Supplementary Information for:

Yeast Nup84-Nup133 complex structure details flexibility and reveals conservation of the membrane anchoring ALPS motif

Sarah A. Nordeen¹, Daniel L. Turman¹ & Thomas U. Schwartz^{1*}

¹Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States *corresponding author

Supplementary Figure 1. Electron density map for the Nup84-Nup133_{CTD} structure.

Final $2F_0$ - F_c electron density map contoured at 1.5 σ with fragments used to build the structure. Density for VHH-SAN8 was excluded for clarity.

Supplementary Figure 2.

VHH-SAN8 and VHH-SAN9 are present in the structures.

(a) SDS-PAGE gel of purified Nup84-Nup133_{CTD}-VHH complexes and crystals of Nup84-Nup133_{CTD}-VHH-SAN8 and Nup84-Nup133_{CTD}-VHH-SAN8/9 complexes. The gel is representative of two independent experiments. (b) Binding location of VHH-SAN8 shown by density in both $2F_0$ - F_c (left) and F_0 - F_c omit map when VHH-SAN8 is removed from the structure (right). (c) Same analysis as in (b) with the structure of Nup84-Nup133_{CTD}-VHH-SAN8/9.

Supplementary Figure 3.

Structure of the *S. cerevisiae* Nup84-Nup133_{CTD}-VHH-SAN8/9 complex.

Structure of Nup84-Nup133_{CTD}-VHH-SAN8, with Nup84 in pink, Nup133_{CTD} in purple, and VHH-SAN8 in black, VHH-SAN9 shown in navy.

Supplementary Figure 4. Conservation of Nup84-Nup133_{CTD}.

(a) Surface rendering of Nup84-Nup133_{CTD} with a color gradient depicting conservation across diverse eukaryotes. (b) Open-book depiction of the interface between Nup84 and Nup133. The binding interface is outlined in black.

Supplementary Figure 5.

VHH-SAN8 is critical for rigidifying a crystal packing interface.

Depiction of packing interactions within the crystal. Two symmetry related copies are shown for Nup84-Nup133_{CTD}-VHH-SAN8 (gray). Inset shows a closer view of the interaction between Nup84 and a symmetry related copy of Nup133_{CTD}.

Supplementary Figure 6.

VHH-SAN8 rigidifies Nup84 crown within the crystal.

(a) Comparison of the $2F_0$ - F_c maps for the crystal structures of Nup84-Nup133_{CTD}-VHH-SAN8 (left) and apo-Nup84-Nup133_{CTD} (right). Map density contoured at 1.5 σ . (b) Comparison as in (a), with emphasize on the Nup84_{crown-trunk} area, with the model of Nup84 positioned (above) and without (below). While both unit cells are nearly the same, the nanobody-bound structure is much better defined and has

Supplementary Figure 7. VHH-SAN8, VHH-SAN9 bind Nup84 with in complex with Nup145C.

(a) Size exclusion chromatography (SEC) for Nup145C-Sec13_{fusion}+Nup84₁₋₄₂₄ (blue), preincubated with VHH-SAN8 (1:2 molar ratio) (red), or pre-incubated with VHH-SAN8 and VHH-SAN9 (1:1:1 molar ratio) (green). (b) SDS-PAGE analysis of the SEC fractions indicated for each SEC experiment. *indicates contaminant protein. Co-elution of VHH-SAN8 and VHH-SAN8/9 shows that both nanobodies can bind Nup84 while in complex with Nup145C. Each panel is representative of two independent experiments.

Supplementary Figure 8. Structure of Nup133_{NTD}-VHH-SAN5 complex.

(a) Nup133_{NTD}-VHH-SAN5, with Nup133_{NTD} in purple and VHH-SAN5 in dark gray. N and C termini are indicated, and β -sheets and α -helices are labeled on Nup133_{NTD}. Complementarity determining region (CDR) loops are labeled on VHH-SAN5. (b) Packing of Nup133_{NTD}-VHH-SAN5 in the asymmetric unit. Colors as in (a). (c) Heterohexameric assembly within the asymmetric unit highlighting packing interfaces mediated by VHH-SAN5.

Supplementary Table 1. BackPhyre Structural Homology Results Table includes hits that cover >100 amino acids and >30% confidence.

Protein	Description	Alignment coverage (%)	Confidence	% Sequence ID
Nic96	Scaffold nucleoporin, Nic96/inner ring complex	224-637 (63)	98.7	18
Nup145C	Scaffold nucleoporin, Y complex	1,027-1,284 (39)	97.2	16
Sec31	COPII vesicle coat component	643-875 (35)	95.1	18
Sea4	SEA complex, lysosomal membrane interaction and autophagy	772-996 (34)	79.0	25
Sec16	COPII vesicle coat assembly	255-340 (13)	72.5	17
Nup85	Scaffold nucleoporin, Y complex	465-566 (15)	31.5	14

Supplementary Table 2. List of Primer Sequences for Cloning

Name	Forward primer (5'-3')	Reverse primer (5'-3')	Purpose
Nup133 NTD	GTTCTGTTCCAGGGGC	CCAGACTCGAGGGTAC	Amplify Nup133 NTD for
insert	CCGGATTCGATAATTCC	CTTACTACTCTTTCACA	Gibson assembly
	AAGGTTTTCACAG	AAAAACTGTAGCACC	_
pET28 vector	GGTGCTACAGTTTTTTG	CTGTGAAAACCTTGGA	Amplify pET28 6His
open for Nup133	TGAAAGAGTAGTAAGGT	ATTATCGAATCCGGGC	vector for Gibson
NTD	ACCCTCGAGTCTGG	CCCTGGAACAGAAC	assembly
Nup133 ALPS	GGAGGTGGGGGATCCC	GGATCCCCCACCTCCA	Inverse PCR primers to
mutant	GAAATGGACCTATCCTC	GGTTTATTTAATAGTTT	make Nup133 ALPS
	GG	GCCTAACTTCAG	mutant
Nanobody hit	GACTGGTGGCTCAAGT	ATGCGGCCGTGTACAT	Amplify nanobody hit
insert	GGATCCATGCAGGTGC	TATCACTATTATGCGG	sequences for Gibson
	AGCTCGTG	CACGCGGTTCC	assembly
Open pAH	GGAACCGCGTGCCGCA	GCATGGATCCACTTGA	Amplify pAH
His14bdSUMO	TAATAGTGATA	GCCACCAGTC	His14BdSUMO vector
			for nanobody expression
			Gibson assembly