Supplemental Material

Here we derive a more detailed derivation of the proofs, which may helpful to teaching this derivation or giving as an exercise.

Showing a full proof of the strict inequality

$$P(X_{i} > X_{j} | Y_{i} = 1, Y_{j} = 0) =$$

$$P(X_{i} > X_{j} | Y_{i} = 1, Y_{j} = 0, X_{i} = \mathbf{0}) P(X_{i} = \mathbf{0} | Y_{i} = 1, Y_{j} = 0)$$

$$+ P(X_{i} > X_{j} | Y_{i} = 1, Y_{j} = 0, X_{i} = \mathbf{1}) P(X_{i} = \mathbf{1} | Y_{i} = 1, Y_{j} = 0)$$

$$= P(X_{i} > X_{j} | Y_{i} = 1, Y_{j} = 0, X_{i} = 1) P(X_{i} = 1 | Y_{i} = 1, Y_{j} = 0)$$
(1)

as $P(X_i > X_j | Y_i = 1, Y_j = 0, X_i = 0) = 0$ because X_i and X_j are in $\{0, 1\}$. We see that $P(X_i = 1 | Y_i = 1, Y_j = 0)$ in equation (1) is the sensitivity by independence:

$$P(X_i = 1 | Y_i = 1, Y_j = 0) = P(X_i = 1 | Y_i = 1)$$

$$= \frac{TP}{TP + FN}$$

$$= \text{sensitivity}$$

and that $P(X_i > X_j | Y_i = 1, Y_j = 0, X_i = 1)$ in equation (1) is the specificity:

$$\begin{split} &P(X_i > X_j | Y_i = 1, Y_j = 0, X_i = 1) = \\ &P(X_i > X_j | Y_i = 1, Y_j = 0, X_i = 1, X_j = \mathbf{1}) P(X_j = \mathbf{1} | Y_i = 1, Y_j = 0, X_i = 1) \\ &+ P(X_i > X_j | Y_i = 1, Y_j = 0, X_i = 1, X_j = \mathbf{0}) P(X_j = \mathbf{0} | Y_i = 1, Y_j = 0, X_i = 1) \\ &= P(X_i > X_j | Y_i = 1, Y_j = 0, X_i = 1, X_j = 0) P(X_j = 0 | Y_i = 1, Y_j = 0, X_i = 1) \\ &= P(X_j = 0 | Y_i = 1, Y_j = 0, X_i = 1) \\ &= P(X_j = 0 | Y_j = 0) \\ &= \frac{TN}{TN + FP} \\ &= \text{specificity} \end{split}$$

as the first probability is zero as $X_i = X_j = 1$. We combine these two to show that equation (1) reduces to:

$$P(X_i > X_j | Y_i = 1, Y_j = 0) = \text{specificity} \times \text{sensitivity}$$

Thus, using the definition as $P(X_i > X_j | Y_i = 1, Y_j = 0)$, the AUC of a binary predictor is simply the sensitivity times the specificity.

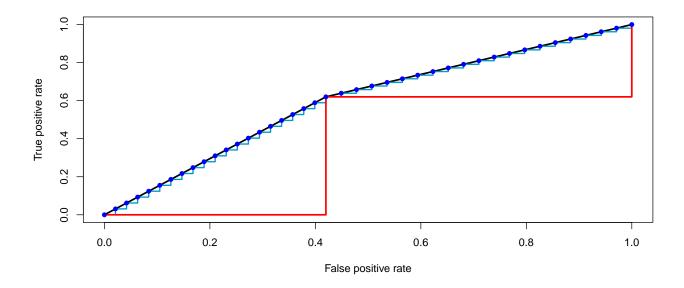


Figure 1: ROC curve of the data in the binary versus extreme categorical variable.

Showing a the additional ties

$$\begin{split} P(X_i = X_j | Y_i = 1, Y_j = 0) &= P(X_i = X_j | Y_i = 1, Y_j = 0, X_i = \mathbf{1}, X_j = \mathbf{1}) \\ &+ P(X_i = X_j | Y_i = 1, Y_j = 0, X_i = \mathbf{0}, X_j = \mathbf{0}) \\ &= P(X_i = \mathbf{1} | Y_i = 1) P(X_j = \mathbf{1} | Y_j = 0) \\ &+ P(X_i = \mathbf{0} | Y_i = 1) P(X_j = \mathbf{0} | Y_j = 0) \\ &= (\text{sensitivity} \times (1 - \text{specificity})) \\ &+ ((1 - \text{sensitivity}) \times \text{specificity}) \end{split}$$

A more extreme example of differences with categorical variables

We can make a more extreme (yet contrived) example than the categorical example we presented before. Let us say we have 20000 samples in the data set and we have a binary predictor with the a distribution against the outcome as in Table 1.

Table 1: A simple 2x2 table of a binary predictor (rows) versus a binary outcome (columns)

	0	1
0	5800	3800
1	4200	6200

Let us assume we have a continuous predictor (e.g. age), but only had 20 unique values observed, so we can also consider it empirically discrete. Here we see the frequency table in Table 2.

When we create the ROC curves, they have identical curves when accounting for ties (black). The red and blue lines represents the ROC curves for the pessimistic estimation for the binary (red) and continuous though discrete (blue) variables. We see they give vastly different results. As the continuous predictor can actually achieve sensitivity/specificity combinations on the black line, it may make more sense using the linear interpolation, but he pessimistic approach ROC curve is similar.

Table 2: A simple 2x2 table of a discrete predictor (rows) versus a binary outcome (columns)

· · · · I		,
	0	1
0.0277	290	190
0.0483	290	190
0.0586	290	190
0.0691	290	190
0.08	290	190
0.0827	290	190
0.0931	290	190
0.0964	290	190
0.1463	290	190
0.1476	290	190
0.1534	290	190
0.1747	290	190
0.2109	290	190
0.2145	290	190
0.2387	290	190
0.2448	290	190
0.2493	290	190
0.2619	290	190
0.2795	290	190
0.2894	290	190
0.2911	210	310
0.3169	210	310
0.3191	210	310
0.3517	210	310
0.3597	210	310
0.3761	210	310
0.3813	210	310
0.4552	210	310
0.5264	210	310
0.6066	210	310
0.6136	210	310
0.6393	210	310
0.6572	210	310
0.6971	210	310
0.7799	210	310
0.7936	210	310
0.8197	210	310
0.8915	210	310
0.9026	210	310
0.9957	210	310
_		