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Supplementary Note 1. Dynamic process in multilayer biological molecular networks

after perturbations of genes

After initial perturbations of the genes in the gene regulatory network, the perturbed

genes and their target genes become dysfunctional, and then the resulting isolates (i.e.

nodes without any edges) become dysfunctional. The corresponding proteins of the dys-

functional genes become dysfunctional, fragmenting the PPI and causing the proteins that

are not in the largest connected component to become dysfunctional. The failure of newly

dysfunctional proteins will be further reflected to the gene regulatory network as an ad-

ditional perturbation. This process will iterate, until until no more genes or proteins are

removed from the system. Ultimately, the failure spreads to metabolic layer. Metabolites

fail if more than fP2M fraction of supporting proteins fail, fragmenting the metabolic net-

work; the metabolites that do not belong to the largest connected component also become

dysfunctional. Figure S1 shows the flow of the dynamic iterative process.
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FIG. S1. Dynamic process of spreading failure

The process of cascading failure proposed in our work shares several similarities with

a perturbation process proposed recently by Klosik et al. [1]. In their work, however,

the authors distinguish the links in two classes by assigning them a logical function, the

“AND” or “OR” operators. In this setting, the failure of a node is caused by at least one

neighbor failing in the case of AND links, and by all the neighbors failing in the case of OR

S2



links. Applying this description, our process corresponds to treating all the links in the gene

regulatory network as “AND” operators and all the protein-metabolite interlayer links as

thresholded “OR” operators.

Supplementary Note 2. Calculating the equivalent coupling strengths between gene

regulatory and PPI networks

Genes in the gene regulatory network and proteins in the PPI network form one-to-one

interdependent pairs. Owing to the incompleteness of the data, the gene regulatory and PPI

networks are only partially interdependent of each other. We use NG and NP to denote the

numbers of nodes in the gene regulatory and PPI networks, respectively, and NI denotes the

number of gene-protein pairs. If the interdependencies between the gene regulatory and PPI

networks are random in topology without any correlations in the degrees of the connected

gene-protein pairs, then the coupling strengths of the regulatory and PPI networks are

qRand
G = NI/NG and qRand

P = NI/NP. In the real network cases, the connections between

genes and proteins are not random, leading to a situation in which the coupling strengths

are difficult to quantify. To solve this problem, we propose a method for finding equivalent

coupling strengths so that the couplings between the regulatory and PPI networks can be

treated as random in theoretical computations.

In the gene regulatory network, the fraction of genes that do not have corresponding

proteins is pGI = (NG−NI)/NG, and these nodes form a sub-network with no connections to

the PPI network. We refer to this sub-network as an independent regulatory sub-network.

Treating the independent regulatory sub-network as an isolated network and given its degree

distribution, PGI(kin, kout), we can estimate the final functional node size fGI
S in the inde-

pendent regulatory sub-network by substituting PGI(kin, kout) with PGene(kin, kout) in Eqs.

(1) and (3) (see main text). As a result, the final functional node size is pGI ∗ fGI
S if only

the nodes in the independent regulatory sub-network remain, which is equal to the case of

intentionally perturbing all of the genes that are connected to the PPI network. If we con-

vert such a perturbation strategy into random perturbations, how many nodes are required

to be perturbed in the isolated gene regulatory network so that the final functional node

size is pGI ∗ fGI
S ? Figure S2 shows mappings from random perturbations on 1− p fraction of

genes to the functional node sizes. With such mapping, we could find an equivalent random
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perturbation fraction 1 − peG, having the final functional node size pGI ∗ fGI
S . Thus, the

equivalent coupling strength from the gene regulatory network to the PPI network could be

approximated by qG = 1− peG.
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FIG. S2. The size of the final functional genes after randomly perturbing 1 − p fraction of genes

in the isolated general gene regulatory network (a), and in the isolated tissue-specific networks of

forebrain (b), lymphocytes (c), and lung (d). The theoretical predictions (solid lines) agree well

with the simulations (symbols, averaged over 30 realizations), confirming our theoretical analysis.

Similarly, treating the independent PPI sub-network as an isolated network and given its

degree distribution, PPI(k), the giant connected component size is WPI = 1 − GPPI(xc) =

1 −
∑∞

k=0 PPI(k)xk
c where xc = HPPI(xc) = G′PPI(xc)/G

′
PPI(1). Based on mapping of the

fraction p of remaining nodes to the size of the giant connected component in the isolated

PPI, as shown in Figure S3, we can find a sub-network formed by a fraction peP of randomly

chosen nodes with its giant connected component being WPI ∗(NP−NI)/NP. The equivalent

coupling strength from the PPI to the gene regulatory network is qP = 1− peP.

S4



p
0 0.2 0.4 0.6 0.8 1

f
S

0

0.2

0.4

0.6

0.8

1

Theory
Simulations

FIG. S3. The size of the giant connected component of the sub-network formed by the randomly

chosen p fraction of proteins. The solid line shows the theoretical predictions, which agree well

with the simulation results (symbols, averaged over 30 realizations).

TABLE S1. The statistical correlations between the thoery and simulation results

General GRN Forebrain GRN Lymphocytes GRN Lung GRN

Gene regulatory layer 0.9948 0.9893 0.9908 0.9910

PPI layer 0.9938 0.9960 0.9966 0.9968

Metabolic layer 0.9813 0.9879 0.9915 0.9913

Supplementary Note 3. Applying the theoretical framework to multilayer erdős-

rényi networks

We apply the theoretical framework to multilayer ER networks which models the failure

mechanisms in the multilayer biological molecular networks, in order to show the general-

ity of our framework. In the multilayer ER networks, a directed ER network is partially

interdependent with an undirected ER network by one-to-one correspondence, and such an

undirected ER network give multiple supports to another undirected ER network. Figure S4

shows the solution of the final functional node sizes of three coupled ER networks after ran-

domly removing 1− p fraction of nodes in the directed ER network. The solid lines are the

theoretical predictions (solid lines), which agree well with the simulation results (symbols).
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FIG. S4. The final functional node sizes in the coupled ER networks, after randomly removing

1 − p fraction of nodes from the directed ER network (Network A with 〈k〉 = 1). Network A is

interdependent with Network B (〈k〉 = 10) having a coupling strength of 0.8. A fraction of 0.8

nodes in Network C (〈k〉 = 3) has multiple supports from Network B, with the average degree of

the multiple supports of 2. The solid lines represent the theoretical predictions, and the symbols

represent the simulation results, which are averaged over 30 realizations. The Pearson correlation

coefficient between the theory and simulation results for Network A, B and C are respectively 1,

0.9999 and 0.9997, indicating a great agreement between them.

Supplementary Note 4. Essential and cancer genes enrichment and validation

To measure the enrichment of a set of genes in the ranking obtained from the influence

scores, we identify the considered genes as the true positives of a classification problem.

The influence score of a gene is thus analogous to the confidence of our model in assigning

that gene to the positive class. Under this perspective, the enrichment of the influential

genes can be evaluated with standard statistical tools. In this work, we considered the

precision-recall curve as a meaningful performance metric in virtue of its robustness to class

imbalance. The performance associated with each precision-recall curve is evaluated through

the average precision score (APS), a score defined as

APS =
∑
n

(Rn −Rn−1)Pn

where Pn and Rn are the precision and recall at the n-th threshold. A large value of APS

indicates that the considered genes are more likely to have high influence scores. This
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evaluation was performed on essential and cancer genes.

To uncover the mechanism that the essential and cancer genes are enriched in the genes

with high influence scores, we calculate the number of genes becoming dysfunctional in the

second round of the cascading process. The removal of each gene could cause its corre-

sponding protein and the proteins that apart from the largest connected component losing

its function, which is called the first round in the cascading failure process. If failure in

the PPI network goes back to the gene regulatory network, more genes stops functioning,

which could cause more proteins becoming dysfunctional. This is called the second round in

the cascading failure process. We find that the removal of essential and cancer could cause

more genes and proteins becomes dysfunctional in the second round, than the removal of

non-essential and non-cancer genes, as shown in the Fig. 2c and 2d in the main text.

There are different definitions of essential genes. At the individual level, a gene can be

defined as essential if its loss of function will lead to individual death or loss of fitness. At

the population level, a gene is essential if the biological system shows intolerance to loss-

of-function variants [2]. Next, we will show that genes important to a system’s robustness

are enriched in genes with high scores of essentiality valued by different metrics. We choose

three additional sets of essential genes measured by: (1) the probability of haploinsufficiency

(Phi), (2) the probability of loss-of-function intolerance (pLI), and (3) the essential genes

found by Dickinson et al. [3]. As Figure S7 shows, the result holds for the essential genes

valued by these three different metrics. Since that the metrics for essentiality are highly

correlated with one another [3], we can infer that this results also holds for other metrics

not tested here.

Supplementary Note 5. Comparison with genome-scale metabolic models

For a quantitative comparison of the STITCH-based and Recon-based metabolic net-

works, we built metabolite networks from Recon 1, Recon 2 and Recon 3D using the Python

implementations of the COBRA Toolbox [4, 5]. We mapped the metabolite BiGG IDs to

PubChem CIDs in two steps: First by matching the BiGG IDs with their corresponding

InChI keys and then using the PubChem Identifier Exchange Service to match the InChI

keys with PubChem compound CIDs. The number of corresponding metabolites and CIDs

in each model is summarized in Table S2. Since metabolites in Recon models include multi-
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TABLE S2. Summary of the quantitative comparison between the STITCH- and Recon-

based metabolite networks.
#Genes #Metabolites #Metabolites

(Unique CIDs)

#Common metabolites

with STITCH

#Overlapping edges with STITCH (two-sided

Fisher’s exact p-value and odds-ratio)

STITCH 12,039 1,292 1,292

Recon 1 1,905 2,766 686 108 142 (p=1.97e-59, OR=9.94)

Recon 2 2,140 5,063 825 96 90 (p=2.27e-44, OR=11.05)

Recon 3D 2,248 5,835 836 126 275 (p=2.68e-146, OR=15.34)

ple compartments that map to the same chemical compound, the overall metabolite coverage

of the STITCH-based metabolite network was higher than that of Recon in terms of the

unique compounds to which the metabolites mapped. To assess fairly the agreement of the

two networks, we focused on the edge overlap between the networks formed by the set of

metabolites common to STITCH and Recon networks. In all Recon models tested, there was

a statistically significant enrichment of overlapping edges (see Table S2). Notably, the num-

ber of overlapping edges was markedly increased in the latest version, Recon 3D, suggesting

that STITCH networks successfully capture the improvements in the subsequent versions of

Recon models and hinting at the gradual convergence of these datasets.

To compare further our approach with alternative methods that identify nodes with

impact on robustness of biological systems, we used an established in silico single gene

deletion approach based on flux balance analysis (FBA) [6–8] in which the effect of the

single gene knockout on the objective value (typically the biomass, also used here as the sole

objective value) is simulated. In this framework, one can keep track of the impact of the

single gene knockout by optimizing the objective function post-knockout and comparing it

with the original objective value. A gene is considered essential if restricting the flux of all

reactions that depend on it to zero causes the objective (i.e., the growth rate) also to be either

zero or below a given viability threshold. This method also applies in the same way to the

deletion of reactions from the metabolic network, resulting in the identification of essential

reactions. Using Python implementations of the COBRA Toolbox [4, 5], we performed this

analysis for the Recon3D human metabolic model. We found that in Recon3D, only one

gene (BiGG ID: 54675 AT1) is truly essential, resulting in a complete depletion of metabolic

fluxes with its removal (Figure S21). In addition, we kept a record of all other genes whose

deletion results in some decrease in flux in the biomass equation. We found 39 additional such

genes, but since the impact of their deletion on the biomass was much smaller in comparison
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(< 20% of unperturbed value), they would not conventionally be deemed essential (Figure

S21). The rest of the > 2, 000 genes in Recon3D had no impact on the biomass.

To ensure that this small number of essential genes by the FBA criteria is in agree-

ment with other human metabolic models, we ran the same analysis for all of the 107

metabolic models in the BiGG database covering over 20 organisms. The Recon models

(Recon1 and Recon3D), along with the two other human metabolic models (iAB RBC 283

and iAT PLT 636) in BiGG, consistently showed the most robust response to these single

gene knockouts with a very small proportion of genes and reactions deemed essential by the

above criteria. This finding is in contrast to many other organisms having as high as 4%

and 2% of metabolic reactions and enzyme-encoding genes, respectively, flagged as essential

(Figure S22).

Algorithm 1 Assortative randomizations on the gene regulatory network.

Input: G(N,E) (the gene regulatory network)
Output: G′ (randomized network).
1: G′ ← G
2: Rank the nodes according to their in-degrees/out-degrees in a descending

order to get node sequences I/O.
3: for i← 1 to N do
4: Select all the EIi links pointing to node Ii and all the EOi

links pointing
to node Oi

5: for j ← 1 to EIi do
6: if no multiple links or self loop will appear then
7: rewire the link to point to node Oi

8: end
9: end

10: for k ← 1 to EOi
do

11: if no multiple links or self loop will appear then
12: rewire the link to point to node Ii
13: end
14: end
15: end

FIG. S5. Pseudo-code of generating randomization models of gene regulatory networks.
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FIG. S6. Precision-recall curves based on the prioritization of essential genes (top row) and cancer

genes (bottom row) in both the uncoupled (blue) and coupled (red) case for three tissue specific

networks: forebrain (left column), lymphocytes (middle column), and lung (right column).
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FIG. S7. Precision-Recall (PR) curves of the coupled (red) and uncoupled (blue) influence scores

in the prioritization of essential genes valued by three other different metrics. The gray PR curves

represent 100 random node rankings. On the right of each plot are listed the Average Precision

Scores (APS) of the three ranking strategies evaluated from the corresponding PR curves. The

APS scores in the coupled case are larger than the uncoupled and random (gray) cases.
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FIG. S8. Precision-Recall (PR) curves of the coupled (red) and uncoupled (blue) influence scores

in the prioritization of MNC, CNM, and MC disease genes. The gray PR curves represent 100

random node rankings. On the right of each plot are listed the Average Precision Scores (APS) of

the three ranking strategies evaluated from the corresponding PR curves.

0 2 4 6 8 10 12 14
-log10(pval)

CNM-General
CNM-Forebrain

CNM-Lymphocytes
CNM-Lung

MC-General
MC-Forebrain

MC-Lymphocytes
MC-Lung

MNC-General
MNC-Forebrain

MNC-Lymphocytes
MNC-Lung

pval=4.99e-11
pval=1.14e-10

pval=1.55e-11
pval=1.07e-09

pval=1.52e-06
pval=1.12e-06

pval=2.15e-10
pval=4.67e-07

pval=1.89e-01
pval=4.02e-01
pval=2.72e-01
pval=2.83e-01

Hypergeometric test of overlap

FIG. S9. Enrichment of Complex Not Mendelian (CNM), Mendelian Complex (MC) and Mendelian

Not Complex (MNC) genes in top 500 influential genes. Bar length represents the -log(p-value) of

the hypergeometric test of overlap between each gene set and the top 500 influential genes.
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FIG. S10. Enrichment of Complex Not Mendelian (CNM), Mendelian Complex (MC) and

Mendelian Not Complex (MNC) genes in top 500 influential genes. Bar length represents the

-log(p-value) of the empirical p-value obtained by comparing the observed overlap to the null dis-

tribution of overlaps between each gene set and 10000 random gene sets. A conventional lower

bound of 1e-6 has been chosen to represent p-values lower than the minimum numerical resolution.
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FIG. S11. Targeting dyslipidemia-related genes (red boxes) causes more damage to the metabolic

network than degree-preserving random attacks (blue boxes). Fraction of functional nodes after

perturbations for several values of remaining fraction p of metabolic disease genes as the threshold

proportion fP2M varies from 0.1 to 1. Lower values indicate a higher degree of damage to the

network. The results are calculated based on 1000 random realizations. For each distribution,

boxes indicate the quartiles, whiskers extend to an additional 1.5 * IQR interval, and the medians

are represented by a black line.
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FIG. S12. Statistical analysis of the difference between the targeted attacks on dyslipidemia-related

genes and degree-preserving random attacks. The curves represent the -log(p-value) scores of the

one-sided Mann-Whitney test when comparing the two distributions of final functional network

size for every value of p and fP2M.
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FIG. S13. Targeting blood pressure-related genes (red boxes) causes more damage to the metabolic

network than degree-preserving random attacks (blue boxes). Fraction of functional nodes after the

perturbations for several values of remaining fraction p of metabolic disease genes as the threshold

proportion fP2M varies from 0.1 to 1. Lower values indicate a higher degree of damage to the

network. The results are calculated based on 1000 random realizations. For each distribution,

boxes indicate the quartiles, whiskers extend to an additional 1.5 * IQR interval, and the medians

are represented by a black line.
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FIG. S14. Statistical analysis of the difference between the targeted attacks on blood pressure-

related genes and degree-preserving random attacks. The curves represent the p-values of the

one-sided Mann-Whitney test when comparing the two distributions of final functional network

size for every value of p and fP2M.
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FIG. S15. Targeting t2d-related genes (red boxes) causes more damage to the metabolic network

than degree-preserving random attacks (blue boxes). Fraction of functional nodes after the per-

turbations for several values of remaining fraction p of metabolic disease genes as the threshold

proportion fP2M varies from 0.1 to 1. Lower values indicate a higher degree of damage to the

network. The results are calculated based on 1000 random realizations. For each distribution,

boxes indicate the quartiles, whiskers extend to an additional 1.5 * IQR interval, and the medians

are represented by a black line.

S14



0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

10 87

10 65

10 43

10 21

101
p-

va
lu

e
fP2M = 0.1

0.05 line

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

10 10

10 7

10 4

10 1
fP2M = 0.2

0.05 line

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

10 91

10 67

10 43

10 19

fP2M = 0.3

0.05 line

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

10 54

10 40

10 26

10 12

fP2M = 0.4

0.05 line

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
p

10 56

10 42

10 28

10 14

100
fP2M = 0.5

0.05 line

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
p

10 243

10 192

10 141

10 90

10 39

p-
va

lu
e

fP2M = 0.6

0.05 line

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
p

10 224

10 177

10 130

10 83

10 36

fP2M = 0.7

0.05 line

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
p

10 224

10 177

10 130

10 83

10 36

fP2M = 0.8

0.05 line

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
p

10 224

10 177

10 130

10 83

10 36

fP2M = 0.9

0.05 line

Target attack
Deg. pres.random

FIG. S16. Statistical analysis of the difference between the targeted attacks on t2d-related genes

and degree-preserving random attacks. The curves represent the p-values of the one-sided Mann-

Whitney test when comparing the two distributions of final functional network size for every value

of p and fP2M.
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FIG. S17. The real network model has comparable robustness with the disassortatively randomized

models. The randomized model in (a) is generated by maintenance of the degree distributions in

gene regulatory and PPI networks but decreasing the degree correlations between the connected

gene-protein pairs. The randomized models in (b) and (c) are, respectively, generated by main-

taining the degree distributions in PPI and metabolic networks, but increasing or decreasing the

degree correlations between the connected gene-protein pairs. The results are averaged over 30

realizations.
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FIG. S18. The real network model has comparable robustness with the neutrally randomized

models. The randomized models in (a) are obtained by rewiring the gene-protein relations but

maintaining the coupling degree distributions in gene regulatory and PPI networks. The random-

ized models in (b) are obtained by maintaining the degree distributions in PPI and metabolic

networks and rewiring the protein-metabolites connections. The randomized models in (c) are

obtained by maintaining the degree distribution of the gene regulatory network and rewiring the

links in this layer. The results are averaged over 30 realizations.
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FIG. S19. The real network model has comparable robustness with (a) neutrally, (b) assorta-
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are obtained by rewiring links in metabolic network but maintaining the degree distribution. The

results are averaged over 30 realizations.
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FIG. S23. Distribution of APS values of the prioritization of essential genes in the coupled case

with varying amounts of edge noise (1% to 20%) in the case of adding links to the GRN (top left),

removing links from the GRN (top right), adding links to the PPI (bottom left), and removing

links from the PPI (bottom right). The red and blue lines represent the APS values of the baseline

coupled and uncoupled perturbations, respectively. Each distribution is calculated based on 30

random realizations. For each distribution, boxes indicate the quartiles, whiskers extend to an

additional 1.5 * IQR interval, and medians are represented by a black line.
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FIG. S24. Distribution of APS values of the prioritization of cancer genes in the coupled case with

varying amounts of edge noise (1% to 20%) in the case of adding links to the GRN (top left),

removing links from the GRN (top right), adding links to the PPI (bottom left), and removing

links from the PPI (bottom right). The red and blue lines represent the APS values of the baseline

coupled and uncoupled perturbations, respectively. Each distribution is calculated based on 30

random realizations. For each distribution, boxes indicate the quartiles, whiskers extend to an

additional 1.5 * IQR interval, and medians are represented by a black line.
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FIG. S25. Precision-recall curves of the prioritization of essential (left) and cancer (right) genes in

the coupled case (red) as compared to the coupled case with varying values of f (0.1 to 1, multiple

colors) and uncoupled case (blue). Note that f=1 corresponds to the baseline coupled case.
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FIG. S26. Distribution of average precision scores (APS) of the prioritization of essential (left)

and cancer (right) genes in the coupled case (red) over different realizations of the process for each

value of f. Each distribution is calculated based on 30 random realizations. For each distribution,

boxes indicate the quartiles, whiskers extend to an additional 1.5 * IQR interval, and medians are

represented by a black line.
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FIG. S27. Precision-recall curves (left) and distribution of APS values (right) of the prioritization

of essential genes in the coupled case (red), uncoupled case (blue) and coupled case in the case

of varying degree of coupling strengths between the GRN and PPI network. Each distribution is

calculated based on 30 random realizations. For each distribution, boxes indicate the quartiles,

whiskers extend to an additional 1.5 * IQR interval, and medians are represented by a black line.
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FIG. S28. Precision-recall curves (left) and distribution of APS values (right) of the prioritization

of cancer genes in the coupled case (red), uncoupled case (blue) and coupled case in the case of

varying degree of coupling strengths between the GRN and PPI network. Each distribution is

calculated based on 30 random realizations. For each distribution, boxes indicate the quartiles,

whiskers extend to an additional 1.5 * IQR interval, and medians are represented by a black line.
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FIG. S29. Precision-recall curves (top row) and APS values (bottom row) of the prioritization of

essential (left column) and cancer (right column) genes in the coupled case (red), uncoupled case

(blue) and uncoupled case in the merged network (orange)
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