23"
24b''	2.90	dd	5.0, 12.7	-	-	-	-

2.12 4'-O-biotin-linked Cytochalasin H 9

To a stirred solution of 1g (13.0 mg, 0.024 mmol, 1.1 eq) and 8 (10.0 mg, 0.022 mmol, 1.0 eq) in DMF (2 mL) was added CuI (0.23 mg, 1.2 µmol, 0.05 eq) and DIPEA (1.5 mg, 12 µmol, 0.5 eq). The mixture was stirred at room temperature for 12 hours under nitrogen and the solvent was removed *in vacuo*. The residue was dissolved in EtOAc (4mL) and washed with water (3 mL x 2). The organic phase was dried over MgSO₄, filtered and evaporated to dryness *in vacuo*. The residue was dissolved in MeOH and purified by LCMS to afford 14.3 mg of desired product (64.3%, 0.014 mmol) as a white solid.

HRMS (m/z): calculated for $[C_{51}H_{73}N_7O_{11}S + Na]$: 1014.4986, found: 1014.4977.

Position	δ	м	//Hz	δο	нѕос	HMBC H to C	
1	-		-	174.6	-	-	-
3	3 24	m	_	54.0	СН	1145	4 5 10
<u>з</u>	2 10	m	_	50.2	СН	1 3 5 6 10	3 5 10
5	2.10	m	_	33.0	СН	1' 3	4 11 12
6	-	_	_	150.0	-	-	-, 11, 12
7	3 84	hh	13108	69.8	СН	6 12	8 12
8	2.96	m	-	47.2	СН	7 9 13 20 21	7 13
9	-	-	-	51.9	-	-	-
10a	2.61	m	-	44.5	CH ₂	1'. 3	3, 4, 12
10b	2.80	m	-	-	-	_ , =	-
11	1.00	d	6.7	14.3	CH₃	4.5.6	5
12a	5.12	brs	-	114.0	CH ₂	5. 6. 7	5. 7. 11
12b	5.37	brs	-	-	-	-, -, -	-, -, -
13	5.74	ddd	1.3. 9.7.	127.2	СН	7, 8, 15	8, 14, 15
			15.3		••••	., .,	-,,
14	5.41	ddd	5.1. 10.4.	138.5	СН	9.15	13. 15
			15.3		••••	-,	,
15a	1.81	m	-	43.0	CH ₂	13. 14. 16. 17	13.14.
15b	2.07	m	-	-	-	-	-
16	1.82	m	-	28.6	СН	13, 14, 17	22
17a	1.61	m	-	53.9	CH ₂	18.19	-
17b	1.90	m	-	-	-	-	-
18	-	-	-	74.3	-	-	-
19	5.56	brs	-	138.2	СН	-	20
20	5.88	dd	2.6, 16.6	126.0	СН	18, 19	19
21	5.49	brs	-	77.6	СН	8, 9, 19, 20, 23	-
22	1.06	d	6.4	26.7	CH₃	15, 16, 17	16
23	1.38	S	-	31.2	CH₃	17, 18, 19	-
1'	-	-	-	130.1	-	-	-
2' 6'	7.10	d	8.5	130.3	2 x CH	3', 4', 5', 10	3′, 5′
3' 5'	6.97	d	8.5	115.2	2 x CH	1', 4'	2', 6'
4'	-	-	-	157.3	-	-	-
24	-	-	-	170.1	-	-	-
25	2.26	S	-	20.9	CH₃	24	-
1"	5.21	S	-	62.1	-	2", 3", 4'	3"
2"	-	-	-	143.9	-	-	-
3"	7.86	S	-	124.0	CH	2"	1", 4"
4''	4.58	dd	4.5, 5.6	50.3	CH_2	5"	3", 5"
5"	3.91	dd	4.5, 5.5	69.4	CH_2	4", 6"	4''
6"9"	3.58	m	-	70.2	CH_2	7", 8"	-
7" 8"	3.62	m	-	70.4	CH ₂	6" <i>,</i> 9"	-
10"	3.54	m	-	69.9	CH ₂	9", 11"	11"
11"	3.42	dd	5.3, 10.5	39.2	CH_2	10", 13"	10''
12"	6.56	t	5.6	-	-	-	-

13"	-	-	-	173.1	-	-	-
14''	2.19	m	-	35.8	CH ₂	13", 15", 16"	15"
15"	1.68	m		25.7	CH ₂	13", 14", 16"	14'', 16''
16''	1.47	m	-	28.4	CH ₂	14", 15", 17",	15"
						18"	
17"	1.69	m	-	28.2	CH ₂	18", 19"	-
18''	3.16	m	-	55.4	СН	17"	-
19''	4.32	m	-	61.8	СН	18", 21", 23",	23"
						24''	
21"	-	-	-	163.6	-	-	-
22"	-	-	-	-	-	-	-
23"	4.50	m	-	60.1	СН	18", 19", 21",	19'', 24''
						23"	
24a''	2.74	m	-	40.5	CH ₂	18'', 19''	23"
24b''	2.91	m	-	-	-	-	-

2.13 O-Propargyl Penicillin G 10

To a stirred solution of Penicillin G 1 (100.0 mg, 0.30 mmol, 1.0 eq, purchased from TCI) and 2 (0.1mL, 0.60 mmol, 2.0 eq, purchased from Acros) in dry DMF (4 mL) was added K_2CO_3 (50.0 mg, 0.49 mmol, 1.2 eq, purchased from Acros). The mixture was stirred at 70 °C for 12 hours under nitrogen and the solvent was removed in vacuo. The residue was dissolved in EtOAc (4 mL) and washed with water (3 mL x 2). The organic phase was dried over MgSO4, filtered and evaporated to dryness in vacuo. The residue was dissolved in MeOH and purified by LCMS to afford 77.3 mg of desired product (69.4%, 0.196 mmol) as a white solid.

¹**H NMR (500 MHz, CDCl₃):** δ (Hz) = 7.38-7.29 (m, 5H), 5.67 (dd, J = 4.2 and 9.0 Hz, 1H), 5.53 (d, J = 4.2 Hz, 1H), 4.82 (d, J = 2.5 Hz, 1H), 4.71 (d, J = 2.5 Hz, 1H), 4.42 (s, 1H), 3.65 (s, 2H), 2.53 (t, J = 2.5 Hz, 1H), 1.50 (s, 3H), 1.48 (s, 3H).

¹³C NMR (125 MHz, CDCl₃): $\delta = 173.5$, 170.5, 166.8, 133.8, 129.4, 129.0, 127.6, 76.4, 76.2, 70.0, 67.9, 64.7, 58.7, 52.7, 43.6, 26.8.

HRMS (m/z): calculated for [C₁₉H₂₀N₂O₄S + Na]: 395.1041, found: 395.1038.

2.14 Cytochalasin H penicillin G adduct 11

To a stirred solution of **1h** (10 mg, 0.019 mmol, 1.0 eq) and **10** (14.1 mg, 0.038 mmol, 2.0 eq) in DMF (4 mL) was added CuI (0.2 mg, 0.95 μ mol, 0.05 eq) and DIPEA (1.2 mg, 9.5 μ mol, 0.5 eq). The mixture was stirred at room temperature for 12 hours under nitrogen and the solvent was removed *in vacuo*. The residue was dissolved in EtOAc (4 mL) and washed with water (3 mL x 2). The organic phase was dried over MgSO₄, filtered and evaporated to dryness *in vacuo*. The residue was dissolved in MeOH and purified by LCMS to afford 15.0 mg of desired product (88.6%, 0.015 mmol) as a white yellow solid.

HRMS (*m/z*): calculated for [C₄₉H₅₈N₆O₉S + Na]: 1007.5398, found: 1007.5402.

IR (powder, cm⁻¹): 1784, 1749, 1653, 1521, 1456, 1379, 1300, 1203, 449, 418.

Position	δ _Η	М	<i>J_{н-н}/</i> Hz	δc	HSQC	HMBC H to C	H-H COSY
1	-	-	-	174.6	-	-	-
3	3.33	m	-	53.2	СН	1', 1, 4, 5	4, 5, 10
4	2.17	m	-	49.9	СН	1, 3, 5, 6, 10	3, 5, 10
5	2.85	m	-	32.6	СН	1', 3	4, 11, 12
6	-	-	-	147.5	-	-	-
7	3.88	d	10.6	69.7	СН	6, 12	8, 12
8	2.96	m	-	47.0	СН	7, 9, 13, 20, 21	7, 13
9	-	-	-	51.9	-	-	-
10a	2.74	m	-	44.7	CH₂	1', 3	3, 4, 12
10b	2.90	m	-	-	-	-	-
11	0.98	d	6.6	13.8	CH₃	4, 5, 6	5
12a	5.14	brs	-	114.3	CH ₂	5, 6, 7	5, 7, 11
12b	5.39	brs	-	-	-	-	-
13	5.75	m	-	127.1	СН	7, 8, 15	8, 14, 15
14	5.43	m	-	138.9	СН	9, 15	13, 15
15a	1.82	m	-	42.6	CH_2	13, 14, 16, 17	13, 14,
15b	2.08	m	-	-	-	-	-
16	1.82	m	-	28.2	СН	13, 14, 17	22
17a	1.61	m	-	53.5	CH ₂	18, 19	-
17b	1.91	m	-	-	-	-	-
18	-	-	-	74.1	-	-	-
19	5.55	brs	-	138.4	СН	-	20
20	5.86	dd	2.6, 16.5	125.8	СН	18, 19	19
21	5.52	brs	-	77.1	СН	8. 9. 19. 20. 23	-
22	1.07	d	6.4	26.3	CH₃	15. 16. 17	16
23	1.38	s	-	31.4	CH₃	17, 18, 19	-
1'	-	-	-	129.5	-	-	-
2' 6'	7.34	d	8.5	127.8	2 x CH	3', 4', 5', 10	3', 5'
3′ 5′	7.72	d	8.5	121.1	2 x CH	1', 4'	2', 6'
4'	-	-	-	135.7	-	-	-
24	-	-	-	170.2	-	-	-
25	2.26	s	-	21.1	CH₃	24	-
4''	-	-	-	142.4	-	-	-
5"	8.07	s	-	122.2	СН	4"	-
6''	5.39	S	-	58.1	CH_2	4", 5",7"	-
7"	-	-	-	173.4	-	-	-
8"	4.42	S	-	70.1	СН	7", 9", 10", 11",	-
						13",	
9"	-	-	-	64.7	-	-	-
10''11''	1.50	s	-	26.9	2 x CH ₃	8", 9"	-
13"	5.54	d	4.2	67.9	СН	15", 16"	16"
15"	-	-	-	173.5	-	-	-
16"	5.69	dd	4.2, 9.1	58.5	СН	13", 15", 18"	13"
18"	-	_	-	170.3	_	-	_

19"	3.66	S	-	43.4	CH ₂	18", 20", 21",	-
						25"	
20''	-	-	-	133.8	-	-	-
21''25''	7.30	m	-	129.6	2 x CH	22" 24"	22" 24"
22'' 24''	7.39	m	-	129.2	2 x CH	21"25"	21''25''
23"	7.28	m	-	127.6	CH	21", 22", 24",	22'', 24''
						25"	

2.15 4'-Perylene linked Cytochalasin H 13

To a stirred solution of **1h** (10 mg, 0.019 mmol, 1.0 eq) and perylene-linked acetylene **2** (12.2 mg, 0.038 mmol, 2.0 eq) in DMF (2 mL) was added CuI (0.2 mg, 0.95 μ mol, 0.05 eq) and DIPEA (1.2 mg, 9.5 μ mol, 0.5 eq). The mixture was stirred at room temperature for 12 hours under nitrogen and the solvent was removed *in vacuo*. The residue was dissolved in EtOAc (2 mL) and washed with water (2 mL x 2). The organic phase was dried over MgSO4, filtered and evaporated to dryness *in vacuo*. The residue was dissolved in MeOH and purified by LCMS to afford 8.0 mg of desired product (72.5%, 0.009 mmol) as a yellow solid.

HRMS (m/z): calculated for $[C_{54}H_{54}N_4O_6 + Na]$: 877.3941, found: 877.3940.

IR (powder, cm⁻¹): 2922, 1735, 1693, 1519, 1369, 1228, 1043, 1014, 962, 812, 767, 542.

1 174.3	-
3 3.29 m - 52.9 CH 1', 1, 4, 5	4, 5, 10
4 2.16 dd 3.7, 5.0 49.9 CH 1, 3, 5, 6, 10	3, 5, 10
5 2.81 m - 32.4 CH 1', 3	4, 11, 12
6 147.7	-
7 3.88 dd 1.3, 10.8 69.4 CH 6, 12	8, 12
8 2.98 m - 46.8 CH 7, 9, 13, 20, 21	7, 13
9 51.6	-
10a 2.74 m - 44.7 CH ₂ 1', 3	3, 4, 12
10b 2.90 m	-
11 0.99 d 6.6 13.7 CH₃ 4, 5, 6	5
12a 5.14 brs - 113.8 CH ₂ 5, 6, 7	5, 7, 11
12b 5.39 brs	-
13 5.76 ddd 1.4, 9.7, 126.7 CH 7, 8, 15	8, 14, 15
15.4	
14 5.42 ddd 4.8, 10.1, 138.4 CH 9, 15	13, 15
15.4	
15a 1.83 m - 42.3 CH ₂ 13, 14, 16, 17	13, 14,
15b 2.06 m	-
16 1.82 m - 28.1 CH 13, 14, 17	22
17a 1.61 m - 53.3 CH ₂ 18, 19	-
17b 1.90 m	-
18 74.4	-
19 5.56 brs - 137.9 CH -	20
20 5.85 dd 2.2, 17.0 125.4 CH 18, 19	19
21 5.58 brs - 76.8 CH 8, 9, 19, 20, 23	-
22 1.07 d 6.4 26.1 CH ₃ 15, 16, 17	16
23 1.38 s - 30.8 CH ₃ 17, 18, 19	-
1' 138.0	-
2' 6' 7.27 d 8.5 130.3 2 x CH 3', 4', 5', 10	3', 5'
3' 5' 7.65 d 8.5 120.6 2 x CH 1', 4'	2', 6'
4' 136.0	-
24 170.2	-
25 2.28 s - 20.6 CH ₃ 24	-
4" 146.1	-
5" 7.87 s - 120.4 CH 4"	-
6" 4.90 s - 63.4 CH ₂ 4", 5",7"	-
7" 5.09 s - 71.1 CH ₂ 6", 8", 17"	-

8"	-	-	-	133.0	-	-	-
9"	8.18	S	-	119.2	СН	8", 10"	-
10"	-	-	-	129.1	-	-	-
11"	8.00	dd	0.9, 8.3	123.2	CH	10", 13", 15"	12", 13"
12"20"26"	7.56	m	-	127.3	3 x CH	13", 19", 25",	11", 13"
						16", 22"	
13''19''25''	8.23	dd	1.0, 7.6	120.0	3 x CH	14", 15", 23"	11", 12"
14''	-	-	-	128.3	-	-	-
15"	-	-	-	132.8	-	-	-
16''	-	-	-	131.1	-	-	-
17''	7.72	d	8.2	127.6	CH	8", 9", 16", 18"	21"
18''	-	-	-	128.5	-	-	-
21''27''	7.52	dd	1.6, 7.8	126.2	2 x CH	19", 22"	17"
22"	-	-	-	134.7	-	-	-
23"	-	-	-	135.1	-	-	-
24''	-	-	-	132.0	-	-	-

2.16 4-Coumarin dye-linked Cytoclasin H 15

To a stirred solution of **1h** (5 mg, 0.01 mmol, 1.0 eq) and acetylene-linked coumarin **2** (3.0 mg, 0.01 mmol, 1.0 eq) in DMF (2 mL) was added CuI (0.1 mg, 0.5 μ mol, 0.05 eq) and DIPEA (0.6 mg, 4.8 μ mol, 0.5 eq). The mixture was stirred at room temperature for 12 hours under nitrogen and the solvent was removed *in vacuo*. The residue was dissolved in EtOAc (2 mL) and washed with water (2 mL x 2). The organic phase was dried over MgSO₄, filtered and evaporated to dryness *in vacuo*. The residue was dissolved in MeOH and purified by LCMS to afford 6.3 mg of desired product (78.2%, 0.007 mmol) as a deep yellow solid.

HRMS (*m/z*): calculated for [C₄₉H₅₅N₅O₉ + Na]: 880.3897, found: 880.3904.

IR (powder, cm⁻¹): 3419, 2924, 1735, 1685, 1618, 1585, 1560, 1517, 1442, 1369, 1309, 1238, 1197, 1172, 1111, 1045, 962, 792, 439.

Position	δ _H	М	J _{H-H} /Hz	δ _c	HSQC	HMBC H to C	H-H COSY
1	-	-	-	174.3	-	-	-
3	3.31	m	-	53.3	CH	1', 1, 4, 5	4, 5, 10
4	2.17	dd	3.7, 5.0	50.1	CH	1, 3, 5, 6, 10	3, 5, 10
5	2.79	m	-	32.7	СН	1′, 3	4, 11, 12
6	-	-	-	148.9	-	-	-
7	3.86	dd	1.3, 10.8	69.8	CH	6, 12	8, 12
8	2.96	m	-	47.2	СН	7, 9, 13, 20, 21	7, 13
9	-	-	-	51.6	-	-	-
10a	2.77	m	-	45.0	CH_2	1′, 3	3, 4, 12
10b	2.90	m	-	-	-	-	-
11	0.94	d	6.6	14.0	CH₃	4, 5, 6	5
12a	5.13	brs	-	114.2	CH ₂	5, 6, 7	5, 7, 11
12b	5.37	brs	-	-	-	-	-
13	5.76	ddd	1.4, 9.7,	127.1	СН	7, 8, 15	8, 14, 15
14	F 41	مامام	15.4	120 C	CU	0.15	10 15
14	5.41	ada	4.8, 10.1, 15.4	138.0	CH	9, 15	13, 15
15a	1.82	m	-	42.7	CH ₂	13, 14, 16, 17	13, 14,
15b	2.05	m	-	-	-	-	-
16	1.81	m	-	28.4	СН	13, 14, 17	22
17a	1.58	m	-	53.8	CH ₂	18, 19	-
17b	1.88	m	-	-	-	-	-
18	-	-	-	74.4	-	-	-
19	5.59	brs	-	138.2	СН	-	20
20	5.85	dd	2.2, 17.0	125.8	СН	18, 19	19
21	5.56	brs	-	77.2	CH	8, 9, 19, 20, 23	-
22	1.07	d	6.4	26.5	CH₃	15, 16, 17	16
23	1.37	S	-	31.2	CH₃	17, 18, 19	-
1'	-	-	-	138.0	-	-	-
2' 6'	7.33	d	8.5	130.3	2 x CH	3', 4', 5', 10	3', 5'
3' 5'	7.73	d	8.5	121.0	2 x CH	1', 4'	2', 6'
4'	-	-	-	136.0	-	-	-
24	-	-	-	170.2	-	-	-
25	2.27	S	-	20.9	CH₃	24	-
4''	-	-	-	144.2	-	-	-
5"	8.27	S	-	122.1	СН	4"	-
6''	5.53	S	-	58.0	CH ₂	4", 5",7"	-
7"	-	-	-	164.0	-	-	-

8"	-	-	-	106.1	-	-	-
9"	-	-	-	158.7	-	-	-
10''	-	-	-	153.6	-	-	-
11"	-	-	-	107.3	-	-	
12"	8.38	m	-	149.6	CH	7", 8", 9", 10",	-
						13",	
13"	6.94	S	-	127.0	CH	10'', 11'', 12'',	-
						22"	
14''	-	-	-	119.4	-	-	-
15"	-	-	-	149.0	-	-	-
16"	-	-	-	105.8	-	-	-
17"	2.89	d	8.2	20.0	CH_2	10'', 15'', 16'',	18''
						18", 19"	
18''21''	1.98	m	-	20.4	$2 \times CH_2$	17", 19", 16",	17", 20",
						22"	22"
19''20''	3.35	m	-	49.8	$2 \times CH_2$	15", 18", 22"	21"
22''	2.77	m	-	27.4	CH_2	13", 14", 15",	21"
						19", 21",	

2.17 Dye-linked cytochalasin 17

To a stirred solution of **1h** (5.6 mg, 0.02 mmol, 2.0 eq) and **5/6-Texas Red-PEG₄-Alkyne** (4.0 mg, 0.005 mmol, 1.0 eq, purchased from Jena Bioscience) in 1.25 mL DMF-water mixture (4:1, v/v) was added sodium ascorbate (0.1 mg, 0.5 µmol, 0.1 eq) and copper sulfate (0.06 mg, 0.5 µmol, 0.1 eq). The mixture was stirred at room temperature for 12 hours under nitrogen and the solvent was removed *in vacuo*. The residue was dissolved in EtOAc (2 mL) and washed with water (2 mL x 2). The organic phase was dried over MgSO₄, filtered and evaporated to dryness *in vacuo*. The residue was dissolved in MeOH and purified by LCMS to afford 2.6 mg of desired product (38.6%, 0.002 mmol) as a purple solid.

HRMS (m/z): calculated for [C₇₀H₈₉N₇O₁₅S₂ + H]: 1354.5756, found: 1354.5781.

Position	δ _н	М	J _{H-H} /Hz	δ _c	HSQC	HMBC H to C	H-H COSY
1	-	-	-	174.2	-	-	-
3	3.27	m	-	53.6	СН	1', 1, 4, 5	4, 5, 10
4	2.15	dd	3.7, 4.7	50.4	СН	1, 3, 5, 6, 10	3, 5, 10
5	2.80	m	-	32.9	СН	1′, 3	4, 11, 12
6	-	-	-	148.0	-	-	-
7	3.85	dd	1.4, 10.8	69.7	СН	6, 12	8, 12
8	2.97	m	-	47.2	СН	7, 9, 13, 20, 21	7, 13
9	-	-	-	51.7	-	-	-
10a	2.77	m	-	45.0	CH ₂	1′, 3	3, 4, 12
10b	2.90	m	-	-	-	-	-
11	1.04	d	6.7	14.2	CH₃	4, 5, 6	5
12a	5.14	brs	-	114.2	CH ₂	5, 6, 7	5, 7, 11
12b	5.38	brs	-	-	-	-	-
13	5.76	ddd	1.4, 9.7,	127.1	СН	7, 8, 15	8, 14, 15
			15.4				
14	5.45	m	-	138.7	СН	9, 15	13, 15
15a	1.83	m	-	42.7	CH₂	13, 14, 16, 17	13, 14,
15b	2.05	m	-	-	-	-	-
16	1.81	m	-	28.5	CH	13, 14, 17	22
17a	1.58	m	-	53.8	CH ₂	18, 19	-
17b	1.89	m	-	-	-	-	-
18	-	-	-	74.3	-	-	-
19	5.59	brs	-	138.1	СН	-	20
20	5.91	dd	2.8, 16.5	125.8	CH	18, 19	19
21	5.59	brs	-	77.4	СН	8, 9, 19, 20, 23	-
22	1.08	d	6.5	26.5	CH₃	15, 16, 17	16
23	1.37	S	-	31.2	CH₃	17, 18, 19	-
1'	-	-	-	137.7	-	-	-
2' 6'	7.36	d	8.1	128.8	2 x CH	3', 4', 5', 10	3', 5'
3′ 5′	7.79	d	8.1	120.8	2 x CH	1', 4'	2', 6'
4'	-	-	-	137.5	-	-	-

24	-	-	-	170.1	-	-	-
25	2.26	S	-	20.9	CH₃	24	-
4''	-	-	-	145.9	-	-	-
5"	8.36	S	-	121.2	СН	4''	-
6"	4.81	S	-	64.3	CH ₂	4", 5", 7"	-
7", 8", 9",	3.68	m	-	70.2	6 x CH ₂	7",8",9",	-
10'', 11'', 12''						10",11",12"	
13"	3.79	m	-	69.7	CH ₂	-	14''
14"	3.34	m	-	43.3	CH₂	-	13"
15"	-	-	-	145.7	-	-	-
16", 17"	8.01	d	7.9	126.8	2 x CH	18'', 19''	-
18"	-	-	-	127.4	-	-	-
19"	-	-	-	131.5	-	-	-
20"	8.36	S	-	121.2	СН	21", 22"	-
21"	-	-	-	134.4	-	-	-
22"	-	-	-	126.5	-	-	-
23"	7.27	S	-	127.1	СН	24'', 31''	-
24"	-	-	-	129.1	-	-	-
25", 30"	2.73	m	-	27.4	$2 \times CH_2$	23", 24"	-
26", 29"	1.28	m	-	29.6	$2 \times CH_2$	25", 27"	-
27", 28"	3.85	m	-	47.2	$2 \times CH_2$	26"	-
31"	-	-	-	137.5	-	-	-
32"	-	-	-	73.6	-	-	-
33"	-	-	-	150.0	-	-	-
34"	-	-	-	129.0	-	-	-
35"	-	-	-	151.3	-	-	-
36", 41"	2.66	m	-	27.4	$2 \times CH_2$	34", 38"	38''
37", 40"	1.97	m	-	20.6	$2 \times CH_2$	36"	38"
38", 25", 27", 39"	3.47	m	-	50.5	$2 \times CH_2$	37", 43"	36", 37"
42"	-	-	-	113.7	-	-	-
43"	-	-	-	152.7	-	-	-
44''	6.83	S	-	128.1	СН	41", 42", 43",	-
						45''	
45"	-	-	-	104.6	-	-	-

2.18 Dye-Linked Cytochalasin H 19

To a stirred solution of **1h** (5.6 mg, 0.02 mmol, 2.0 eq) and **AF488-Alkyne** (3.0 mg, 0.01 mmol, 1.0 eq, purchase from Jena Bioscience) in 4.25 mL DMF-water mixture (4:1, v/v) was added sodium ascorbate (0.2 mg, 1 µmol, 0.1 eq) and copper sulfate (0.12 mg, 1 µmol, 0.1 eq). The mixture was stirred at room temperature for 12 hours under nitrogen and the solvent was removed *in vacuo*. The residue was dissolved in EtOAc (2 mL) and washed with water (2 mL x 2). The organic phase was dried over MgSO₄, filtered and evaporated to dryness *in vacuo*. The residue was dissolved in MeOH and purified by LCMS to afford 1.7 mg of desired product (28.5%, 0.001 mmol) as a red solid.

HRMS (m/z): calculated for $[C_{57}H_{47}N_9O_9S_2 + Na]$: 1104.3140, found: 1104.3145.

Position	δ _H	М	J _{H-H} /Hz	δ _c	HSQC	HMBC H to C	H-H COSY
1	-	-	-	174.6	-	-	-
3	3.15	m	-	53.0	СН	1	10
4	1.97	dd	3.7, 5.0	48.3	СН	3, 5	5
5	2.51	m	-	32.2	СН	1', 3	4
6	-	-	-	146.1	-	-	-
7	3.63	dd	1.3, 10.8	71.0	СН	-	8
8	2.74	m	-	46.6	СН	-	7
9	-	-	-	52.4	-	-	-
10a	2.66	m	-	43.8	CH ₂	1', 3	3
10b	2.85	m	-	-	-	-	-
11	0.48	d	6.6	13.7	CH₃	4, 5, 6	5
12a	4.84	brs	-	111.8	CH ₂	5, 6, 7	7
12b	5.06	brs	-	-	-	-	-
13	5.54	ddd	1.4, 9.7,	129.2	СН	7, 8, 15	8
			15.4				
14	5.09	ddd	4.8, 10.1,	134.9	СН	9, 15	13, 15
			15.4				
15a	1.62	m	-	43.5	CH ₂	114, 16,	13, 14,
15b	1.90	m	-	-	-	-	-
16	1.69	m	-	28.2	СН	13, 14, 17	22
17a	1.39	m	-	54.3	CH ₂	18, 19	-
17b	1.60	m	-	-	-	-	-
18	-	-	-	72.7	-	-	-
19	5.39	brs	-	138.4	СН	-	20
20	5.68	dd	2.2, 17.0	125.8	СН	18, 19	19
21	5.29	brs	-	77.0	СН	19, 20	-
22	0.95	d	6.4	26.7	CH₃	15, 16, 17	16
23	1.14	S	-	31.4	CH₃	17, 18, 19	-
1'	-	-	-	138.3	-	-	-
2' 6'	7.35	d	8.5	131.3	2 x CH	3′, 4′, 5′	3′, 5′
3′ 5′	7.84	d	8.5	120.0	2 x CH	1', 4'	2', 6'
4'	-	-	-	135.6	-	-	-
24	-	-	-	170.6	-	-	-
25	2.24	S	-	21.1	CH₃	24	-
4''	-	-	-	146.0	-	-	-
5"	8.65	s	-	121.0	CH	4''	-
6''	4.54	S	-	35.6	CH ₂	4", 5",7"	-
7"	-	-	-	168.7	-	-	-
8''	-	-	-	140.4	-	-	-
9"	8.05	d	7.7	125.3	CH	8"	10''

10"	8.19	d	7.7	129.6	CH	9", 11", 12"	9"
11"	-	-	-	130.3	-	-	-
12"	-	-	-	165.5	-	-	-
13"	-	-	-	138.3	-	-	-
14''	7.71	S	-	123.1	СН	12", 15"	-
15"	-	-	-	129.3	-	-	-
16"	-	-	-	130.0	-	-	-
17"	5.68	dd	8.8, 15.5	138.3	CH	-	-
18"	6.47	d	8.8	114.1	СН	19", 20"	-
19", 24"	-	-	-	114.7	2 x CH	-	-
20''	-	-	-	105.2	-	-	-
21"	-	-	-	151.2	-	-	-
22"	-	-	-	149.4	-	-	-
23"	-	-	-	114.6	-	-	-
25"	6.36	d	8.8	129.5	СН	22"	-
26''	5.06	m	-	134.9	2 x CH	-	-
27"	-	-	-	105.5	-	-	-

2.19 4'-Dye-Linked Cytochalasin H 21

To a stirred solution of **1h** (10 mg, 0.019 mmol, 1.0 eq) and 7-nitro-4-(prop-2-ynylamino) benzofuran **2** (4.5 mg, 0.021 mmol, 1.1 eq) in DMF (2 mL) was added CuI (0.2 mg, 0.95 μ mol, 0.05 eq) and DIPEA (1.2 mg, 9.5 μ mol, 0.5 eq). The mixture was stirred at room temperature for 12 hours under nitrogen and the solvent was removed *in vacuo*. The residue was dissolved in EtOAc (2 mL) and washed with water (2 mL x 2). The organic phase was dried over MgSO₄, filtered and evaporated to dryness *in vacuo*. The residue was dissolved in MeOH and purified by LCMS to afford 8.6 mg of desired product (61.1%, 0.011 mmol) as a brown solid.

HRMS (m/z): calculated for [C₃₉H₄₄N₈O₈ + Na]: 775.3180, found: 775.3179.

Position	δ _Η	М	J _{H-H} /Hz	δc	HSQC	HMBC H to C	H-H COSY
1	-	-	-	174.5	-	-	-
2	5.56	brs	-	-	-	-	-
3	3.35	m	-	53.3	СН	-	4, 5, 10
4	2.17	dd	3.8, 5.0	50.3	СН	1, 3, 5, 6, 10	3, 5, 10
5	2.81	m	-	32.9	СН	1', 3	4, 11, 12
6	-	-	-	147.8	-	-	-
7	3.86	dd	1.6, 10.7	69.7	СН	6, 12	8, 12
8	2.96	m	-	47.3	СН	1, 7, 9, 13, 20,	7, 13
						21	,
9	-	-	-	51.8	-	-	-
10a	2.78	m	-	44.9	CH ₂	1', 3	3, 4, 12
10b	2.98	m	-	-	-	-	
11	1.03	d	6.7	14.3	CH₃	4, 5, 6	5
12a	5.14	brs	-	114.3	CH ₂	5.6.7	5.7.11
12b	5.39	brs	-	-		-	-
13	5.74	m	-	126.9	СН	7. 8. 15	8, 14, 15
14	5.43	m	-	138.8	СН	9, 15	13.15
15a	1 82	m	_	42.8	CH ₂	13 14 16 17	13 14
15b	2.06	m	-	-	-		
16	1.81	m	-	28.4	СН	13, 14, 17	22
17a	1 60	m	_	53.9	CH	18 19	
176 17b	1.88	m	_	-	-	-	-
18	-	-	_	74 4	-	-	-
19	5 57	hrs	_	138.2	СН	_	20
20	5.85	dd	30 16 2	125.7	СН	18 19	19
20	5.05	hrs	-	77.2	СН	8 9 19 20 23	-
21	1 07	h	65	26.5		15 16 17	16
23	1 37	s	-	31.2	CH ₂	17 18 19	-
<u>_</u> 3	-	-	_	130.7	-	-	_
2' 6'	7 35	Ь	85	130.6	2 x CH	3' 4' 5' 10	3' 5'
2'5'	7.69	b h	85	121.2	2 x CH	1' Δ'	2' 6'
<u>م</u> '	-	-	-	135.6	-	±, -	2,0
	_	-	_	170 1	-	_	_
25	2 26	c	_	21.0	CH-	24	_
23 A''	2.20	-	_	1// 2	-	-	_
т 5"	8 0/	ç	_	110 0	СН	۸"	_
5 6"	1 93	3	_	20 /	CH.	-	_
Q''	4.55	3		1/12 1			_
۵ ۵"	6 1 1	- d	86	00 7	сн	111 121	10"
10"	0.44	u d	8.0 9 E	125.0		11",12	0"
11"	0.54	u _	0.0	125.5	-	11,13	5
12"	-	-	-	1// 2	-	-	-
12"	-	-	-	144.3 142 4	-	-	-
13	-	-	-	143.4	-	-	-

2.20 4'-Prop-1-ynyl Cytochalsin H 22

To a stirred solution of **1e** (10 mg, 0.019 mmol, 1.0 eq) and **2** (2.0 mg, 0.038 mmol, 2.0 eq, purchased from Signma-Aldrich) in toluene (2 mL) was added CuI (0.2 mg, 0.95 μ mol, 0.05 eq), Et₃N (3.0 mg, 0.03 mmol, 1.5 eq) and Pd(PPh₃)₄ (0.2 mg, 0.1 μ mol, 0.009 eq). The mixture was stirred at 80 °C for 12 hours under nitrogen and the solvent was removed *in vacuo*. The residue was dissolved in EtOAc (2 mL) and washed with water (2 mL x 2). The organic phase was dried over MgSO₄, filtered and evaporated to dryness *in vacuo*. The residue was dissolved in MeOH and purified by LCMS to afford 6.7 mg of desired product (78.2%, 0.012 mmol) as a yellow solid.

HRMS (m/z): calculated for $[C_{33}H_{41}NO_5 + Na]$: 554.2882, found: 554.2889.

Position	δ _н	м	J _{H-H} /Hz	δ _c	HSQC	HMBC H to C	H-H COSY
1	-	-	-	174.2	-	-	-
3	3.24	ddd	1.1, 4.4, 9.1	53.3	СН	1',4, 5	4, 5, 10
4	2.13	t	4.4	50.6	СН	3, 5	3, 5, 10
5	2.78	m	-	32.7	СН	1′, 3	4, 11, 12
6	-	-	-	147.9	-	-	-
7	3.85	d	10.2	69.6	СН	5, 6, 8, 12, 13	8, 12
8	2.95	t	10.2	47.2	СН	1, 7, 9, 13, 21	7, 13
9	-	-	-	51.7	-	-	-
10a	2.67	dd	9.5, 13.5	45.6	CH ₂	1′, 3	3, 4, 12
10b	2.82	dd	4.8, 13.5	-	-	-	-
11	0.98	d	6.7	14.1	CH₃	4, 5, 6	5
12a	5.12	brs	-	114.2	CH ₂	5, 6, 7	5, 7, 11
12b	5.37	brs	-	-	-	-	-
13	5.76	ddd	1.4, 9.6, 15.5	126.9	СН	7, 8, 15	8, 14, 15
14	5.42	ddd	4.8, 10.3, 15.5	138.4	СН	9, 15	13, 15
15a	1.82	m	-	42.7	CH ₂	13, 14, 16, 17	13, 14,
15b	2.05	m	-	-	-	-	-
16	1.80	m	-	28.7	СН	13, 14, 17	22
17a	1.57	m	-	53.7	CH₂	18, 19	-
17b	1.91	m	-	-	-	-	-
18	-	-	-	74.4	-	-	-
19	5.54	brs	-	138.0	СН	-	20
20	5.90	dd	2.9, 16.4	126.0	СН	18, 19	19
21	5.60	brs	-	77.5	СН	8, 9, 19, 20, 23	-
22	1.06	d	6.5	26.1	CH₃	15, 16, 17	16
23	1.37	S	-	31.2	CH₃	17, 18, 19	-
1'	-	-	-	132.0	-	-	-
2' 6'	7.09	d	8.2	128.8	2 x CH	3', 4', 5', 10	3′, 5′
3' 5'	7.36	d	8.2	131.9	2 x CH	1', 4'	2', 6'
4'	-	-	-	122.9	-	-	-
24	-	-	-	170.2	-	-	-
25	2.27	S	-	20.9	CH₃	21, 24	-
7'	-	-	-	86.2	-	-	-
8'	-	-	-	79.2	-	-	-
9′	2.04	S	-	4.2	CH₃	3', 4', 5', 7', 8'	-

2.21 4'-Pinacolborolanyl Cytochalasin H 23

To a stirred solution of 1d (20 mg, 0.035 mmol, 1.0 eq) and Bis(pinacolato)diboron 2 (17.8 mg, 0.07 mmol, 2.0 eq, purchased from Sigma-Aldrich) in dioxane (3 mL) was added $Pd(dppf)Cl_2$ (2.6 mg, 0.0035 mmol, 0.1 eq), NaHCO₃ (10.2 mg, 0.11 mmol, 3.0 eq). The mixture was stirred at 110 °C for 8 hours under nitrogen and the solvent was removed *in vacuo*. The residue was dissolved in EtOAc (2 mL) and washed with water (2 mL x 2). The organic phase was dried over MgSO₄, filtered and evaporated to dryness *in vacuo*. The residue was dissolved in MeOH and purified by LCMS to afford 12.6 mg of desired product (58.3%, 0.020 mmol) as a white solid.

2.22 4'-4' Cytochalasin H dimer 24

To a stirred solution of **1d** (7.6 mg, 0.012 mmol, 1.5 eq) and **23** (7 mg, 8 μ mol, 1.0 eq) in dioxane (4 mL) was added Pd(OAc)₂ (0.12 mg, 0.8 μ mol, 0.1 eq) and XPhos (0.76 mg, 1.6 μ mol, 0.2 eq) and K₂CO₃ (2.2 mg, 16 μ mol, 2.0 eq). The mixture was stirred at 80 °C for 2 hours under nitrogen and the solvent was removed *in vacuo*. The residue was dissolved in EtOAc (4 mL) and washed with water (3 mL x 2). The organic phase was dried over MgSO₄, filtered and evaporated to dryness *in vacuo*. The residue was dissolved in MeOH and purified by LCMS to afford 5.1 mg of desired product (42.6%, 0.005 mmol) as a white solid.

Monoisotop 270 formula Elements U	ic Mass, Even E (e) evaluated wi sed:	lectron lons th 17 results	within lim	its (all res	ults (up to 1000) for each mas	s)
C: 0-65 H	: 0-80 B: 0-2	N: 0-2 O: 0	-10 Na	: 0-1			
Wang				Q-Tof Pren	nier UPLC-MS		09-Apr-201910:51:37
WC 074C 295	(3.018) AM (Cen,4,	60.00, Ar,11000	.0,556.28,0).55,LS 5); S	m (SG, 1x3.00)		1: TOF MS ES+
100-			1007	5402			1.08e3
-				1009 5	175		*
-				1006.5	4/0		
-							
%-							
							1
1		1005 5221			1009,5466		*
1		1000.0221	5307		104	1011 22	22 1010 5000
1 1	1003.5272				1010	1.56/1 1011.32	1012.5200 1014.04961014.4413
0	1004.0	1006.0		1008.0	1010.0	1012	.0 1014.0
Minimum:				-0.5			
Maximum:		5.0	20.0	60.0			
Mass	Calc. Mass	mDa	PPM	DBE	i-FIT	Formula	1
1007.5402	1007,5398	0.4	0.4	23.5	0.7	C60 H76	N2 010 Na
	1007.5417	-1.5	-1.5	26.5	5.5	C62 H74	B2 09 Na
	1007.5382	2.0	2.0	30.5	1.0	C64 H72	B NZ U8
	1007.5422	-2.0	-2.0	20.0	1.2	C62 H73	NZ UIU
	1007.5430	-3.0	-3.0	29.5	2.0	C64 H73	B2 09
	1007.5358	-3.5 A A	-3.9 A A	27.5	1.6	C62 H73	B N2 08 Na
	1007.5318	8.4	8.3	31.5	3.8	C64 H70	B2 N2 106 Na
	1007.5529	-12.7	-12.6	26.5	7.1	C61 H74	B2 N2 O8 Na
	1007.5269	13.3	13.2	30.5	2.2	C65 H72	B 09
	1007.5550	-14.8	-14.7	27.5	3.0	C64 H76	N2 07 Na
	1007.5553	-15.1	-15.0	29.5	5.3	C63 H73	B2 N2 O8
	1007.5245	15.7	15.6	27.5	2.8	C63 H73	B 09 Na
	1007.5569	-16.7	-16.6	22.5	4.9	C59 H77	B N2 010 Na
	1007.5593	-19.1	-19.0	25.5	3.8	C61 H76	B N2 010
	1007.5210	19.2	19.1	31.5	5.6	C65 H71	N2 08
	1007.5205	19.7	19.6	31.5	5.2	C65 H70	B2 07 Na

HRMS (*m/z*): calculated for $[C_{60}H_{76}N_2O_{10} + Na]$: 1007.5398, found: 1007.5402.

Position	δ _н	М	J _{н-н} /Hz	δc	HSQC	HMBC H to C	H-H COSY
1	-	-	-	174.3	-	-	-
2	-	-	-	-	-	-	-
3	3.27	m	-	53.4	СН	1', 1, 4, 5	4, 5, 10
4	2.16	m	-	50.2	СН	3 <i>,</i> 5	3, 5, 10
5	2.80	m	-	32.5	СН	1′, 3	4, 11, 12
6	-	-	-	147.9	-	-	-
7	3.86	d	10.9	69.5	CH	5, 6, 8, 12, 13	8, 12
8	2.96	m	-	47.0	CH	7, 9, 13, 20, 21	7, 13
9	-	-	-	51.9	-	-	-
10a	2.70	m	-	45.5	CH ₂	1′, 3	3, 4, 12
10b	2.90	m	-	-	-	-	-
11	1.00	d	6.7	13.8	CH₃	4, 5, 6	5
12a	5.13	brs	-	114.0	CH ₂	5, 6, 7	5, 7, 11
12b	5.38	brs	-	-	-	-	-
13	5.76	m	-	126.9	CH	7, 8, 15	8, 14, 15
14	5.45	m	-	138.4	CH	9, 15	13, 15
15a	1.82	m	-	42.7	CH ₂	13, 14, 16, 17	13, 14,
15b	2.05	m	-	-	-	-	-
16	1.83	m	-	28.3	CH	13, 14, 17	22
17a	1.56	brs	-	53.7	CH₂	18, 19	-
17b	1.90	brs	-	-	-	-	-
18	-	-	-	74.3	-	-	-
19	5.54	brs	-	137.9	CH	-	20
20	5.88	dd	2.6, 16.5	125.7	СН	18, 19	19
21	5.51	brs	-	77.2	СН	8, 9, 19, 20, 23	-
22	1.08	d	6.3	26.3	CH₃	15, 16, 17	16
23	1.38	S	-	31.0	CH₃	17, 18, 19	-
1'	-	-	-	128.6	-	-	-
2' 6'	7.19	d	7.9	128.1	2 x CH	3', 4', 5', 10	3′ <i>,</i> 5′
3' 5'	7.78	d	7.9	134.9	2 x CH	1', 4'	2′, 6′
4'	-	-	-	128.9	-	-	-
24	-	-	-	170.1	-	-	-
25	2.27	S	-	20.8	CH₃	24	-
3''4''	-	-	-	83.9	-	-	-
6''7''8''9''	1.37	brs	-	24.7	4x CH ₃	3", 4"	-

4.5 4.0 f2 (ppm) 3.5

3.0

2.5

2.0

1.5

1.0

7.5

7.0

6.5

6.0

5.5

5.0

0.5

Chemical Formula: C₆₀H₇₆N₂O₁₀ Exact Mass: 984.5500

Position	δ _н	м	J _{H-H} /Hz	δ	HSQC	HMBC H to C	H-H COSY
1	-	-	-	174.3	_	_	-
2	5.48	brs	-	-	-	-	3
3	3.29	ddd	0.9. 9.6.	53.4	СН	-	2
-			4.6		-		
4	2.16	dd	4.6.8.9	50.3	СН	9. 21	5
5	2.81	m	-	32.5	СН	-	4. 11. 12
6	-	-	-	148.1	_	-	-
7	3.83	d	10.8	69.3	СН	6, 12, 13	8, 12
8	2.95	dd	10.2,	46.9	СН	1, 3, 7, 13, 14	7, 13
			10.8				,
9	-	-	-	51.7	-	-	-
10a	2.68	dd	13.5, 9.9	44.9	CH ₂	1', 2', 6', 3	
10b	2.92	dd	13.5, 4.4	-	-	-	-
11	1.05	d	6.5	13.9	CH₃	4, 5, 6	5
12a	5.13	brs	-	113.8	CH ₂	5, 6, 7	5, 7
12b	5.37	brs	-	-	-	-	
13	5.75	ddd	9.7,	126.7	СН	8, 9	8, 14
			15.5, 1.3				
14	5.41	ddd	15.5,	138.4	СН	-	13, 15
			4.7, 10.0				
15a	1.80	m	-	42.5	CH_2	13, 14, 16	14, 17
15b	2.04	m	-	-	-	-	-
16	1.79	m	-	28.2	СН	-	17
17a	1.56	m	-	53.5	CH ₂	18, 19	15, 16
17b	1.88	dd	3.0, 14.4	-	-	-	-
18	-	-	-	74.6	-	-	-
19	5.57	dd	16.6, 2.4	137.8	СН	8, 9, 20	20
20	5.89	dd	16.6, 2.7	125.6	СН	18, 21	21
21	5.58	dd	2.5, 2.7	77.1	СН	19, 20	20
22	1.05	d	6.5	26.2	CH₃	15, 16, 17	15
23	1.37	S	-	30.8	CH₃	16, 17, 18, 19	-
1'	-	-	-	129.7	-	-	-
2' 6'	7.22	d	8.1	129.1	2 x CH	3', 4', 5', 10	3', 5'
3′ 5′	7.51	d	8.1	127.1	2 x CH	2', 6', 4'	2', 6'
4'	-	-	-	139.6	-	-	-
24	-	-	-	170.3	-	-	-
25	2.26	S	-	20.6	CH₃	24	-

NMR data of 24 recorded at 500 MHz in CDCl_{3.}

2.23 Cytochalasin H Dimer 25

To a stirred solution of **1h** (11.0 mg, 0.021 mmol, 1.1 eq) and **1g** (10.0 mg, 0.019 mmol, 1.0 eq) in DMF (2 mL) was added CuI (0.2 mg, 0.95 μ mol, 0.05 eq) and DIPEA (1.2 mg, 9.5 μ mol, 0.5 eq). The mixture was stirred at room temperature for 12 hours under nitrogen and the solvent was removed *in vacuo*. The residue was dissolved in EtOAc (2mL) and washed with water (2 mL x 2). The organic phase was dried over MgSO₄, filtered and evaporated to dryness *in vacuo*. The residue was dissolved in MeOH and purified by LCMS to afford 16.5 mg of desired product (81.5%, 0.015 mmol) as a white solid.

HRMS (m/z): calculated for $[C_{60}H_{76}N_2O_{10} + Na]$: 1104.5674, found: 1104.5688.

Position	о н	M	J _{H-H} /Hz	δ _C	HSQC	HMBC H to C	H-H COSY
1	-	-	-	174.3	-	-	-
3	3.25	m	-	53.8	СН	1', 1, 4, 5	4, 5, 10
4	2.16	dd	3.9, 5.1	50.4	СН	1, 3, 5, 6, 10	3, 5, 10
5	2.80	m	-	32.8	СН	1′, 3	4, 11, 12
6	-	-	-	147.9	-	-	-
7	3.86	dd	2.2, 11.8	69.6	CH	6, 12	8, 12
8	2.96	m	-	47.3	СН	7, 9, 13, 20, 21	7, 13
9	-	-	-	51.8	-	-	-
10a	2.79	m	-	44.9	CH ₂	1′, 3	3, 4, 12
10b	2.96	m	-	-	-	-	-
11	1.01	d	6.6	14.2	CH₃	4, 5, 6	5
12a	5.14	brs	-	114.2	CH ₂	5, 6, 7	5, 7, 11
12b	5.38	brs	-	-	-	-	-
13	5.75	m	-	127.9	СН	7, 8, 15	8, 14, 15
14	5.42	m	-	138.8	СН	9, 15	13, 15
15a	1.82	m	-	42.7	CH ₂	13, 14, 16, 17	13, 14,
15b	2.05	m	-	-	-	-	-
16	1.81	m	-	28.6	СН	13, 14, 17	22
17a	1.58	m	-	53.7	CH ₂	18, 19	-
17b	1.91	m	-	-	-	-	-
18	-	-	-	74.7	-	-	-
19	5.56	brs	-	138.2	CH	-	20
20	5.86	m	-	125.8	СН	18, 19	19
21	5.52	brs	-	77.5	СН	8, 9, 19, 20, 23	-
22	1.07	d	6.4	26.5	CH₃	15, 16, 17	16
23	1.36	S	-	31.3	CH₃	17, 18, 19	-
1'	-	-	-	138.3	-	-	-
2' 6'	7.34	d	8.5	130.4	2 x CH	3', 4', 5', 10	3', 5'
3' 5'	7.71	d	8.5	121.0	2 x CH	1', 4'	2', 6'
4'	-	-	-	136.0	-	-	-
24	-	-	-	170.2	-	-	-
25	2.26	S	-	21.0	CH₃	24	-
4''	-	-	-	145.0	-	-	-
5"	8.08	S	-	120.5	СН	4"	-
6''	5.30	S	-	62.0	CH ₂	4", 5",7"	-
7"	-	-	-	157.3	CH₂	6", 8", 17"	-
8"12"	7.00	d	8.6	115.2	2 x CH	7", 9", 11"	9", 11"
9" 11"	7.10	d	8.6	130.2	2 x CH	8", 10"	8", 12"
10"	-	-	-	138.3	-	-	-

2.24 Bis acetylene linker 26

To a stirred solution of **PEG** (100 mg, 0.67 mmol, 1.0 eq, purchased from Sigma-Aldrich) in dry DMF (3 mL) was added sodium hydride (32.2 mg, 1.34 mmol, 2.0 eq). The mixture was stirred at room temperature for 1 hour under nitrogen after which propargyl bromide (0.6 mL, 6.7 mmol, 10.0 eq, purchased from Acros) was added. The reaction solution was stirred at 80 °C for 12 hours under nitrogen and the solvent was removed *in vacuo*. The residue was diluted with water (10 mL) and then neutralized with 0.1 M HCl (15 mL). The resulting mixture was extracted with EtOAc (15 mL × 2) and the exract was washed with brine (20 mL). The organic phase was dried over MgSO₄, filtered and evaporated to dryness *in vacuo*. The resulting mixture light yellow oil (100 mg) was directly used in the next step without further purification.

2.25 Dimeric Cytochalasin H 27

To a stirred solution of **1h** (20 mg, 0.038 mmol, 1.0 eq) and **26** (25.8 mg, 0.114 mmol, 3. 0 eq) in DMF (4 mL) was added CuI (0.4 mg, 1.90 μ mol, 0.05 eq) and DIPEA (2.4 mg, 19.0 μ mol, 0.5 eq). The mixture was stirred at room temperature for 12 hours under nitrogen and the solvent was removed *in vacuo*. The residue was dissolved in EtOAc (2 mL) and washed with water (3 mL x 2). The organic phase was dried over MgSO₄, filtered and evaporated to dryness *in vacuo*. The residue was dissolved in MeOH and purified by LCMS to afford 15.4 mg of desired product (31.7%, 0.012 mmol) as a brown solid.

HRMS (m/z): calculated for [C₈₇₂H₉₄N₈O₁₄ + Na]: 1317.6787, found: 1317.6775.

27 Chemical Formula: C₇₂H₉₄N₈O₁₄ Exact Mass: 1294.6889

Position	δ _н	М	J _{H-H} /Hz	δ _c	HSQC	HMBC H to C	H-H COSY
1	-	-	-	174.3	-	-	-
3	3.33	m	-	53.5	СН	1', 1, 4, 5	4, 5, 10
4	2.16	dd	3.8, 5.1	50.3	СН	1, 3, 5, 6, 10	3, 5, 10
5	2.81	m	-	32.8	СН	1', 3	4, 11, 12
6	-	-	-	147.9	-	-	-
7	3.88	dd	1.3, 10.8	69.9	СН	6, 12	8, 12
8	2.96	m	_	47.3	СН	7, 9, 13, 20, 21	7, 13
9	-	-	-	51.8	-	-	-
10a	2.76	m	-	45.1	CH₂	1′, 3	3, 4, 12
10b	2.93	m	-	-	-	-	-
11	1.02	d	6.7	14.2	CH₃	4, 5, 6	5
12a	5.14	brs	-	114.2	CH ₂	5, 6, 7	5, 7, 11
12b	5.39	brs	-	-	-	-	-
13	5.75	ddd	1.4, 9.7,	126.9	СН	7, 8, 15	8, 14, 15
			15.4			, ,	
14	5.42	ddd	4.8, 10.1,	138.8	СН	9, 15	13, 15
			15.4			-, -	-, -
15a	1.82	m	-	42.7	CH ₂	13, 14, 16, 17	13, 14,
15b	2.06	m	-	-	-	-	-
16	1.81	m	-	28.6	СН	13, 14, 17	22
17a	1.60	m	-	53.6	CH ₂	18.19	-
17b	1.88	m	-	-	-	-	-
18	-	-	-	74.7	-	-	-
19	5.56	brs	-	138.2	СН	-	20
20	5.88	dd	2.2, 17.0	125.7	СН	18, 19	19
21	5.55	brs	-	77.3	СН	8, 9, 19, 20, 23	-
22	1.07	d	6.3	26.5	CH₃	15, 16, 17	16
23	1.36	S	-	31.3	CH ₃	17, 18, 19	-
1'	-	-	-	138.3	-	-	-
2' 6'	7.31	d	8.5	130.4	2 x CH	3', 4', 5', 10	3', 5'
3' 5'	7.68	d	8.5	120.8	2 x CH	1', 4'	2', 6'
4'	-	-	-	136.0	-	-	-
24	-	-	-	170.2	-	-	-
25	2.27	S	-	21.0	CH₃	24	-
4''	-	-	-	145.0	-	-	-
5"	8.04	s	-	120.4	СН	4''	-
6"	4.77	S	-	64.7	CH₂	4", 5",7"	-
7"	3.76	m	-	69.9	CH ₂	6", 8", 17"	-
8"9"	3.70	m	-	70.6	CH_2	8", 9"	-

3.0 In vivo Procedures

3.01 Growth Inhibition of Fungal Strains

Pyrichalasin H **1a** and compounds **1e** - **27** (Table 3.1) were subjected to a serial dilution assay in 96-well plate format, with selected microorganisms grown for 24 (*S. pombe. P. anomala. M. hiemalis. R. glutinis*) and 48 hours (*C. albicans*), as described by Mulwa et al. 2018.¹ Inhibitory concentrations are given in μ M. Observed alleviated, but incomplete inhibition of growth is marked in brackets.

Table 3.1: Growth Inhibitory concentrations of pyrichalasin H **1a** and derivatives in a serial dilution assay *versus* selectedfungi. Inhibiting concentrations are given in μ M (μ mol/L). n.i. = no inhibition. Lowest value = red; highest value = green.

Compound	Schizosaccharomyces pombe	Pichia anomala	Mucor hiemalis	Candida albicans	Rhodotorula glutinis
1a	31.722	n.i.	(31.722)	n.i.	63.635
1e	3.392	n.i.	n.i.	n.i.	6.783
1f	60.622	n.i.	n.i.	n.i.	121.971
1g	30.331	n.i.	n.i.	n.i.	60.845
1h	7.861	n.i.	62.326	n.i.	31.067
1 i	n.i.	n.i.	n.i.	n.i.	n.i.
5a	n.i.	n.i.	n.i.	n.i.	n.i.
5b	n.i.	n.i.	n.i.	n.i.	n.i.
5c	n.i.	n.i.	n.i.	n.i.	93.806
7a	n.i.	n.i.	n.i.	n.i.	n.i.
7b	n.i.	n.i.	n.i.	n.i.	n.i.
7c	n.i.	n.i.	n.i.	n.i.	n.i.
9	n.i.	n.i.	n.i.	n.i.	n.i.
11	n.i.	n.i.	n.i.	n.i.	n.i.
13	n.i.	n.i.	n.i.	n.i.	n.i.
15	78.143	n.i.	19.361	4.899	78.143
17	12.264	n.i.	n.i.	n.i.	49.499
19	n.i.	n.i.	n.i.	n.i.	n.i.
21	n.i.	n.i.	n.i.	n.i.	n.i.
22	126.106	n.i.	n.i.	n.i.	n.i.
23	108.175	n.i.	n.i.	n.i.	n.i.
24	n.i.	n.i.	n.i.	n.i.	n.i.
25	n.i.	n.i.	n.i.	n.i.	n.i.
27	n.i.	n.i.	n.i.	n.i.	n.i.

3.02 Cytotoxicity Assays

Cytotoxicity was assessed by subjection of pyrichalasin H 1a and synthetic derivatives 1e - 27 (Table 3.2) to a standardized metabolic activity test using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide (MTT) on mouse fibroblast cells (L929) and different cancer cell lines (cervix cancer, KB3.1; prostate cancer, PC3; lung cancer, A549; breast cancer, MCF-7; epidemoid carcinoma, A431; ovarian cancer, SKOV-3), as available. Concentrations are given for 50% growth inhibition observed with the no-compound control as reference¹ (IC₅₀ in μ M).

Table 3.2: Concentrations (μ M) of previously described compounds found to have metabolism-inhibitory effects according to the MTT assay half-maximal to complete inhibition (IC50). Epothilon B served as the inhibited-growth negative control.

Compound	L929	KB3.1	PC3	A549	MCF-7	A431	SKOV-3
1a	0.21	0.036	0.153	0.067	0.055	0.044	0.034
1e	0.128	0.019	1.292	0.032	0.015	0.016	0.021
1f	0.419	0.273	0.255	0.273	0.455	0.291	0.419
1g	0.329	0.08	0.183	0.256	0.164	0.183	0.238
1h	0.082	0.036	0.071	n.d.	0.026	n.d.	n.d.
1i	2.3601	0.393	60.005	n.d.	0.452	n.d.	n.d.
5a	10.621	1.445	2.089	4.353	1.254	1.915	2.089
5b	0.503	0.22	6.286	n.d.	0.22	n.d.	n.d.
5c	0.364	0.518	1.82	2.38	1.68	0.504	1.386
7a	**	19.599	n.d.	n.d.	30.623	n.d.	n.d.
7b	**	40.944	n.d.	n.d.	n.d.	n.d.	n.d.
7c	**	14.211	n.d.	n.d.	n.d.	n.d.	n.d.
9	*	**	n.d.	n.d.	n.d.	n.d.	n.d.
11	25.375	6.84	n.d.	n.d.	17.652	n.d.	n.d.
13	43.305	4.565	**	n.d.	3.745	n.d.	n.d.
15	2.799	0.606	1.749	2.333	1.061	1.633	0.805
17	0.096	0.021	0.096	0.051	0.055	0.035	0.03
19	27.14	21.713	n.d.	n.d.	n.d.	n.d.	n.d.
21	1.861	0.518	0.425	0.518	0.332	0.412	0.385
22	5.27	2.635	3.388	3.388	2.447	5.458	6.023
23	1.937	0.291	0.549	0.581	0.371	0.387	0.452
24	8.227	1.117	6.704	n.d.	0.828	n.d.	n.d.
25	1.664	0.12	0.647	0.629	0.592	0.629	1.109
27	**	6.565	n.d.	n.d.	n.d.	n.d.	n.d.

* = no visible effect; ** = small proliferation inhibition; n.d. = not determined. Lowest value = red; highest value = green.

3.03 In vivo Effects on the Actin Cytoskeleton

Effects on the actin cytoskeleton were characterized in further detail using osteosarcoma cells (U2OS), following the procedure described by Kretz et al. 2019.² All compounds affected the actin cytoskeleton, confirming retained activities as functionalized compounds even upon heavy modification (Figure 3.1A, Figure 3.1B).

Fluorescently-labelled cytochalasins were further investigated concerning their potential use in staining the actin cytoskeleton. Here, U2OS cells were grown on fibronectincoated cover slips overnight similar to the methodology employed before. Untreated, wellspread cells were fixed with 500µl of warm 4% paraformaldehyde (PFA) in PBS solution for 20 minutes and washed with 500µl PBS. After cell permeabilisation with 500µl 0.1% Triton X-100 in PBS and additional washing steps with 500µl PBS (3x), coverslips were treated with labelled cytochalasin derivatives (100µg/ml) and fluorescently-labelled phalloidins (ALEXA 488, green fluorescence; ATTO 594, red fluorescence), in each case complementary in colour, by incubation in a wet chamber on parafilm. Samples were incubated for 1h in the dark, followed by procedures for nuclear staining and image recording, as stated above.

Initial staining attempts using **21** as a fluorophore did not show any interpretable fluorescence, thus it was excluded from future experiments (data not shown). Out of the four fluorescently-coupled derivatives, both **19** and **17**displayed a staining pattern at least partially overlapping with actin filament-containing stress fibre-like structures, as confirmed by counterstaining with phalloidin (Fig. 3.2). However, in follow-up experiments, stainings appeared more specific with **17**. Moreover, signal intensities with **17** were further improved upon inclusion of 0.25% glutaraldehyde (GA, Fig. 3.3) as fixative as compared to using 4% para-formaldehyde (PFA, Fig. 3.2) alone, assumed to counteract partial filament loss seen with weaker fixatives such as PFA.³ Notably, unspecific staining patterns obtained with **13** and **15** were not improved further upon addition of 0.25% GA.

Figure 3.1A: Summary of fluorescence microscopy images showing the actin cytoskeleton (pseudocoloured in red) stained by fluorescently-coupled phalloidin (atto 594) and nuclei stained by DAPI (blue). DMSO served as a vehicle control. U2OS cells were treated for 1 hour with respective compound and concentration, and directly fixed with 4% PFA. Images show the collapse of cytoskeletal actin to different degrees of severity. See Figure 3.1B for the effect of cytochalasin B (CytB).

25 2 μg/ml	25 10 μg/ml	22 3 μg/ml	22 15 μg/ml	21 1.4 μg/ml
21 7 µg/ml	1f 2 μg/ml	1f 10 μg/ml	19 30 µg/ml	19 150 μg/ml
17 1 μg/ml	17 5 µg/ml	27 25 µg/ml	27 100 µg/ml	CytB 1 µg/ml
CytB 5 μg/ml	DMSO vehicle control	DMSO vehicle control		

Figure 3.1B: Summary of fluorescence microscopy images showing the actin cytoskeleton (pseudocoloured in red) stained by fluorescently-coupled phalloidin (atto 594) and nuclei stained by DAPI (blue). DMSO served as a vehicle control. U2OS cells were treated for 1 hour with respective compound and concentration, and directly fixed with 4% PFA. Images show the collapse of cytoskeletal actin to different degrees of severity. The effect of cytochalasin B (CytB) is shown in comparison.

Figure 3.2: Fluorescence microscopy images of untreated U2OS cells simultaneously stained with fluorescently-coupled phalloidin (ALEXA 488, ATTO 594) and differentially-derivatised cytochalasin variants upon fixation with 4% PFA. **A**, **C**, **E**, **G**: Actin cytoskeleton stained with phalloidin. Images **B**, **D**: Signals obtained with 13 and 15, respectively, and lacking any obvious specificity for the actin cytoskeleton. Image **F**: **19** displaying mostly cytosolic signal, and very weak association with actin cytoskeletal structures, such as lamellipodia-like structures at the cell periphery. Image **H**: More prominent association of **17** with the actin cytoskeleton. Note that prominently stained structures at least partly overlap with the phalloidin staining in image **G**. Scale = 20µm.

Figure 3.3: Fluorescence microscopy of untreated U2OS cells simultaneously stained with fluorescently-coupled phalloidin (ALEXA 488, ATTO 594) and cytochalasin derivatives upon fixation with 4% para-formaldehyde (PFA) and 0.25% glutaraldehyde (GA). **A**, **C**, **E**, **G**: Actin cytoskeleton as stained with phalloidin. Images **B**, **D**: lack of association with the actin cytoskeleton, as already observed for 13 and 15 upon fixation with PFA alone (Figure 3.2). Image **F**: Clearly discernible staining of actin cytoskeletal structures with **19**, which appears enhanced upon PFA/GA-fixation as compared to PFA alone (see Figure 3.2), and **H**: **17** displaying quite robust labelling of actin filament networks, reasonably well overlapping in these conditions with the phalloidin staining in G. Scale bars = 20µm.

4.0 References

- 1. Mulwa LS, Jansen R, Praditya DF, Mohr KI, Okanya PW, Wink J, Steinmann E and Stadler M (2018), Lanyamycin, a macrolide antibiotic from *Sorangium cellulosum*, strain Soce 481 (Myxobacteria), *Beilstein J. Org.Chem.*, 14:1554–1562. doi: 10.3762/bjoc.14.132
- 2 Kretz R, Wendt L, Wongkanoun S Luangsa-ard J, Surup F, Helaly S, Noumeur S, Stadler M and Stradal T (2019), The Effect of Cytochalasans on the Actin Cytoskeleton of Eukaryotic Cells and Preliminary Structure–Activity Relationships, *Biomolecules*, 9(2):73. doi: 10.3390/biom9020073
- 3. Mies B, Rottner K, Small, JV (1997), Immunofluorescence microscopy of the cytoskeleton: Double and triple immunofluorescence II. In "Cell Biology: A Laboratory Handbook", 2nd Edition (ed. J.E. Celis), Academic Press.