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Fig. S1. 
 
 
 
 
 
 

 
 
Fig. S1. The first increment of HA(CA)NCOi on 15N,13C labeled EspF in complex with 
unlabeled SNX9-SH3. 
The sample was 1.5 mM 15N,13C labeled EspF: 2.5 mM unlabeled SNX9-SH3 complex in 95/5% 
H2O/D2O. The experiment was executed with 16 scans per FID and recycle delay of 0.85 seconds. 
No post-acquisition solvent suppression was employed prior to Fourier transform. 
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Fig. S2. 
 
 

 
 
 
Fig. S2. Description of the HACANCOi experiment without the Rance-Kay sensitivity 
enhancement.  
a) Schematic presentation of magnetization transfer pathway during the 
4D HACANCOi experiment. Black arrows indicate the so-called out-and-back transfer pathway 
from 1Ha(i) to 13Ca(i) and further to 13C’(i) and 15N(i)/15N(i+1). b) 4D HACANCOi experiment to 
correlate 1Ha(i), 13Ca(i), 13C’(i) and 15N(i)/15N(i+1) chemical shifts. Inset b’) 3D HA(CA)NCOi 
experiment to correlate 1Ha(i), 13C’(i) and 15N(i)/15N(i+1) chemical shifts. Narrow and wide filled 
bars on 1H and 15N channels correspond to rectangular 90° and 180° pulses, respectively, applied 
with phase x unless otherwise stated. All 13C pulses are band-selective shaped pulses, denoted by 
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filled narrow bars (90°) and filled and unfilled half ellipsoids (180°). Pulses denoted with unfilled 
bars are applied on-resonance. The 1H, 15N, 13C’, and 13Ca carrier positions are 4.7 (water), 121  
(center of 15N spectral region), 174 ppm (center of 13C’ spectral region), and 54 ppm (center 
of 13Ca spectral region). The 13C carrier is initially set to the middle of 13C’ region (174 
ppm), and shifted to 13Ca region (54 ppm) prior to 90° 15N pulse f3. All band-selective 90° and 
180° pulses for 13Ca (54 ppm) and 13C’ (174 ppm) have the shape of Q5 and Q3 (Emsley and 
Bodenhausen 1992) and duration of 240.0 ms and 192.0 ms at 800 MHz, respectively. The 
adiabatic 180° Chirp broadband inversion pulse, denoted with striped half ellipsoid in both 13C 
channels, for inverting 13Ca and 13C’ magnetization in the middle of t2 period had duration of 
500 ms at 800 MHz (Böhlen and Bodenhausen 1993). The Waltz-65 sequence (Zhou et al. 2007) 
with strength of 4.17 kHz was employed to decouple 1H spins. The GARP (Shaka et al. 1985, 
1987) with field strength of 4.55 kHz was used to decouple 13C during acquisition. Delay 
durations: t = 1/(4JHC) ~ 1.7 ms; t2 = 3.4 ms (optimized for non-glycine residues) or 2.2 - 
2.6 ms (for observing both glycine and non-glycine residues); 2TC = 1/(2JCaC’) ~ 9.5 ms; 2TCAN  ~ 
28 ms. Maximum t3 is restrained t3,max < 2.0*(TCAN - t2). Frequency discrimination in 13C’, 15N and 
13Ca dimensions is obtained using the States-TPPI protocol (Marion et al. 1989) applied to f1, f2, 
and f3, respectively. Phase cycling: f1 = x, -x; f2 = 2(x), 2(-x); f3 = 4(y), 4(-y); f4 = y; rec. = x, 
2(-x), x, -x, 2(x), -x. Gradient strengths (% of max G/cm) and durations (ms): G1 = 17 %, 0.234 
ms; G2 = 40 %, 1.0 ms; G3 = 60 %, 1.0 ms; G4 = 25 %, 1.0 ms; G5 = 80 %, 1.0 ms; G6 = 35.7 %, 
0.234 ms. 
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