

# **Expanded View Figures**

### Figure EV1. NSUN2 Knockout and the effect on the reporter as well as endogenous m<sup>5</sup>C sites.

- A The NSUN2-KO efficiency in Cas9-expressing HAP1 cells. Seven days after viral transduction, NSUN2 was efficiently mutated.
- B Scatter plot demonstrating the effect of NSUN2 knocked out in HAP1 cells. 208 m<sup>5</sup>C sites were identified in wild-type HAP1 cells, 90 (43.3%) of which showed significantly reduced m<sup>5</sup>C level in NSUN2-KO cells. The five m<sup>5</sup>C sites with the highest modification rate in NSUN2-KO cells were highlighted as red dots and marked with gene names. The gray line represents the diagonal line, along which the modification rate is equal between wild-type and NSUN2 knockout cells.
  C Distribution of genes with different number of gRNAs detected.
- D Density plot of m<sup>5</sup>C level of the reporter site associated with individual gRNA. The Y-axis represents the density of gRNAs.



#### Figure EV2. KO of NSUN2 and/or NSUN6 in HAP1 cells.

A–C Western Blot demonstrating the effect NSUN2 (A), NSUN6 (B) as well as NSUN2/6 double knockout (C). NSUN2/6 double knockout (NSUN2/6-dKO) HAP1 cells were established based on clonal NSUN6-KO cells.



# Figure EV3. NSUN6 was efficiently knocked out or knocked down.

A The KO efficiency of NSUN6 in Cas9-expressing HAP1 cells. Seven days after viral transduction, NSUN6 was efficiently mutated.

B The knockdown efficiency of NSUN6 in HAP1 cells. Three independent biological replicates were performed. Error bars represent SD.

#### Figure EV4. mRNA-BisSeq profiles of the three m<sup>5</sup>C modification sites depend on both NSUN6 and NSUN2.

A–C IGV plots showing the m<sup>5</sup>C sites in ANGEL1, ZNF707, and STRN4 genes. The m<sup>5</sup>C sites in ANGEL1 (A) and ZNF707 (B) possessed a 3' TCCA and a 3' AGGG motif, respectively, while the m<sup>5</sup>C site in STRN4 was among a cluster of "pseudo" m<sup>5</sup>C sites (C).



Figure EV4.

| ID | position       | gene       | sequences | ID | position      | gene    | sequences                                 |
|----|----------------|------------|-----------|----|---------------|---------|-------------------------------------------|
| 1  | 11@16756661@+  | C11orf58   |           | 29 | 2@216633619@+ | IGFBP2  |                                           |
| 2  | 11@66687583@-  | SPTBN2     |           | 30 | 5@180071683@- | RNF130  |                                           |
| 3  | 11@767963@-    | GATD1      |           | 31 | 5@180071687@- | RNF130  |                                           |
| 4  | 11@767969@-    | GATD1      |           | 32 | 6@113859942@+ | MARCKS  |                                           |
| 5  | 11@768098@-    | GATD1      |           | 33 | 6@113859943@+ | MARCKS  |                                           |
| 6  | 11@768104@-    | GATD1      |           | 34 | 6@113859945@+ | MARCKS  |                                           |
| 7  | 12@110281749@+ | ATP2A2     |           | 35 | 6@149724702@- | NUP43   |                                           |
| 8  | 12@110281750@+ | ATP2A2     |           | 36 | 7@100070158@- | ZNF3    |                                           |
| 9  | 12@110281752@+ | ATP2A2     |           | 37 | 7@100070166@- | ZNF3    |                                           |
| 10 | 14@74736311@+  | FCF1       |           | 38 | X@119538511@- | CXorf56 |                                           |
| 11 | 14@74736317@+  | FCF1       |           | 39 | X@119538527@- | CXorf56 |                                           |
| 12 | 15@65150178@-  | CLPX       |           | 40 | 7@151080695@- | FASTK   |                                           |
| 13 | 15@85234697@-  | AC044860.1 |           | 41 | 7@151080696@- | FASTK   |                                           |
| 14 | 16@1964562@-   | RPS2       |           | 42 | 7@151080697@- | FASTK   |                                           |
| 15 | 16@2972795@+   | PAQR4      |           | 43 | 8@12755322@-  | LONRF1  |                                           |
| 16 | 16@50368785@-  | BRD7       |           | 44 | 8@17156688@+  | ZDHHC2  |                                           |
| 17 | 18@31685103@-  |            |           | 45 | 8@17156691@+  | ZDHHC2  |                                           |
| 18 | 19@13118331@+  | NACC1      |           | 46 | 8@17156694@+  | ZDHHC2  |                                           |
| 19 | 19@13118340@+  | NACC1      |           | 47 | MT@14423@-    | MT-ND6  |                                           |
| 20 | 1@150308596@+  | MRPS21     |           | 48 | MT@1486@+     | MT-RNR1 |                                           |
| 21 | 1@156676704@-  | NES        |           | 49 | MT@1488@+     | MT-RNR1 | AAGCGCGTACACACCGCCCGTCACCCTCCTCAAGT       |
| 22 | 1@31938230@-   | PTP4A2     |           | 50 | MT@8387@-     |         | C TAAATAC TAC CG TATGGCCCACCA TAA TTACCCC |
| 23 | 20@36891800@-  | SAMHD1     |           | 51 | MT@8391@-     |         |                                           |
| 24 | 20@43667277@+  | MYBL2      |           | 52 | MT@8392@-     |         |                                           |
| 25 | 22@49961503@+  | PIM3       |           | 53 | 6@42989628@+  | PPP2R5D |                                           |
| 26 | 2@101253124@+  | CNOT11     |           | 54 | 7@134293043@- | SLC35B4 | AT CAGAGAATAG CT CTG GACAGTG GAATAAACATAC |
| 27 | 2@216633613@+  | IGFBP2     |           | 55 | 5@179616893@- | HNRNPH1 |                                           |
| 28 | 2@216633616@+  | IGFBP2     |           | 56 | 5@80626854@-  | DHFR    |                                           |

## Figure EV5. NSUN2/6-independent m<sup>5</sup>C sites.

The group of 56 NSUN2/6-independent sites was highly enriched for clusters of pseudo m<sup>5</sup>C sites: 52 sites had at least one pseudo m<sup>5</sup>C site in vicinity.