Supplementary material

HACANCOI: a new H^{α}-detected experiment for backbone resonance **assignment of intrinsically disordered proteins**

Mikael Karjalainen1 , Helena Tossavainen2 , Maarit Hellman2 , Perttu Permi1,2*

¹Department of Chemistry, Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland. ²Department of Biological and Environmental Science, University of Jyvaskyla, Jyvaskyla, Finland

*Corresponding author: Perttu Permi, perttu.permi@jyu.fi

ORCID of the authors: Mikael Karjalainen, 0000-0003-3154-7570 Helena Tossavainen, 0000-0002-1609-1651 Perttu Permi, 0000-0002-6281-1138

Fig. S1.

Fig. S1. The first increment of HA(CA)NCOi on 15N,13C labeled EspF in complex with unlabeled SNX9-SH3.

The sample was 1.5 mM 15N,13C labeled EspF: 2.5 mM unlabeled SNX9-SH3 complex in 95/5% H₂O/D₂O. The experiment was executed with 16 scans per FID and recycle delay of 0.85 seconds. No post-acquisition solvent suppression was employed prior to Fourier transform.

a) Schematic presentation of magnetization transfer pathway during the 4D HACANCOi experiment. Black arrows indicate the so-called out-and-back transfer pathway from ${}^{1}H^{\alpha}(i)$ to ${}^{13}C^{\alpha}(i)$ and further to ${}^{13}C'(i)$ and ${}^{15}N(i){}^{15}N(i+1)$. **b**) 4D HACANCOi experiment to correlate ${}^{1}H^{\alpha}(i)$, ${}^{13}C^{\alpha}(i)$, ${}^{13}C^{\gamma}(i)$ and ${}^{15}N(i){}^{15}N(i+1)$ chemical shifts. Inset **b**³) 3D HA(CA)NCOi experiment to correlate ${}^{1}H^{a}(i)$, ${}^{13}C'(i)$ and ${}^{15}N(i)^{15}N(i+1)$ chemical shifts. Narrow and wide filled bars on ¹H and ¹⁵N channels correspond to rectangular 90° and 180° pulses, respectively, applied with phase x unless otherwise stated. All ¹³C pulses are band-selective shaped pulses, denoted by

filled narrow bars (90°) and filled and unfilled half ellipsoids (180°). Pulses denoted with unfilled bars are applied on-resonance. The $\rm ^1H,~^{15}N,~^{13}C$, and $\rm ^{13}C^{\alpha}$ carrier positions are 4.7 (water), 121 (center of $15N$ spectral region), 174 ppm (center of $13C$ spectral region), and 54 ppm (center of ¹³C^{α} spectral region). The ¹³C carrier is initially set to the middle of ¹³C' region (174) ppm), and shifted to ¹³C^{α} region (54 ppm) prior to 90[°] ¹⁵N pulse ϕ ₃. All band-selective 90[°] and 180 $^{\circ}$ pulses for ¹³C^{α} (54 ppm) and ¹³C' (174 ppm) have the shape of Q5 and Q3 (Emsley and Bodenhausen 1992) and duration of 240.0 ms and 192.0 ms at 800 MHz, respectively. The adiabatic 180° Chirp broadband inversion pulse, denoted with striped half ellipsoid in both 13C channels, for inverting ${}^{13}C^a$ and ${}^{13}C'$ magnetization in the middle of t₂ period had duration of 500 ms at 800 MHz (Böhlen and Bodenhausen 1993). The Waltz-65 sequence (Zhou et al. 2007) with strength of 4.17 kHz was employed to decouple ¹H spins. The GARP (Shaka et al. 1985, 1987) with field strength of 4.55 kHz was used to decouple ${}^{13}C$ during acquisition. Delay durations: $\tau = 1/(4J_{HC}) \sim 1.7$ ms; $\tau_2 = 3.4$ ms (optimized for non-glycine residues) or 2.2 -2.6 ms (for observing both glycine and non-glycine residues); $2T_C = 1/(2J_C^{\alpha}C) \sim 9.5$ ms; $2T_{CAN} \sim$ 28 ms. Maximum t₃ is restrained t_{3,max} < $2.0*(T_{CAN} - t_2)$. Frequency discrimination in ¹³C', ¹⁵N and ¹³C^{α} dimensions is obtained using the States-TPPI protocol (Marion et al. 1989) applied to ϕ_1 , ϕ_2 , and ϕ_3 , respectively. Phase cycling: $\phi_1 = x$, -x; $\phi_2 = 2(x)$, $2(-x)$; $\phi_3 = 4(y)$, $4(-y)$; $\phi_4 = y$; rec. = x, 2(-x), x, -x, 2(x), -x. Gradient strengths (% of max G/cm) and durations (ms): G₁ = 17 %, 0.234 ms; $G_2 = 40 \text{ %}$, 1.0 ms; $G_3 = 60 \text{ %}$, 1.0 ms; $G_4 = 25 \text{ %}$, 1.0 ms; $G_5 = 80 \text{ %}$, 1.0 ms; $G_6 = 35.7 \text{ %}$, 0.234 ms.

References

Böhlen J-M, Bodenhausen G (1993) Experimental aspects of chirp NMR spectroscopy. J Magn Reson Ser A 102:293–301. doi: 10.1006/jmra.1993.1107

Emsley L, Bodenhausen G (1992) Optimization of shaped selective pulses for NMR using a quaternion description of their overall propagators. J Magn Reson 97:135–148. doi: 10.1016/0022- 2364(92)90242-Y

Marion D, Ikura M, Tschudin R, Bax A (1989) Rapid recording of 2D NMR-spectra without phase cycling – application to the study of hydrogen-exchange in proteins. J Magn Reson 85:393-399. doi: 10.1016/0022-2364(89)90152-2

Shaka AJ, Barker PB, Freeman R (1985) Computer-optimized decoupling scheme for wideband applications and low-level operation. J Magn Reson 64:547–552. doi: 10.1016/0022- 2364(85)90122-2

Shaka AJ, Keeler J (1987) Broadband spin decoupling in isotropic liquids. Prog Nucl Magn Reson Spectrosc 19:47–129. doi: 10.1016/0079-6565(87)80008-0

Zhou Z, Kümmerle R, Qiu X, Redwine D, Cong R, Taha A, Baugh D, Winniford B (2007) A new decoupling method for accurate quantification of polyethylene copolymer composition and triad sequence distribution with 13C NMR. J Magn Reson 187:225–233. doi: 10.1016/j.jmr.2007.05.005