Supplemental Material

Here we derive a more detailed derivation of the proofs, which may helpful to teaching this derivation or
giving as an exercise.

Showing a full proof of the strict inequality

P(X; > X;lY; =1Y;=0) =

P(X; > X;[Yi=1,Y; =0, X, = 0)P(X; = 0]Y; = 1,Y; = 0)
+P(X:>X,|Y;=1,Y;=0,X;, =1)P(X; =1|Y; = 1,Y; = 0)
=P(X;>X,[Yi=1,Y; =0,X; = 1)P(X; = 1|Y; = 1,Y; = 0) (1)

as P(X; > X;|Y; = 1,Y; = 0,X; = 0) = 0 because X; and X; are in {0,1}. We see that P(X; = 1|Y; =
1,Y; = 0) in equation (1) is the sensitivity by independence:

P(X;=1]Y; =1,Y; =0) = P(X; = 1]Y; = 1)
TP
" TP+FN

= sensitivity

and that P(X; > X,|Y; =1,Y; =0, X, = 1) in equation (1) is the specificity:

PX;>X;|V;=1Y;=0,X,=1)=

PX;>X;|V;=1Y;=0,X;,=1,X; =1)P(X; =1]Y; =1,Y; =0, X; = 1)
+P(X; > X,[Yi=1Y;=0,X;=1,X; =0)P(X; =0]Y; = 1,Y; = 0, X, = 1)
=P(X;>X;|V;=1Y;=0,X,=1,X, =0)P(X; =0)Y; =1Y, =0,X;, =1)
=PX;=0lY;=1Y,=0,X;,=1)
— P(X, = 0]Y; = 0)

TN

“ TN+ FP
= specificity

as the first probability is zero as X; = X; = 1. We combine these two to show that equation (1) reduces to:

P(X; > X;|Y; =1,Y; = 0) = specificity x sensitivity

Thus, using the definition as P(X; > X;|¥; = 1,Y; = 0), the AUC of a binary predictor is simply the
sensitivity times the specificity.
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Figure 1: ROC curve of the data in the binary versus extreme categorical variable.

Showing a the additional ties

PX,=X;|Y;=1,Y;=0)=P(X;,=X;|Y; =1,Y; =0,X; =1,X; = 1)
+P(X;=X,lY;=1Y;=0,X; =0,X; =0)
= P(X; =1]Y; = 1)P(X,; = 1]Y; = 0)
+ P(X; =0]Y; = 1)P(X; = 0]Y; =0)
=(
(

P
P

sensitivity x (1 — specificity))

+ ((1 — sensitivity) x specificity)

A more extreme example of differences with categorical variables
We can make a more extreme (yet contrived) example than the categorical example we presented before. Let

us say we have 20000 samples in the data set and we have a binary predictor with the a distribution against
the outcome as in Table 1.

Table 1: A simple 2x2 table of a binary predictor (rows) versus a binary outcome (columns)

0 1
5800 | 3800
1] 4200 | 6200

Let us assume we have a continuous predictor (e.g. age), but only had 20 unique values observed, so we can
also consider it empirically discrete. Here we see the frequency table in Table 2.

When we create the ROC curves, they have identical curves when accounting for ties (black). The red and
blue lines represents the ROC curves for the pessimistic estimation for the binary (red) and continuous
though discrete (blue) variables. We see they give vastly different results. As the continuous predictor can
actually achieve sensitivity/specificity combinations on the black line, it may make more sense using the
linear interpolation, but he pessimistic approach ROC curve is similar.



Table 2: A simple 2x2 table of a discrete predictor (rows) versus a binary outcome (columns)
0 1
0.0277 | 290 | 190
0.0483 | 290 | 190
0.0586 | 290 | 190
0.0691 | 290 | 190
0.08 290 | 190
0.0827 | 290 | 190
0.0931 | 290 | 190
0.0964 | 290 | 190
0.1463 | 290 | 190
0.1476 | 290 | 190
0.1534 | 290 | 190
0.1747 | 290 | 190
0.2109 | 290 | 190
0.2145 | 290 | 190
0.2387 | 290 | 190
0.2448 | 290 | 190
0.2493 | 290 | 190
0.2619 | 290 | 190
0.2795 | 290 | 190
0.2894 | 290 | 190
0.2911 | 210 | 310
0.3169 | 210 | 310
0.3191 | 210 | 310
0.3517 | 210 | 310
0.3597 | 210 | 310
0.3761 | 210 | 310
0.3813 | 210 | 310
0.4552 | 210 | 310
0.5264 | 210 | 310
0.6066 | 210 | 310
0.6136 | 210 | 310
0.6393 | 210 | 310
0.6572 | 210 | 310
0.6971 | 210 | 310
0.7799 | 210 | 310
0.7936 | 210 | 310
0.8197 | 210 | 310
0.8915 | 210 | 310
0.9026 | 210 | 310
0.9957 | 210 | 310
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