New Phytologist Supporting Information

Article title: Arabidopsis C-terminal Binding Protein ANGUSTIFOLIA modulates transcriptional co-regulation of *MYB46* and *WRKY33*

Authors: Meng Xie, Jin Zhang, Tao Yao, Anthony C. Bryan, Yunqiao Pu, Jessy Labbé, Dale A. Pelletier, Nancy Engle, Jennifer L. Morrell-Falvey, Jeremy Schmutz, Arthur J. Ragauskas, Timothy J. Tschaplinski, Feng Chen, Gerald A. Tuskan, Wellington Muchero, and Jin-Gui Chen

Article acceptance date: 26 June 2020

The following Supporting Information is available for this article:

Fig. S1 Overexpression of Myc tagged AN (AN-Myc) in *an-t1* (*an-t1 35S:AN*) reverses its narrow-leaf phenotype to wild type morphology.

(a) qPCR analysis of AN transcript in Col-0, an-t1, and an-t1 35S:AN. Values represent means \pm SEM, n = 3. Statistical significance was determined by two tailed students t-tests against Col-0 (** P<0.01).

(b) Phenotypes of three-week-old seedlings of Col-0, *an-t1*, and *an-t1 35S:AN*.

Fig. S2 AN antagonistically regulates gene expression in SA and JA/ET pathways. (a) qPCR analysis showing expression changes of *PR-1*, *PAL1*, *PAL2*, *PAL3*, *PAL4*, *ICS1*, *PBS3*, and *EDS5* in Col-0, *an-t1*, and *an-t1* 35S:AN at 0 and 6 hpi of *P. syringae* treatment. (b) qPCR analysis showing expression changes of *PDF1.2*, *ACS2*, *ACS6*, *ERF1A*, and *ORA59* in Col-0, *an-t1*, and *an-t1* 35S:AN at 0 and 24 hpi of *B. cinerea* treatment. Gene expressions were normalized against the expression of *EF1a*. For each gene, its expression in Col-0 at 0 hpi was set as 1. Values represent means \pm SEM, n = 3. Statistical significance was determined by two tailed students t-tests against Col-0 (** *P*<0.01, * *P*<0.05, *ns P*>0.05).

Fig. S3 Yeast two-hybrid analysis of AN and TDP1 interaction.

AN was fused with Gal4 activation domain (AD). Full-length and truncated TDP1 were fused with Gal4 DNA binding domain (BD). SD-T-L, indicates SD plate without Trp and Leu. SD-T-

Fig. S4 μChIP-qPCR analysis using protoplasts co-expressing AN-Myc and HA-TDP1. (a) Western blot results showing AN and TDP1 co-expression did not change protein expression levels of AN-Myc or HA-TDP1. ACTIN was blotted as a loading control.

(b) μ ChIP-qPCR analysis demonstrating the enhancement of association of TDP1 with *MYB46* promoter by AN. Assays without antibody (no ab) were performed as negative controls. Values represent means \pm SEM, n = 3. Statistical significance was determined by two tailed students t-tests (** *P*<0.01).

Fig. S5 AN has no transcriptional activator activity.

Left scheme displays the two vectors used in transactivation analysis: reporter construct contains one Gal4 binding site upstream of *GUS* reporter gene; effector construct expressing GD fused AN. GD fused VP16 (GD-VP16) was used as a positive control. Values represent means \pm SEM, n = 3. Statistical significance was determined by two tailed students t-tests (** *P*<0.01).

Fig. S6 Transcription factors up- and down-regulated in *an-t1* mutant.

Published RNA-seq data of *an-t1* mutant (Bryan AC, Zhang J, Guo J, Ranjan P, Singan V, Barry K, Schmutz J, Weighill D, Jacobson D, Jawdy S, et al. 2018. A Variable Polyglutamine Repeat Affects Subcellular Localization and Regulatory Activity of a *Populus* ANGUSTIFOLIA Protein. *G3 (Bethesda)* **8**(8): 2631-2641) is used to plot the bar graph.

Fig. S7 Amino acid sequence alignment of Arabidopsis TDP1 (AT5G15170) and Medicago TDP1 (XM_003622639).

*, identical amino acid. :, similar amino acid. Solid black line indicates the FHA domain and dashed black line indicates the TDP domain.

Fig. S8 A model illustrating AN-mediated transcriptional regulation of plant resistance to *P. syringea* and *B. cinerea*.

The AN-TDP1 interaction translocates AN into the nucleus to repress the expression of *MYB46*. On the other hand, the AN-TDP1 interaction releases the transcriptional repression of *WRKY33* by sequestering TDP1 away from the *WRKY33* promoter. The AN-mediated antagonistic regulation of *MYB46* and *WRKY33* leads to the antagonistic regulation of expression of genes in the SA pathway (*PR-1*, *PAL1*, *PAL2*, etc.) and JA/ET pathway (*PDF1.2*, *ACS2/6*, *ERF1A*, *ORA59*, etc.), which results in elevated resistance to *B. cinerea* and increased susceptibility to *P. syringae*.

Fig. S9 Total amounts of salicylic acid (SA) and salicylic acid 2-O-glucoside (SAG) in Col-0, *an-t1*, and *an-t1 35S:AN* in 0 hpi and 24 hpi of *P. syringae* inoculation.

The unit of total amount is $\mu g/g$ FW (sorbitol equivalents). Values represent means \pm SEM, n \geq 2. Statistical significance was determined by two tailed students t-tests (** *P*<0.01, * *P*<0.05, *ns P*>0.05).

Fig. S10 Pathogen infection changes the transcription and nuclear accumulation of AN. (a) qPCR analysis showing expression changes of *AN* in Col-0 at 0 and 6 hpi of *P. syringae* treatment.

(b) qPCR analysis showing expression changes of AN in Col-0 at 0, 24, 48, and 72 hpi of B. *cinerea* treatment. Gene expressions were normalized against the expression of $EF1\alpha$. Gene expressions in 0 hpi of pathogen treatment were set as 1. Values represent means \pm SEM, n = 3. (c) western blotting indicating P. *syringae* treatment reduces the nuclear accumulation of AN. AN-Myc, HA-TDP1, UGPase (cytosolic marker), histone H3 (nuclear marker) are examined in cytosolic (C) and nuclear (N) fractions. AN-Myc signals were quantified using Image Lab (Biorad) and then normalized against corresponding nuclear or cytosolic marker to calculate the relative ratio of AN signals in cytosolic and nuclear fractions.

Fig. S11 *tdp1-2* mutant has increased resistance to *P. syringae* and *B. cinerea*.

(a) *P. syringae* inoculation of Col-0 and *tdp1-2*. Bacterial titers in 0 hpi and 72 hpi are shown in the bar graph. Values represent means \pm SEM, n = 15.

(b) *B. cinerea* inoculation of Col-0 and *tdp1-2*. Scale bar: 1 mm. Lesion areas (% of total leaf area) in 0 hpi and 72 hpi are shown in the bar graph. Values represent means \pm SEM, n = 40. Statistical significance was determined by two tailed students t-tests against Col-0 (** *P*<0.01, * *P*<0.05, *ns P*>0.05).

Name	Sequence (5'-3')	Applications
AN CDS-F	CACCATGAGCAAGATCCGTTCGTCTG	AN cloning
AN-CDS-R	TTAATCGATCCAACGTGTGATA	
TDP1-pGBKT7-F	CACCATGGCTCACTCTCAGGTTGCTT	TDP1 cloning
TDP1-pGBKT7-R	ATGTCGACCTATCTTGGCCAGACTTGTCCA	
P-MYB46-F	CACCAAAAGGAGTATAACATTTTCTT	Promoter cloning
P-MYB46-R	CTATCTTGGCCAGACTTGTCCA	
P-WRKY33-F	CACCCAAACTCACTTCTAAATACTAA	Promoter cloning
P-WRKY33-R	CTGTATATTTGTTGGTTATGTC	
AN qRT-F	GTCTTCCCCAAATCAGCTTG	qPCR
AN qRT-R	CCGAGAGGTCTTTCGCATAC	
TDP1 qRT-F	TTACCTGGCCGTGGTAATGT	qPCR
TDP1 qRT-R	GGTATCCAGGGACTGAAGCA	
EF1a qRT-F	TGAGCACGCTCTTCTTGCTTTCA	qPCR
EF1a qRT-R	GGTGGTGGCATCCATCTTGTTACA	
PR-1 qRT-F	TTCTTCCCTCGAAAGCTCAA	qPCR
PR-1 qRT-R	AAGGCCCACCAGAGTGTATG	
PR-3 qRT-F	GGCAAACGCTACTACGGAAG	qPCR
PR-3 qRT-R	GCAACAAGGTCAGGGTTGTT	
AtPAL1 qRT-F	GTGTCGCACTTCAGAAGGAA	qPCR
AtPAL1 qRT-R	GGCTTGTTTCTTTCGTGCTT	
AtPAL2 qRT-F	GTGCTACTTCTCACCGGAGA	qPCR
AtPAL2 qRT-R	TATTCCGGCGTTCAAAAATC	
AtPAL3 qRT-F	CAACCAAACGCAACAGCA	qPCR
AtPAL3 qRT-R	CTCCAGGTGGCTCCCTTTTA	
AtPAL4 qRT-F	GGTGCACTTCAAAATGAGCT	qPCR
AtPAL4 qRT-R	CAACGTGTGTGACGTGTCC	
AtCESA3 qRT-F	ACAGCCAACACAGTGCTCTC	qPCR
AtCESA3 qRT-R	TGGTACCCATTTACGAGCAA	
AtCESA4 qRT-F	CTGTGGTTATGAAGAGAAGACTGAA	qPCR
AtCESA4 qRT-R	TGCATTCTAAATCCAGTGAGGA	
AtCESA7 qRT-F	TTGTTGCAGGCATCTCAGATG	qPCR
AtCESA7 qRT-R	GCAGTTGATGCCACACTTGGA	

Table S1Primers used in this study.

AtCESA8 qRT-F	TGAGCTTTACATTGTCAAATG	qPCR
AtCESA8 qRT-R	GCAATCGATCAAAAGACAGTT	
MYB46 ChIP-P1-F	CCATGACCGATCAACTAACG	ChIP-qPCR,
MYB46 ChIP-P1-	GAACCCTGGCTCTTTTTCAA	
MYB46 ChIP-P2-F	CCCAGAATTGTAAGCAAACCA	ChIP-qPCR
MYB46 ChIP-P2-	GGATCCATTGATGTGAACGA	
WRKY33 ChIP-F	TCATACGTGTCAGAACGAGACA	ChIP-qPCR
WRKY33 ChIP-R	CAGACCTTGTGGCCTTGACT	
ACS6 ChIP-F	ATGAAAAGAATTCCGGTCCA	ChIP-qPCR
ACS6 ChIP-R	TTGGAAAAGAAATGAGACATCAA	
ACS2 ChIP-F	AAATTCCCTTCCCAAATGGT	ChIP-qPCR
ACS2 ChIP-R	ACAAGCGAACCAAGGAAAAA	
ERF1A ChIP-F	CCAATCACAACATTGCTTCG	ChIP-qPCR
ERF1A ChIP-R	AAACACGTGCGTTTTATCCA	
ACTIN ChIP-F	CGTTTCGCTTTCCTTAGTGTTAGCT	ChIP-qPCR
ACTIN ChIP-R	AGCGAACGGATCTAGAGACTCACCTTG	
MYB58 ChIP-F	CGTCGAGAAATGTTGTGTGTG	ChIP-PCR
MYB58 ChIP-R	TGGGTCCTATAACCCTGTAACAT	
MYB103 ChIP-F	TTTATAAAATAATAGGTCAACCTCGAA	ChIP-PCR
MYB103 ChIP-R	CATGTATTATCCACTGTTTTCCTCT	
MYB63 ChIP-F	TGCATCGGTGTTAGAAGGAA	ChIP-PCR
MYB63 ChIP-R	TTGTTGAGTGGGAAAAGGTTG	
MYB55 ChIP-F	TCTACAATACTACCAAACAGAACCAAA	ChIP-PCR
MYB55 ChIP-R	GAGAGGAGGATTTGGGGAAT	
MYB20 ChIP-F	GATTGAGCTCATAGTCCCGTTT	ChIP-PCR
MYB20 ChIP-R	TTTTCTTATTTCGTGTCACTTTGG	
NAC073 ChIP-F	TTTGTTTGATCAGTCTTTGTCCA	ChIP-PCR
NAC073 ChIP-R	TTGCTTGGGTTTTAAGTTTGG	
WRKY53 ChIP-F	CACTCTGGCCCTATACTTCCTT	ChIP-PCR
WRKY53 ChIP-R	TTGACCAAATGACCAAACCA	
WRKY26 ChIP-F	ATTCAGCCGCCTTACACAAA	ChIP-PCR
WRKY26 ChIP-R	TCCAAGGAAAAGCAAGCAAT	
WRKY22 ChIP-F	ACAAACCGAACCGCTTTTTA	ChIP-PCR
WRKY22 ChIP-R	AGAACAAACCGCTGCAAACT	

WRKY40 ChIP-F	GCCGGCTATGCTATAACGAA	ChIP-PCR
WRKY40 ChIP-R	TATGACGCTCTCCACGTTTG	