

Supplementary Materials

Comparative Study of the Tempering Behavior of Different Martensitic Steels by Means of In-Situ Diffractometry and Dilatometry

Martin Hunkel 1,*, Juan Dong 1, Jeremy Epp 1,2, Daniel Kaiser 3, Stefan Dietrich 3, Volker Schulze 3, Ali Rajaei 4, Bengt Hallstedt 4 and Christoph Broeckmann 4

- 1 Leibniz Institut für Werkstofforientierte Technologien–IWT, Badgasteiner Straße 3, 28359 Bremen, Germany; dong@iwt-bremen.de (J.D.); epp@iwt-bremen.de (J.E.)
- 2 MAPEX Center for Materials and Processes, University of Bremen, Bibliothekstraße 1, 28359 Bremen, Germany
- 3 Institut für angewandte Materialien Werkstoffkunde, Karlsruher Institut für Technologie, Engelbert-Arnold-Str. 4, 76131 Karlsruhe, Germany; Daniel.Kaiser@dillinger.biz (D.K.); stefan.dietrich@kit.edu (S.D.); volker.schulze@kit.edu (V.S.)
- 4 Institut für Werkstoffanwendungen im Maschinenbau, RWTH Aachen University, Augustinerbach 4, 52062 Aachen, Germany; a.rajaei@iwm.rwth-aachen.de (A.R.); b.hallstedt@iwm.rwth-aachen.de (B.H.); c.broeckmann@iwm.rwth-aachen.de (C.B.)
- ***** Correspondence: hunkel@iwt-bremen.de

1. Diffraction Patterns

1.1. The Diffraction Patterns for SAE 52100 Is Shown in the Main Text

Exemplarily, the diffraction patterns for 20 °C, 300 °C, and 500 °C are shown in Figure S1. At 20 °C mainly martensite and a small amount of 5 ma.% austenite could be detected. The austenite peak vanished at 300 °C. At 500 °C, a peak of about 3 ma.% cementite occurred. Thermal expansion shifted the martensite peaks to smaller angles. To further elucidate the effects from the dilatometric measurements, they are compared to the results from the in-situ XRD tempering experiments, where lattice parameters of martensite, its tetragonality and the phase contents of cementite, martensite and retained austenite were evaluated.

Figure S1. Diffraction patterns at 20 °C, 300 °C, and 500 °C from in-situ X-ray diffraction for SAE 4140.

The diffraction patterns for 20 °C, 300 °C, and 500 °C are shown in Figure S2. At each temperature, mainly martensite and a small amount of 5 ma.% austenite could be detected. Thermal expansion shifted the martensite peaks smaller angles.

Figure S2. Diffraction patterns at 20 °C, 300 °C, and 500 °C from in-situ X-ray diffraction for SAE H13.

1.2. Metallography

The microstructure of as-quenched SAE 4140 consists of full martensite, see Figure S3a. Partially, some martensite laths can be identified. Figure S3b shows micrographs of the quenched and tempered microstructure.

Figure S3. Micrographs of SAE 4140: **a**) as quenched, **b**) quenched and tempered up to 600 °C.

Figure S4a shows the micrograph of as quenched SAE 52100 (etchant: Nital). For the austenitizing condition applied, a significant amount of cementite is undissolved. This undissolved cementite can be identified by white-etched, spherical precipitations. Further, brown etched martensite plates and brighter austenite can be identified. Quenched and tempered SAE 52100 is shown in Figure S4b. The microstructure consists of a typical high annealed microstructure of SAE 52100.

Figure S4. Micrographs of SAE 52100: **a**) as quenched, **b**) quenched and tempered up to 500 °C.

An SEM micrograph of as-quenched SAE H13 is shown in Figure S5a. The microstructure is a typical martensite with some undissolved, spherical carbides. Figure S5b shows the quenched and tempered state. The secondary electron images (SE) were acquired by using a Helios Nanolab DualBeam microscope of type G3 CX with an accelerating voltage of 5 kV and a beam current of 0.17 nA.

Figure S5. SEM micrographs of SAE H13: **a**) as quenched, **b**) quenched and tempered up to 650 °C.

© 2020 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).