
Supplemental Materials 
 
Abbreviations: HC, healthy controls; SZ, schizophrenia subjects; ESZ, early illness 
schizophrenia subjects; CSZ, chronic illness schizophrenia subjects. 
 
Additional task description details 
The display screen consisted of three reels that populated with fruit symbols with an 
interstimulus interval of 1 second. There were 12 possible fruit symbols that were 
equally distributed across conditions (clip art from https://openclipart.org); thus, no 
individual symbol carried predictive information about reward outcomes. Subjects self-
initiated each trial via a button press that triggered the simulated coin drop and slot 
machine lever pull, after which reels 1-3 (i.e., R1, R2, R3) populated automatically from 
left to right. After R3 populated, a 10Hz visual checkerboard flickered for 1000 ms 
followed by text indicating the outcome (i.e., “WIN $1.25” or “LOSE”). Sound effects 
(e.g., coin dropping audio) and visualizations (e.g., coin insertion, lever pull) enhanced 
the task’s ecological validity.  

 
The reward anticipation phase spanned the population of R1 and R2 and the 
anticipation of R3. The reward evaluation phase began when R3 populated. Total trial 
time was 6115 ms. 
 
 
Additional EEG data denoising procedures 
Electro-oculogram (EOG) data were recorded from electrodes placed above and below 
the left eye and at the outer canthi of both eyes to capture vertical (VEOG) and 
horizontal (HEOG) eye movements. The Fully Automated Statistical Thresholding for 
EEG artifact Rejection (FASTER) MATLAB-based toolbox was used to clean the raw 
EEG epochs (Nolan et al., 2010). Like our previous reports (Hamilton et al., 2019), the 
FASTER processing approach was modified here between steps 2 and 3 to include 
canonical correlation analysis (CCA, see below for more detail). The FASTER method 
employs multiple descriptive measures to search for statistical outliers (± 3 SD from 
mean). This process included 4 steps: (1) outlier channels were identified and replaced 
with interpolated values in continuous data, (2) outlier epochs were removed from 
participants’ single trial set, (3) spatial independent components analysis was applied to 
remaining trials, outlier components were identified using the ADJUST procedure 
(Mognon et al., 2011), and data were back-projected without these components, and (4) 
within an epoch, outlier channels were interpolated. Epochs were time-locked to the 
onset of stimulus and baseline corrected (-100 to 0 ms). 
 
Canonical correlation analysis (CCA) was used as a blind source separation technique 
to remove broadband or electromyographic noise from single trial 
electroencephalographic (EEG) data, generating de-noised EEG epochs. Our approach 
is similar to the CCA method described by others (De Clercq et al., 2006; Riès et al., 
2013), and previously applied to other studies, with some important differences. The 
method is based on the concepts that true EEG data tend to show high auto-correlation 
and exhibit power-law scaling (i.e., power is proportional to 1/frequency), but that high 



frequency random noise in EEG (e.g., muscle artifact, electromyographic (EMG)) tends 
to show low auto-correlation and violates power-law scaling (i.e., inappropriately high 
power at higher frequencies relative to low frequencies). The CCA de-noising procedure 
is performed separately for each subject on the single trial EEG epoch data. For a 3 
second epoch, the (S x X) matrix containing the time series of S = 3072 EEG samples 
(s1, s2, s3 …s3072) at each of X = 64 scalp electrodes (x1, x2, x3…x64) is subjected to a 
CCA with the (S x Y) matrix containing the s + 1 time-lagged series of 3072 EEG 
samples (s2, s3, s4 …s3072, s3073, where s3073 = 0) at each of the same 64 electrodes (y1, 
y2, y3…y64). This is the multivariate equivalent of auto-regressive time series correlation. 
Since both the X and Y vectors each contain 64 electrodes, a total of 64 canonical 
correlations can be extracted. Each canonical correlation coefficient expresses the 
correlation of a time series of values representing the weighted sums of the X 
electrodes with a s + 1 time series of values representing the weighted sums of the Y 
electrodes, with weights chosen to yield the largest canonical correlation that accounts 
for variance independent of the variance accounted for by all previously extracted 
canonical correlations. Thus, each canonical correlation coefficient has an associated 
time series of values that constitutes the canonical variate, X (i.e., each time point has a 
value that is a linear function of the canonical weights and raw data associated with the 
64 electrodes), as well as a similar canonical variate, Y. The current CCA de-noising 
method only makes use of the set of 64 canonical X variates, one for each of the 64 
extracted canonical correlations. When the time series represented by a canonical 
variate is subjected to a fast Fourier transformation (FFT), the resulting power spectrum 
can be evaluated to determine whether the canonical variate conforms to the power-law 
expected from EEG data, in which case it should be retained, or whether it violates the 
power law as would be expected for high-frequency noise (e.g., EMG contamination), in 
which case it should be excluded. With this approach, the retained canonical variates 
are those showing the strongest canonical correlations, whereas the rejected canonical 
variates are those showing the weakest canonical correlations. The specific criterion 
used to make these retain/reject decisions is where our CCA denoising approach differs 
from previously published approaches from other labs (e.g., Riès et al., 2013), but is 
consistent with our other reports (Hamilton et al., 2019; Kort et al., 2017). 
 
 
ERP age-matched HC subgroups 
As shown in Table 1, there were significant differences in age between the three 
groups. And as described in the main text, we used an age-adjustment procedure to 
account for these inherit differences; however, to be certain that our between-group 
ERP effects were not driven by these demographic differences, we performed follow-up 
analyses using age-matched HC subgroups. HC subjects were divided into two age-
matched subgroups using a median split: i) younger HC (n = 27) = 23.15 ± 2.07 years 
vs. ESZ (n = 26) 24.47 ± 4.01 years, and ii) older HC (n = 27) = 44.28 ± 13.69 years vs. 
CSZ (n = 28) = 44.05 ± 14.73 years. There were no significant differences in age or 
gender (all p > .10) in either matched group set.   
 
 
 



ERP grand averages 
As described previously, there was a significant negative relationship between age and 
RewP in HC (Fryer et al., 2020). We therefore present the grand averages of the RewP 
difference waveforms in Figure 2, with HC separated into younger and older subgroups 
(determined via median split as described above). Figure S2 shows the frontal-central 
scalp distribution of the RewP difference waves, again with HC separated into younger 
and older subgroups. We note that the RewP difference score was significantly larger 
when measured at R3 versus R2 for HC, ESZ, and CSZ (all p < .01), consistent with 
complete reward feedback delivery occurring at R3.  
 
ERP age-matched subgroup re-analysis 
When using age-matched HC subgroups and raw SPN scores, the Group x Condition 
interactions remained non-significant (younger HC vs. ESZ: F1,51 = 0.14, p = .71; older 
HC vs. CSZ: F1,52 = 0.04, p = .83). However, CSZ had lower SPN amplitudes, overall, 
relative to older HC; F1,52 = 6.15, p = .02, indicating reduced anticipation among CSZ 
when expecting reward or non-reward feedback. (One CSZ subject was removed who 
had an SPN value ± 3 SD from the mean.) 
 
There was no effect of Group when comparing ESZ and CSZ to age-matched HC 
subgroups using the unadjusted RewP data (younger HC vs. ESZ: t51 = 0.73, p = .47; 
older HC vs. CSZ: t53 = -0.16, p = .87).  
 
Finally, we observed the same pattern of LPP group differences, with ESZ showing a 
heightened near miss response relative to younger HC (F1,50 = 8.71, p = .005; Figure 
S3), versus no difference between CSZ and older HC (F1,52 = 0.00, p = .97). (One ESZ 
and one CSZ subject were removed who had LPP values ± 3 SD from the mean.) 
 
BrainAGE Model 
Results from the HC BrainAGE model are presented in Table S2. We observed a 
significant negative age-relationship with RewP, indicating reduced win-related reward 
responsiveness with age. We also found a positive relationship between age and the 
LPP average, which could mean that the salience of non-specific motivational factors 
(wins and losses) increases with age. Further, the SPN difference score’s (possible 
wins AA – total misses AB) contribution to the model was marginally significant. Taken 
together, the HC age regression model used to derive estimates of BrainAGE indicated 
that with increasing age, HC have reduced early reward evaluation response (RewP), 
elevated attention to reward outcomes regardless of valence (average LPP), and 
marginally reduced reward anticipation signaling (SPN). 
  



Table S1. Correlations between original and age-adjusted ERP amplitudes 
 

 

HC 
 

 

r 
 

 

R2 
     

   SPN (AA) 
 

.99 
 

.97 
   SPN (AB) .99 .99 
   RewP (difference score) .89 .79 
   LPP (AAA – ABC) 1.00 1.00 
   LPP (AAB – ABC) 1.00 1.00 
   
SZ 
 

r  
    

   SPN (AA) 
 

1.00 
 

.99 
   SPN (AB) 1.00 .99 
   RewP (difference score) .88 .77 
   LPP (AAA – ABC) 1.00 1.00 
   LPP (AAB – ABC) 1.00 

 
1.00 

  



Table S2. Age-adjusted LPP Group x Condition follow-up tests 
 

  

t-ratio 
 

p-value 
 

p-adj 
 

 

Contrast 
    Win Condition (AAA – ABC) 

   

    HC wins vs. ESZ wins 0.77 .44 .86 
    HC wins vs.  CSZ wins 0.41 .69 .86 
    ESZ wins vs. CSZ wins 
 

-.31 .76 .86 

   Near Miss Condition (AAB – ABC)    
    HC near misses vs. ESZ near misses 

 
-1.37 

 
.17 

 
.47 

    HC near misses vs. CSZ near misses 0.34 .73 .86 
    ESZ near misses vs. CSZ near misses 1.46 .15 .47 
     
    Win vs. Near Miss (AAA – ABC vs. AAB – ABC) 

   

    ESZ wins vs. ESZ near misses -3.18 .002 .02 
    CSZ wins vs. CSZ near misses 
 

-.09 .93 .93 

 
Abbreviations: p-adj, FDR-adjusted p-values; HC, healthy controls; ESZ, early 
illness schizophrenia subjects; CSZ, chronic illness schizophrenia subjects.  
  



Table S3. HC Brain Age Model  
 

  
b (SE) 

 
t-stat 

 
p-value 

 

 
VIF 

     
SPN (AA – AB) .24 (.13) 1.79 .08 1.34 
RewP (AAA – AAA) 
LPP (AAA + AAB)/2 

-.53 (.12) 
.41 (.14) 

-4.43 
3.02 

<.001 
.004 

1.06 
1.38 

LPP (AAA – AAB) -.03 (.12) -0.26 .79 1.03 
     

 
F4,49 = 6.21, p < .001, Adjusted R2 = .28 
 
Abbreviations: VIF, variance inflation factor; SPN, stimulus preceding negativity; RewP, 
reward positivity; LPP, late positive potential; AA, possible wins; AB total misses; AAA, 
wins; AAB, near misses. 
 
Mean absolute error = 9.37; Root mean square error = 11.63 
 
Correlation between chronological and predicted ages for HC: r52 = .58, p < .001 



Figure S1. Relationships among reward ERP components 
 

 
 
(A) Correspondence between stimulus-preceding negativity (SPN) reward anticipation 
(AA – AB) with reward positivity (RewP) difference scores (AAA – AAB) across groups 
(HC, healthy controls; SZ, schizophrenia subjects). (B) Correspondence between SPN 
reward anticipation with late-positive potential (LPP) win scores (AAA – ABC) across 
groups. (C) Correspondence between SPN reward anticipation with LPP near miss 
scores (AAB – ABC) across groups. For all analyses, we removed two SZ subjects with 
an average SPN value on AB trials ± 3 SD from the mean; for the LPP win analyses, we 
removed three SZ subjects with an average value ± 3 SD from the mean; and for the 
LPP near miss analyses, we removed one SZ subject with a value ± 3 SD from the 
mean. 
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Figure S2. RewP difference score topographical maps 
 

 
 
Topographical maps of condition difference waves at Reel 3 for all groups, wins (AAA) – 
near misses (AAB). 
 
 
  

FCz
Reel 3: wins (AAA) – near misses (AAB)

Younger HC ESZ Older HC CSZ



Figure S3. LPP group differences using age-matched HC subgroups 
 

 
 
Early illness schizophrenia subjects (ESZ) showed a heightened near miss response 
relative to the younger healthy control (HC) subgroup when using unadjusted late 
positive potential (LPP) amplitudes (left). No Group x Condition interaction emerged 
when comparing chronic schizophrenia subjects (CSZ) with older HC subjects (right).  
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