Chemistry–A European Journal

Supporting Information

Rational Design of Azothiophenes—Substitution Effects on the Switching Properties

Andreas H. Heindl^[a, b] and Hermann A. Wegner^{*[a, b]}

Rational Design of Azothiophenes – Substitution Effects on the Switching Properties

Andreas H. Heindl, Hermann A. Wegner*¹

Address: ¹Institute of Organic Chemistry, Justus Liebig University, Heinrich-Buff-Ring 17, 35392 Giessen (Germany) and Center for Materials Research (LaMa), Justus Liebig University, Heinrich-Buff-Ring 16, 35392 Giessen (Germany)

 $Email: Hermann \ A. \ Wegner - hermann.a. wegner @ org. chemie. uni-giessen. de$

* Corresponding author

Supporting Information

General Information	1
Synthesis of Starting Materials	3
¹ H-, ¹³ C{ ¹ H}- and ¹⁹ F{ ¹ H}{ ¹³ C}-NMR Spectra	5
UV/Vis Spectroscopy	
Determination of PSS compositions by HPLC	
Computations	
References	

General Information

Chemicals were used as purchased from Sigma-Aldrich, Acros Organics, Alfa Aesar or TCI Europe. Anhydrous solvents were purchased from Acros Organics. Technical grade solvents for workup and purification were distilled prior to use. Air and/or water-sensitive reactions were carried out under Schlenk-conditions or in a nitrogen-filled glovebox. Solids were dried under high vacuum (oil pump, ca 10⁻³ mbar) at room temperature (rt), 50 °C or 60 °C if necessary. Flash column chromatography and column chromatography was carried out with Silica 60 M (0.04 – 0.063 mm) from Macherey Nagel GmbH & Co. KG. Thin layer chromatography was performed on Polygram[®] SIL G/UV₂₅₄ from Macherey Nagel GmbH & Co. KG. NMR spectra were measured on a Bruker Avance II 200 MHz, Avance II 400 MHz or Avance III 400 MHz HD spectrometer at rt, if not stated otherwise. Chemical shifts are reported in parts per million (ppm) relative to the solvent peak, coupling constants (J) are reported in Hertz (Hz). Deuterated solvents were obtained from Deutero GmbH (Kastellaun, Germany) or Euriso-Top GmbH. For all azobenzenes, the thermodynamically more stable (E)-isomer is reported if not stated otherwise. ESI-MS spectra were recorded on a Bruker Daltonics Micro TOF. Melting points were measured on a Krüss M5000 capillary melting point meter with a heating rate of 1 °C min⁻¹. GC-MS monitoring of quenched reaction aliquots was carried out on a HP 5890 gas chromatograph with a HP 5971 mass detector.

Irradiation Experiments

Irradiation of the NMR or UV/Vis samples was conducted in an in-house built box using high power LEDs by Lumitronix or Nichia, purchased from leds.de. After the given irradiation times, the samples were immediately placed and measured in the corresponding spectrometer.

Table S1: LEDs used for all irradiation experiments with their specifications.

$\Delta\lambda_{\rm FWHM}$ / nm	Luminous Flux / mW	Product name
9	780	NCSU276AT-U365
10	900	NCSU276AT-U385
12	950	NCSU276AT-U405
14	675	LHUV-0425-0650
20	520	LXML-PR01-0500
+10/-5	300	LEUVA77N50KU00, 4 in 1
	Δλ _{FWHM} / nm 9 10 12 14 20 +10/-5	Δλ _{FWHM} / nm Luminous Flux / mW 9 780 10 900 12 950 14 675 20 520 +10/-5 300

Figure S1: In-house built LED irradiation box for UV/Vis cuvettes as well as NMR tubes.

Synthesis of Starting Materials

General procedure for the synthesis of aryldiazonium tetrafluoroborates^[1]

To an ice-cooled suspension of the corresponding aniline (20 mmol, 1.0 eq.) in water (8.0 mL), 50% aq. HBF₄ (7.5 mL, 60 mmol, 3.0 eq.) was added dropwise. Then, NaNO₂ (1.4 g, 20 mmol, 1.0 eq.) in water (4.0 mL) was added dropwise and the reaction mixture was stirred at 0 °C for 45 min. Afterwards, the precipitate was filtered off, washed with excess Et_2O and was dried in vacuum to obtain the corresponding aryldiazonium tetrafluoroborates (77 – 99% yield). The diazoniumsalts were directly used without further purification and were stored in a nitrogen-filled glovebox under exclusion of light at -20 °C. Under these conditions, the diazonium salts were found to be stable for at least one year. Note that 3-methoxybenzenediazonium tetrafluoroborate (**6g**) could not be handled in solution (CHCl₃, MeOH, DMSO, Acetone) due to azo coupling with itself.

Table S2: Yields of the prepared aryldiazonium tetrafluoroborates.

5-Bromo-2-methoxythiophene (5b)

Br

2-Methoxythiophene (1.01 g, 8.57 mmol, 1.00 eq.) was dissolved in CCl₄ (2 mL) and the solution was cooled to 0 °C. NBS (1.4 g, 7.7 mmol, 0.89 eq.) was added in one portion and the suspension was heated to reflux for 10 min. After cooling to rt, the mixture was treated with sat. aq. Na₂CO₃ (2 mL) and was diluted with DCM (5 mL). After phase separation, the aqueous phase was extracted with DCM (3 x 5 mL) and the combined organic phases were dried over MgSO₄, filtered and the solvents were evaporated under reduced pressure. The obtained brown oil was purified by column chromatography (SiO₂, cycohexane/EtOAc; 50:1) to yield the product as a slightly yellow oil (1.07 g, 65%), which was stored at -20 °C. ¹H NMR (400 MHz, CDCl₃) δ 6.69 (d, *J* = 4.0 Hz, 1H), 5.97 (d, *J* = 4.0 Hz, 1H), 3.85 (s, 3H). The product was used without further purification.

5-Bromo-2-cyanothiophene (5c)

To a solution of 2-thiophenecarbonitrile (1.9 mL, 20 mmol, 1.0 eq.) in a mixture of acetic acid (1.1 mL, 19 mmol, 0.95 eq.) and acetic anhydride (7.6 mL, 80 mmol, 4.0 eq.) was added NBS (3.60 g, 20.0 mmol, 1.00 eq.) and bromine (1.0 mL, 20 mmol, 1.0 eq.) and the reaction mixture was stirred at rt for 2.5 h. After the addition of ice-water (20 mL) and sat. aq. NaHSO₃ solution (20 mL), the mixture was extracted with DCM (3 x 25 mL) and the combined organic phases were washed with sat. aq. NaHCO₃ (3 x 45 mL), dried over MgSO₄ and filtered. After solvent evaporation, a red oil was obtained, which was purified by flash column chromatography (SiO₂, cyclohex/EtOAc; 25:1) to yield a yellow oil (2.54 g, 67%). ¹H NMR (200 MHz, CDCl₃) δ 7.39 (d, *J* = 4.0 Hz, 1H), 7.10 (d, *J* = 4.0 Hz, 1H). The product was used without further purification.

Preparation of 1 molar ZnBr2-solution

For the preparation of the zincthiophenyl reagents, a ZnBr₂-solution in dry THF (1 mol/L) was prepared and used according to the literature.^[2] The solution was stored and handled in a Schlenk flask in a nitrogen-filled glovebox.

¹H-, ¹³C{¹H}- and ¹⁹F{¹H}{¹³C}-NMR Spectra Reference Spectra of Benzene-*d*₆ and CDCl₃

4-Methoxyphenylazothiophene (4c)

15 10 5 0 -5 -10 -15 -20 -25 -30 -35 -40 -45 -50 -55 -60 -65 -70 -75 -80 -85 -90 -95 -100 chemical shift / ppm

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 chemical shift / ppm

UV/Vis Spectroscopy

All samples were measured in acetonitrile for UV-Vis spectroscopy, purchased from Merck (Uvasol[®] quality). Photoisomerization as well as kinetic experiments were carried out in concentrations of $5 \cdot 10^{-5}$ mol/L (**4g**: $7 \cdot 10^{-5}$ mol/L). All solutions were freshly prepared from stock solutions ($c_{\text{stock}} = 5 \cdot 10^{-4}$ mol/L) prior to every UV/Vis experiment. The measurements were carried out with a SPECORD[®] 200 PLUS spectrophotometer equipped with two automatic eight-fold cell changers and a Peltier element thermostat system (0.1 °C accuracy) by Analytik Jena. The system was operated with the ASpect UV software by Analytik Jena. The sample solutions were measured in QS High Precision Cells made of Quartz Suprasil[®] with a light path of 10 mm by Hellma Analytics.

Figure S2: UV-Vis spectra of arylazothiophenes in their initial states and PSS_Z as well as PSS_E (acetonitrile, 25 °C).

Figure S3: UV-Vis spectra of arylazothiophenes in their initial states and PSS_Z as well as PSS_E (acetonitrile, 25 °C). Compound **41** showed slight signs of photodegradation after repeating the photoisomerization.

Kinetic Measurements

All samples were irradiated at the corresponding wavelengths for 1 min prior to the kinetic measurements. Spectra were recorded from 190 – 600 nm with a scan speed of 20 nm/s. The thermal isomerizations were monitored in 15 min intervals (10 °C and 15 °C) for 24 h and in 10 min intervals (20 °C and 25 °C) for 18 h. All compounds were measured three-fold at each temperature at concentrations of $5 \cdot 10^{-5}$ mol/L (**4g**: $7 \cdot 10^{-5}$ mol/L) in acetonitrile. For data analysis, Origin Pro 2016G by Origin Lab Corporation was used. The absorbances *A* at the maximum wavelengths were plotted against the time *t* elapsed after the start of the measurements. Rate constants *k* and half-lives $t_{1/2}$ were determined after fitting the data with an Exponential Decay Function (ExpDec1, Origin) according to the literature.^[3]

Figure S4: Left: reaction spectrum of the thermal isomerization of **4b** at 20 °C. Right: absorbance at 359 nm vs t and exponential fit of the data.

		<i>k</i> / 10 ⁻⁵ s ⁻¹				
θ∕°C		10	15	20	25	
	run 1	0.70	1.41	2.72	5.52	
	run 2	0.70	1.37	2.70	5.36	
4b	run 3	0.85	1.49	2.76	5.52	
	Mean	0.75	1.43	2.73	5.47	
	Δ	0.08	0.06	0.03	0.10	
	run 1	11.2	20.6	38	72	
40	run 2	10.1	20.1	41	70	
40	run 3	11.1	19.9	38	73	
	Mean	10.8	20.2	39	72	
		1				

Table S3: *k*-values of azothiophenes **4** at 10 - 25 °C in acetonitrile.

	Δ	0.6	0.4	1	2
	run 1	1.9	3.4	6.7	13.1
	run 2	1.7	3.7	6.7	13.3
4h	run 3	1.8	3.4	7.0	13.3
	Mean	1.8	3.5	6.8	13.3
	Δ	0.1	0.2	0.2	0.1
	run 1	0.72	1.5	2.98	5.95
	run 2	0.74	1.8	3.14	5.77
4d	run 3	0.77	1.5	2.99	5.92
	Mean	0.75	1.6	3.04	5.88
	Δ	0.03	0.2	0.09	0.10
	run 1	0.61	1.4	2.43	4.71
	run 2	0.59	1.2	2.43	4.79
4 k	run 3	0.67	1.3	2.37	4.80
	Mean	0.63	1.3	2.41	4.77
	Δ	0.04	0.1	0.04	0.05
	run 1	38.3	70	117	200
	run 2	38.6	68	127	197
4 i	run 3	37.6	69	118	205
	Mean	38.2	69	121	201
	Δ	0.5	1	6	4
	run 1	1.31	2.8	5.2	10.4
	run 2	1.29	2.8	5.5	10.4
4j	run 3	1.31	3.0	5.7	10.5
	Mean	1.30	2.9	5.5	10.5
	Δ	0.01	0.1	0.2	0.1
	run 1	0.37	0.60	1.35	2.37
	run 2	0.28	0.60	1.32	2.34
4e	run 3	0.30	0.55	1.35	2.39
	Mean	0.32	0.58	1.34	2.37
	Δ	0.04	0.03	0.02	0.02
	run 1	0.27	0.50	1.08	2.05
	run 2	0.32	0.52	1.11	2.06
4g	run 3	0.32	0.50	1.08	2.16
	Mean	0.30	0.51	1.09	2.09
	Δ	0.03	0.01	0.02	0.06
41	run 1	6.7	15	26	48.9
41	run 2	7.0	14	29	49.9
		•			

	run 3	6.8	16	28	49.6
	Mean	6.8	15	27	49.5
	Δ	0.1	1	1	0.5
	run 1	0.62	1.28	2.8	5.31
	run 2	0.69	1.29	2.9	5.27
4f	run 3	0.76	1.24	2.6	5.25
	Mean	0.69	1.27	2.8	5.28
	Δ	0.07	0.03	0.1	0.03

Table S4: Half-lives of azothiophenes 4 at 10 - 25 °C in acetonitrile.

			$t_{1/2}$	2 / h	
$\vartheta / ^{\circ}C$		10	15	20	25
	run 1	28	13.6	7.08	3.49
	run 2	27	14.0	7.13	3.60
4b	run 3	23	12.9	6.96	3.49
	Mean	26	13.5	7.06	3.52
	Δ	3	0.5	0.09	0.06
	run 1	1.7	0.93	0.50	0.27
	run 2	1.9	0.96	0.47	0.28
4c	run 3	1.7	0.97	0.51	0.26
	Mean	1.8	0.95	0.49	0.27
	Δ	0.1	0.02	0.02	0.01
	run 1	10.1	5.7	2.87	1.46
	run 2	10.1	5.2	2.86	1.45
4h	run 3	10.4	5.6	2.76	1.46
	Mean	10.2	5.5	2.83	1.46
	Δ	0.2	0.3	0.06	0.01
	run 1	26.6	13	6.5	3.24
	run 2	26.1	11	6.1	3.34
4d	run 3	24.9	13	6.4	3.25
	Mean	25.9	12	6.3	3.28
	Δ	0.9	1	0.2	0.05
	run 1	32	14	7.9	4.09
	run 2	32	16	7.9	4.02
4k	run 3	29	15	8.1	4.01
	Mean	31	15	8.0	4.04
	Δ	2	1	0.1	0.04
4 i	run 1	0.50	0.277	0.17	0.096

	run 2	0.50	0.285	0.15	0.098
	run 3	0.51	0.281	0.16	0.094
	Mean	0.50	0.281	0.16	0.096
	Δ	0.01	0.004	0.01	0.002
	run 1	14.72	6.8	3.7	1.85
	run 2	14.88	6.8	3.5	1.84
4j	run 3	14.73	6.4	3.4	1.83
	Mean	14.78	6.7	3.5	1.84
	Δ	0.09	0.2	0.1	0.01
	run 1	52	32	14.3	8.14
	run 2	68	32	14.5	8.21
4 e	run 3	64	35	14.2	8.05
	Mean	61	33	14.3	8.13
	Δ	8	2	0.2	0.08
	run 1	73	38.4	17.9	9.4
	run 2	60	37.3	17.4	9.3
4g	run 3	60	38.4	17.8	8.9
	Mean	64	38.0	17.7	9.2
	Δ	7	0.6	0.2	0.3
	run 1	2.86	1.3	0.74	0.394
	run 2	2.75	1.4	0.67	0.386
41	run 3	2.84	1.2	0.70	0.388
	Mean	2.82	1.3	0.70	0.389
	Δ	0.06	0.1	0.04	0.004
	run 1	31	15.0	7.0	3.63
	run 2	28	14.9	6.7	3.65
4f	run 3	25	15.6	7.3	3.67
	Mean	28	15.2	7.0	3.65
	Δ	3	0.4	0.3	0.02
		•			

 ΔH^{\dagger} and ΔS^{\dagger} were obtained by an Eyring-Polanyi plot. The natural logarithm of *k* divided by the absolute temperature were plotted against T^{-1} for every experimental run to obtain ΔH^{\ddagger} from the slope and ΔS^{\ddagger} from the *y*-intercept according to

$$m = \frac{-\Delta H^{\ddagger}}{R}$$

and

$$y_{x=0} = \ln\left(\frac{k_{\rm B}}{h}\right) + \frac{\Delta S^{\ddagger}}{R}$$

with the molar gas constant R, the Boltzmann-constant $k_{\rm B}$, and the Planck-constant h.

Figure S5: Eyring-Polanyi plot of azothiophene 4b.

Finally, ΔG^{\ddagger} was calculated at 298.15 K according to the Gibbs-Helmholtz equation.

$$\Delta G^{\ddagger} = \Delta H^{\ddagger} - T \ \Delta S^{\ddagger}$$

The average values for ΔH^{\dagger} , ΔS^{\dagger} , and ΔG^{\dagger} from all three runs were calculated and are given in Table S5.

Compound	$t_{1/2,20} \circ_{\rm C} / {\rm h}$	k _{20 °C} / 10 ⁻⁵ s ⁻¹	ΔH^{\ddagger} / kcal mol ⁻¹	ΔS^{\ddagger} / cal mol ⁻¹ K ⁻¹	ΔG^{\ddagger} / kcal mol ⁻¹
4a ^[a]	1.92	10.0	20.4	-7.2	22.5
4b	7.06	2.73	22 ± 1	-5 ± 4	23.27 ± 0.01
4c	0.494	39.0	20.7 ± 0.5	-3 ± 2	21.73 ± 0.01
4d	6.35	3.04	22.4 ± 0.5	-3 ± 2	23.21 ± 0.01
4e	14.3	1.34	23 ± 1	-4 ± 5	23.73 ± 0.01
4f	6.99	2.76	23 ± 1	-3 ± 4	23.28 ± 0.02
4g	17.7	1.09	22 ± 1	-8 ± 3	23.84 ± 0.01
4h	2.83	6.80	21.6 ± 0.4	-4 ± 1	22.74 ± 0.01
4i	0.160	121	18.0 ± 0.3	-10.4 ± 0.9	21.11 ± 0.01
4j	3.53	5.46	22.5 ± 0.1	-1.1 ± 0.5	22.86 ± 0.01
4k	7.99	2.41	22.0 ± 0.9	-5 ± 3	23.34 ± 0.01
41	0.704	27.4	21.4 ± 0.2	-1.7 ± 0.8	21.93 ± 0.01

Table S5: Half-lives, rate constants (both 20 °C) and ΔH^{\ddagger} , ΔS^{\ddagger} , ΔG^{\ddagger} values for azothiophenes **4a-l**.

[a] Taken from ref.^[4]

Figure S6: The Exner-plot of the natural logarithm of k at 25 °C vs the natural logarithm of k at 10 °C showed a linear relationship, which indicates that all azothiophenes isomerize according to the same mechanism in the experimental temperature range.

Determination of PSS compositions by HPLC

The PSS isomer concentrations were determined with a Shimadzu LCMS-2020 system using a 150 x 4 mm Eurospher 100-5 C18 column with acetonitrile/water (90:10) as isocratic eluent (1.5 mL/min). Detection was carried out using a Shimadzu SPD-M20A diode array detector at the previously determined isosbestic wavelengths (see Figure S2, Figure S3). The change from pure acetonitrile to acetonitrile/water (90:10) in the separation had only negligible effect on the isosbestic wavelengths, as show in Figure S7. Irradiation of the samples was carried out in 2 mL glass vials for 3 min (1 min at 305 nm) at the corresponding wavelength in 100% acetonitrile, from which aliquots of 10 μ L (5 · 10⁻⁴ mol/L) or 50 μ L (5 · 10⁻⁵ mol/L) were injected for analysis. For all determined isomer ratios, an error of ±1% is assumed.

Figure S7: UV-Vis spectra of compounds **4b**,**c**,**i** in acetonitrile/water, 90:10. The isosbestic points shifted to +1 nm compared to pure MeCN, which had no impact on the intregration and obtained isomer ratios at the PSSs.

Figure S8: Chromatograms of the PSSs of azothiophene **4b**, detected at the isosbestic wavelength of 301 nm. Top: after irradiation at 365 nm for 3 min, bottom: after irradiation at 305 nm for 1 min.

Computations

All computations were performed using the Gaussian16^[5] and ORCA 4.2^[6] program packages. Geometry optimizations were performed on the PBE0-D3(BJ)^[7] and TPSSh^[8] levels of theory, using the def2-TZVP^[9] basis set. Geometries were visualized using CYLView.^[10] High level single point corrections were computed at the DLPNO-CCSD(T)^[11] level with tight PNO cutoff using the def2-TZVP basis set. All T_1 diagnostic values were found < 0.02, verifying the validity of the single-reference-based electron correlation method.^[12] Thermal energies were obtained from DFT frequency computations on every optimized geometry. Additionally, solvation energies were obtained using the SMD model^[13] at the same DFT level of theory. Ground-state geometries were verified by the absence of imaginary frequencies, and transition states were identified by showing one imaginary frequency. Furthermore, transition states were confirmed by IRC computations using the LQA algorithm^[14] on the corresponding DFT level with the def2-TZVP basis set.

Conformational analysis of (E)-4b

Figure S9: Rotational energy profile of the NNC_{2-thiophene}C_{3-thiophene} dihedral angle from (*E*)-*cis* to (*E*)-*trans*-**4b** at PBE0-D3(BJ)/def2-TZVP. Bold numbers are DLPNO-CCSD(T)/def2-TZVP energies of the corresponding structures.

Conformational analysis of (Z)-4b

Figure S10: Rotational energy profile of the NNCS dihedral angle from (*Z*)-T-shaped to (*Z*)-twist-**4b** at PBE0-D3(BJ)/def2-TZVP. Bold numbers are DLPNO-CCSD(T)/def2-TZVP energies of the corresponding structures.

Transition states on the S₀ isomerization pathway

Figure S11: Relative energy landscape of the singlet $(Z) \rightarrow (E)$ isomerization pathway of azothiophene **4b** on DLPNO-CCSD(T)/def2-TZVP//PBE0-D3(BJ)/def2-TZVP level of theory. The lowest-lying TS was found to be the type 2-*cis* transition state.

Relative energies on the S₀ and T₁ pathways

Table S6: Relative energies of all geometries involved on the minimum energy pathway of the thermal isomerization of azothiophene 4b.

	DLPNO-CCSD(T)/def	2-			
Structure	TZVP//PBE0(D3BJ)-def2-TZVP		IPSSI/del2-1ZVP		
	$\Lambda H^{\circ} / kcal mol^{-1}$	$\Delta G^{\circ}_{ m MeCN}$ /	$\Delta H^{\circ} / k col mol^{-1}$	$\Delta G^{\circ}_{ m MeCN}$ /	
	$\Delta \mathbf{n} \neq \mathbf{K}$ cal III01	kcal mol ⁻¹		kcal mol ⁻¹	
E-cis	0.0	0.0	0.0	0.0	
TS	43.6	42.2	38.7	37.0	
Z-T	11.8	10.6	14.5	12.9	
T ₁ NNCS-cis	-	-	25.7	24.4	
$T_1 TS$	-	-	37.0	36.5	
T ₁ NNCS-trans	-	-	27.4	24.5	

Coordinates of PBE0-D3(BJ)/def2-TZVP geometries

(*E*)-*cis*

Н	-1.67704211	-0.91739285	0.94774598
Н	-4.06071146	-1.60115098	0.82709982
C	-2.17058072	-1.05325532	-0.00582937
Н	2.17255245	0.18187236	1.94700954
C	-3.49579278	-1.43333279	-0.08283385
C	2.55355584	0.29748494	0.94166756
Н	4.6434045	0.89526917	1.32185724
Ν	-0.09814156	-0.45064471	-1.22280025
С	3.86650176	0.67661039	0.6021483
С	-1.44711255	-0.83827678	-1.18090595
С	-4.1109329	-1.60237066	-1.32001543
С	1.76749905	0.07857392	-0.16333924
Ν	0.45126643	-0.29972149	-0.11138742
С	-2.06282932	-1.00748048	-2.41791698
С	4.05156198	0.73810378	-0.75143558
С	-3.39238082	-1.38885551	-2.48667511
S	2.64834191	0.34059505	-1.63433211
Н	-1.47528938	-0.83326554	-3.31155072
Н	-3.86856489	-1.51966641	-3.4512637
Н	-5.15167284	-1.90092336	-1.37020415
Н	4.9578948	1.00161045	-1.27652969
E(el) / Hartree		-893.017139	
E(el) SMD / Hartree		-893.031172	
E(el) DLPNO-CCSD(T)/d	lef2-TZVP / Hartree	-892.1454101	
Thermal corrections / Har	tree		
ZPVE	0.158131	E(therm):	0.168512
H(corr)	0.169456	G(corr):	0.120327
Imaginary frequencies	0		

(E)-trans

Н	1.0790251	7	-1.6341029	94	9.407E-07
Н	3.5027762	7	-2.1713969	97	6.696E-07
С	1.8240804	4	-0.8491780)7	1.151E-07
Н	-2.0799939	99	2.53480523	3	-1.3927E-06
C	3.1742398	4	-1.1382587	1	-4.6E-08
C	-2.6675700	07	1.6280451	5	-4.99E-07
Н	-4.7187654	45	2.42868198	8	-5.172E-07
Ν	0.0613345	2	0.89577362	2	-7.342E-07
С	-4.0706299	95	1.56241069	9	-2.37E-08
C	1.4053846	9	0.4832000	5	-8.036E-07
C	4.1158975	9	-0.1130486	54	-1.1147E-06
C	-2.0907544	47	0.37748898	8	3.259E-07
Ν	-0.773380	1	-0.0333931	.1	2.536E-07
C	2.3477765	3	1.50771114	4	-1.8722E-06
C	-4.5416768	87	0.2737190	5	1.1433E-06
C	3.7003733	6	1.2098541		-2.0328E-06
S	-3.2828713	32	-0.8635342	26	1.6846E-06
Н	1.9926267	1	2.53146324	4	-2.5637E-06
Н	4.4309397	4	2.0102427	7	-2.8643E-06
Н	5.1735596	6	-0.3500854	18	-1.2315E-06
Н	-5.5704630	63	-0.0527298	31	1.7038E-06
E(el) / Hartree			-893.01263		
E(el) SMD / Hartree			-893.026334		
E(el) DLPNO-CCSD(T)/de	ef2-TZVP / H	Iartree	-892.1411172		
Thermal corrections / Hart	ree				
ZPVE:		0.157992	E(therm):	0.168437	
H(corr):		0.169381	G(corr):	0.119979	
Imaginary frequencies		0			

(Z)-T

Н	-0.69227	127	-1.765	32324		-2.13739307
Н	-2.57419501		-0.153	-0.1539141		-2.14085905
S	1.361467	61	0.3307	0.33077925		-1.1172E-06
С	-1.10760	137	-1.398	26248		-1.20620431
С	-2.16033	323	-0.498	26083		-1.20011232
С	2.850222	74	1.1499	94402		-2.6854E-06
Ν	1.656793	4	-2.507	31121		3.1267E-06
Ν	0.455894	04	-2.817	08935		3.8402E-06
С	2.165683	17	-1.216	29339		1.0943E-06
С	-0.56738	145	-1.831	83045		2.6546E-06
С	-2.68510	753	-0.040	17159		5.786E-07
С	3.92578461		0.30345377			-1.5895E-06
С	3.53258047		-1.04370128			5.543E-07
С	-1.10760052		-1.39825867			1.20620864
С	-2.160332	239	-0.49825706			1.20011455
Н	4.95315915		0.64035323			-2.3074E-06
Н	4.199192	45	-1.89515342			1.7145E-06
Н	-0.69226	975	-1.76531649			2.13739826
Н	-2.57419	352	-0.15390736			2.14086049
Н	2.864781	3	2.2304805			-4.3495E-06
Н	-3.51008	085	0.6621	0.66210801		-2.373E-07
E(el) / Hartree			-892.996767			
E(el) SMD / Hartree		-893.012816				
E(el) DLPNO-CCSD(T)/def2-TZVP / Hartree		-892.1262	461			
Thermal corrections / Hartr	ee					
ZPVE:		0.157736	E(therm):	0.16	8113	
H(corr):		0.169057	G(corr):	0.12	0031	
Imaginary frequencies		0				

(Z)-twisted

Н	1.483733	17	1.58	825019	4	-2.20500221
Н	3.404975	3.40497567		196304	3	-2.07848308
S	-3.279260	524	0.69	902442	1	0.31414429
C	1.801002	02	1.17	709401	1	-1.25409871
C	2.874833	61	0.29	979571		-1.17488105
C	-3.260425	528	-0.9	995028	86	0.25704752
Ν	-1.14373	198	2.10	067355	5	-0.08975341
Ν	0.046308	89	2.44	492155	2	-0.17525057
С	-1.583288	352	0.78	854713	2	0.00732979
C	1.107480	36	1.5	111615	6	-0.0993579
С	3.276818	5	-0.2	2111714	42	0.05180873
C	-2.00801	148	-1.4	89663	52	-0.0112016
С	-1.043120	589	-0.4	778658	88	-0.15283049
C	1.520211	77	1.02525051			1.1369021
C	2.603444	61	0.16572849			1.20617976
Н	-1.788159	939	-2.5	5453148	85	-0.09901508
Н	-0.00476	166	-0.6	6715766	52	-0.36969194
Н	0.983764	74	1.3	188738	6	2.03153021
Н	2.922975	53	-0.2	214585	12	2.16967863
Н	4.121784	07	-0.88665399			0.11048517
Н	-4.165122	251	-1.56426208			0.42459508
E(el) / Hartree			-892.99	92653		
E(el) SMD / Hartree		-893.008277				
E(el) DLPNO-CCSD(T)/def2-TZVP / Hartree		-892.1228054				
Thermal corrections / Hartr	ree					
ZPVE:		0.157845	E(ther	m):	0.168243	
H(corr):		0.169187	G(corr)):	0.11917	
Imaginary frequencies		0				

TS type 1-cis

С	3.73324417		-0.27280475		-0.15502925
C	2.48833072	2.48833072			-0.27822659
C	1.33221115		-0.13510945		-0.14717656
С	3.81919911		1.08958891		0.09527277
Н	2.4238533		-1.94471581		-0.47704902
Н	0.3585694		-0.60002094		-0.2474814
Ν	0.29920919		2.09706799		0.24652732
C	2.66462908		1.84291175		0.22222754
C	1.42053016		1.23225599		0.1079526
Н	4.78875514		1.56451166		0.18986825
Н	2.69684721		2.90952642		0.41203216
Ν	-0.8130873		1.56686013		0.18294733
C	-1.98912934		1.06157647		0.17038481
С	-3.1852901		1.61544489		-0.2918479
Н	-3.22045513		2.63888343		-0.63960722
S	-2.32896446		-0.6636086		0.63980459
С	-4.27476457		0.74479236		-0.25220956
С	-3.97389642		-0.4806979		0.29580456
Н	-5.2776816		1.02595889		-0.54394882
Н	4.63595027		-0.86392159		-0.25673044
Н	-4.68483318		-1.24352059		0.57940789
E(el) / Hartree			-892.953515		
E(el) SMD / Hartree		-892.967681			
E(el) DLPNO-CCSD(T)/def2-TZVP / Hartree			-892.0725992		
Thermal corrections / Har	tree				
ZPVE:	0.1	155666	E(therm):	0.165994	
H(corr):	0.1	166938	G(corr):	0.117948	
Imaginary frequencies	1		-383.226 cm ⁻¹		

TS type 1-trans

С	-0.486532	19	-4.6024917	7	2.75709975
C	0.8238021	5	-4.1935466	51	2.55221553
C	1.0835979	93	-2.9199358	35	2.07537756
C	-1.538038	76	-3.7337364	49	2.48442316
Н	1.6434058	31	-4.870666	17	2.76262925
Н	2.0943587	76	-2.5720388	32	1.89624953
Ν	0.406595		-0.7696702	26	1.30973025
С	-1.284287	7	-2.4581465	51	2.01615507
С	0.032028		-2.049191	58	1.81349193
Н	-2.560648	48	-4.0581943	36	2.64038736
Н	-2.095196	77	-1.7747950	51	1.79479297
Ν	-0.507287	36	0.0335703	3	1.11690377
С	-1.493197	38	0.8336539	5	0.92720417
С	-2.652041	13	1.0273010	8	1.68545807
Н	-2.886976	09	0.3905963	4	2.52767946
S	-1.434463	92	2.1132965	7	-0.3411101
С	-3.431471	52	2.1068352	9	1.26254822
С	-2.938843	69	2.7240748	9	0.13754979
Н	-4.372786	97	2.3816645	2	1.71925173
Н	-0.691985	36	-5.6000898	83	3.12750881
Н	-3.451891	02	3.4593481	8	-0.4652298
E(el) / Hartree			-892.95261		
E(el) SMD / Hartree			-892.96747		
E(el) DLPNO-CCSD(T)/d	lef2-TZVP / I	Hartree	-892.0719886		
Thermal corrections / Har	tree				
ZPVE:		0.155772	E(therm):	0.16604	
H(corr):		0.166984	G(corr):	0.118244	
Imaginary frequencies		1	-386.732 cn	n ⁻¹	

TS type 2-cis

Н	1.3372141	19	-3.6409915	54	2.46243908
Н	0.4590530)5	-4.4750604	8	4.59712208
С	0.4935220)9	-3.1557991		2.93578848
Н	2.0603202	21	0.0591376	5	-1.98206977
С	-0.011730	54	-3.6133613	31	4.1362125
С	2.3581853	36	0.3481785	1	-0.98343667
Н	3.9155382	29	1.8593780	8	-1.39124178
Ν	0.3607598	33	-1.5900470)8	1.15441402
С	3.3426054	41	1.3034262	1	-0.66178557
С	-0.100666	68	-2.0377961	.3	2.31154867
С	-1.093913	61	-3.0016017	/2	4.75483943
С	1.7902377	72	-0.2029347	1	0.13469275
Ν	0.7863665	57	-1.1770563	32	0.09495058
С	-1.200295	17	-1.4102508	37	2.93578452
С	3.4957231	8	1.4520103		0.6892337
С	-1.672848	62	-1.9015110)9	4.13620855
S	2.4588222	24	0.4458405	9	1.59193139
Н	-1.659893	11	-0.5523494	1	2.46243209
Н	-2.520000	34	-1.4050239	95	4.59711501
Н	-1.477261	13	-3.3735862	24	5.69589667
Н	4.1775886	53	2.1136701	5	1.20298025
E(el) / Hartree			-892.952367		
E(el) SMD / Hartree			-892.967976		
E(el) DLPNO-CCSD(T)/d	lef2-TZVP/	Hartree	-892.0735000		
Thermal corrections / Har	tree				
ZPVE:		0.155649	E(therm):	0.166099	
H(corr):		0.167043	G(corr):	0.117209	
Imaginary frequencies		1	-457.549 cm	1 ⁻¹	

TS type 2-trans

Н	-2.119074	74	0.6568949		0.80863276
Н	-3.8091054	47	2.3446974	5	1.37153803
С	-2.1186113	33	1.6198854	3	0.31468243
Н	1.6050265	8	1.7908499		0.88441624
С	-3.063119	92	2.5791454	4	0.61971983
С	2.2139555	8	0.9882132		0.48992311
Н	4.0231164	.9	1.157517		1.73666592
Ν	-0.226359	58	0.9902628		-0.97353019
С	3.5013243	4	0.6460600	8	0.93894279
С	-1.136966	1	1.8947739	5	-0.6636903
С	-3.077754	11	3.8179223	1	-0.00774388
С	1.7986258	5	0.1714407	6	-0.53303374
Ν	0.5971619	07	0.1504805	9	-1.27437162
С	-1.146033	09	3.1538009	6	-1.30492362
С	4.0330514	7	-0.4159435	52	0.25244141
С	-2.1098502	27	4.0826096	9	-0.96774377
S	2.9783882	.6	-1.0048031	18	-0.93858624
Н	-0.398379	7	3.3707125	3	-2.05678932
Н	-2.099446	36	5.0411157	8	-1.47553183
Н	-3.826083	38	4.5579137	7	0.2437209
Н	4.9989028	1	-0.8762834	47	0.3964588
E(el) / Hartree			-892.948998		
E(el) SMD / Hartree			-892.964278		
E(el) DLPNO-CCSD(T)/d	ef2-TZVP / I	Hartree	-892.0703463		
Thermal corrections / Hart	tree				
ZPVE:		0.15557	E(therm):	0.166045	
H(corr):		0.166989	G(corr):	0.117244	
Imaginary frequencies		1	-434.271 cm	n ⁻¹	

Coordiantes of TPSSh/def2-TZVP geometries

Singlet (E)-cis

Н	1.63658661	2.02702329	4.4149E-06
Н	4.11289996	2.25348145	6.8706E-06
C	2.27575741	1.153496	2.3584E-06
Н	-2.49647583	2.45759648	2.3059E-06
C	3.65617301	1.26988892	3.7035E-06
C	-2.74594609	1.40537052	-7.917E-07
Н	-4.95337198	1.47628242	-2.2193E-06
Ν	0.30084399	-0.36374764	-3.444E-06
С	-4.05358039	0.87594573	-3.2203E-06
С	1.68966097	-0.12071138	-1.7374E-06
С	4.46402071	0.1300888	1.0066E-06
С	-1.77604602	0.42404557	-2.7942E-06
Ν	-0.42537828	0.66957371	-1.1178E-06
С	2.49914687	-1.26082007	-4.4199E-06
С	-4.05892568	-0.49620555	-7.0308E-06
С	3.88264359	-1.13446487	-3.0498E-06
S	-2.48476521	-1.1734288	-7.7464E-06
Н	2.01928293	-2.23249764	-7.5617E-06
Н	4.50682444	-2.02068284	-5.1427E-06
Н	5.54336672	0.23198706	2.0841E-06
Н	-4.92033074	-1.14777416	-9.4681E-06
E(el) / Hartree		-893.769867	
E(el) SMD / Hartree		-893.783378	
Thermal corrections / Har	tree		
ZPVE:	0.156246	E(therm):	0.166763
H(corr):	0.167707	G(corr):	0.118335
Imaginary frequencies	0		

Singlet (Z)-T

Н	1.37672557		0.82627011		-2.14330012
Н	3.12002238		-0.93665202		-2.14521625
S	-0.9960683		-1.00269216		-1.9725E-06
С	1.75370153		0.42355822		-1.21036924
С	2.73433635		-0.56157304		-1.20380967
С	-2.59384378		-1.60821896		-3.3708E-06
Ν	-0.89921947		1.86366908		2.2704E-06
Ν	0.34230011		2.01255156		2.8695E-06
С	-1.58364642		0.65212376		3.448E-07
С	1.24807916		0.90383679		1.7305E-06
С	3.22455806		-1.0607706		-8.93E-08
С	-3.54301894		-0.6161643		-2.1457E-06
С	-2.96668256		0.66692624		-4.51E-08
C	1.75370016		0.4235546		1.21037183
С	2.73433501		-0.56157663		1.20381043
Н	-4.60752246		-0.8071302		-2.7452E-06
Н	-3.51245608		1.60051369		1.1709E-06
Н	1.37672314		0.82626369		2.1433035
Н	3.12001999		-0.9366584		2.14521633
Н	-2.75873744		-2.67617244		-5.0291E-06
Н	3.99294401		-1.82497698		-7.978E-07
E(el) / Hartree		-89	93.74632		
E(el) SMD / Hartree		-89	93.761844		
Thermal corrections / Hartre	ee				
ZPVE:		0.155679	E(therm):	0.16627	
H(corr):		0.167214	G(corr):	0.117422	
Imaginary frequencies		0			

Singlet TS type 2-cis

Н	-1.72156636		0.42831277		-2.15755576
Н	-3.99458051		-0.50535875		-2.14374
С	-2.22264723		0.21974933		-1.22105796
Н	3.45922168		2.09296483		3.1154E-06
С	-3.50411816		-0.30537492		-1.19678565
С	3.19740377		1.04364381		1.4614E-06
Н	5.18765472		0.08277587		-7.14E-08
Ν	-0.33331718		1.02140211		1.4928E-06
С	4.11200314		-0.03135017		-2.398E-07
С	-1.55589496		0.49383207		7.202E-07
С	-4.16433429		-0.57656707		-8.36E-07
С	1.8895775		0.61611707		8.057E-07
Ν	0.79426433		1.496586		2.2121E-06
С	-2.22264699		0.2197452		1.2210586
С	3.48178397		-1.25029384		-2.1475E-06
С	-3.50411793		-0.30537894		1.19678477
S	1.77461267		-1.12236725		-1.9255E-06
Н	-1.72156594		0.42830547		2.15755702
Н	-3.99458011		-0.50536595		2.14373854
Н	-5.16607473		-0.98671182		-1.4317E-06
Н	3.94163961		-2.22760482		-3.6889E-06
E(el) / Hartree		-89	3.705796		
E(el) SMD / Hartree		-89	3.720821		
Thermal corrections / Har	tree				
ZPVE:		0.153639	E(therm):	0.16429	
H(corr):		0.165234	G(corr):	0.114694	
Imaginary frequencies		1	-463.921 cm	-1	

Triplet NNCS-cis

Н	1.21277431		1.78083107		-0.11308001
Н	3.43660594		2.04712604		-1.17557839
С	1.94316979	(0.98194271		-0.07744577
Н	-2.68118674		2.15930235		1.2951481
С	3.18821322		1.123975		-0.66357801
С	-2.70188047		1.31269218		0.62333735
Н	-4.66992073		1.55214439		-0.31641497
Ν	0.41166749		-0.44741726		1.20289935
С	-3.75321297	(0.98266987		-0.23789123
С	1.61751243	-	-0.21709962		0.59832458
С	4.12761983	(0.09148965		-0.59936799
С	-1.62768898	(0.40892165		0.5393644
Ν	-0.4999525	(0.48519118		1.22852329
С	2.57704215		-1.25163776		0.66945279
С	-3.51714022		-0.15891109		-0.9754875
С	3.81271689		-1.09454807		0.06986977
S	-1.98250901		-0.85931526		-0.63805985
Н	2.31427198		-2.16108546		1.19632066
Н	4.54180939		-1.89503569		0.12353819
Н	5.10002033	(0.21307121		-1.06209647
Н	-4.17754512		-0.62986008		-1.68781529
E(el) / Hartree		-89	3.72679		
E(el) SMD / Hartree		-89	3.740833		
Thermal corrections / Hartr	ee				
ZPVE:		0.153834	E(therm):	0.16459	
H(corr):		0.165534	G(corr):	0.114665	
Imaginary frequencies		0			

Triplet NNCS-trans

Н	-1.02771044		-1.56952006		-0.06547252
Н	-3.16305059		-2.11506345		1.06787945
С	-1.83800848		-0.85150036		-0.03608224
Н	1.24997499		1.7795901		0.63551588
С	-3.03513026		-1.14976788		0.5904665
С	1.94063815		1.02141849		0.29421174
Н	3.69730148		1.44267026		1.5427335
Ν	-0.51929357		0.78523371		-1.30470852
С	3.24609091		0.83873382		0.76615119
С	-1.6686099	(0.40269786		-0.66717872
С	-4.07938204		-0.22174604		0.61046192
С	1.60274943		0.10487373		-0.71680032
Ν	0.48115163		-0.04509323		-1.41554537
С	-2.7334654		1.33088607		-0.65335699
С	3.91295116		-0.19463896		0.14231428
С	-3.9193188		1.01789583		-0.01497232
S	2.95427548		-0.96333524		-1.0556132
Н	-2.59149739		2.28392211		-1.14881532
Н	-4.73007337		1.73753983		-0.00447799
Н	-5.01296715		-0.4655355		1.10384513
Н	4.91866815		-0.53839709		0.32945093
E(el) / Hartree		-89	3.724133		
E(el) SMD / Hartree		-89	3.740833		
Thermal corrections / Hartr	ee				
ZPVE:		0.153901	E(therm):	0.164639	
H(corr):		0.165583	G(corr):	0.114758	
Imaginary frequencies		0			

Triplet TS

С	4.56721854		0.44759993	0.38543	623
С	4.19046934		-0.64510419	-0.3995	774
С	2.85457126		-0.9096645	-0.6456	6877
С	3.58297646		1.2770661	0.92378	935
Н	4.94886348		-1.29527947	-0.8213	4326
Н	2.55180304		-1.75496241	-1.2521	2029
Ν	0.55114988		-0.38581963	-0.3855	043
С	2.23993435		1.03032111	0.68809	201
С	1.85889671		-0.07298228	-0.1040	7078
Н	3.86789211		2.12663133	1.53519	657
Н	1.47001326		1.66936936	1.10412	457
Ν	-0.41891738		0.30710577	0.06923	604
С	-1.73639864		0.35074319	-0.0512	7274
С	-2.50617404		1.05267435	-0.9803	0369
Н	-2.05036397		1.60612844	-1.7898	2227
S	-2.80067264		-0.41445236	1.14621	022
С	-3.8853347		0.95474204	-0.7446	8678
С	-4.19061493		0.20068319	0.36718	594
Н	-4.63909412		1.42017101	-1.3656	2321
Н	5.61477772		0.64889857	0.57549	468
Н	-5.17309973		-0.02098354	0.75675	086
E(el) / Hartree		-893.7079	12		
E(el) SMD / Hartree		-893.7214	57		
Thermal corrections / Har	rtree				
ZPVE:		0.153405	E(therm):	0.163774	
H(corr):		0.164718	G(corr):	0.114542	
Imaginary frequencies		1	-197.087 cm	l ⁻¹	

References

- [1] M. J. Hansen, M. M. Lerch, W. Szymanski, B. L. Feringa, Angew. Chem. Int. Ed. 2016, 55, 13514–13518.
- [2] B. Haag, Z. Peng, P. Knochel, Org. Lett. 2009, 11, 4270–4273.
- [3] L. Schweighauser, M. A. Strauss, S. Bellotto, H. A. Wegner, *Angew. Chem. Int. Ed.* 2015, 54, 13436–13439.
- [4] C. Slavov, C. Yang, A. H. Heindl, H. A. Wegner, A. Dreuw, J. Wachtveitl, Angew. Chem. Int. Ed. 2020, 59, 380–387.
- [5] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman,
 G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji et al., *Gaussian 16 Rev. A.03*,
 Wallingford, CT, **2016**.
- [6] a) F. Neese, WIREs Comput Mol Sci 2012, 2, 73–78; b) F. Neese, WIREs Comput Mol Sci 2018, 8, 33.
- [7] a) C. Adamo, V. Barone, J. Chem. Phys. 1999, 110, 6158–6170; b) J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865–3868; c) S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys. 2010, 132, 154104; d) S. Grimme, S. Ehrlich, L. Goerigk, J. Comput. Chem. 2011, 32, 1456–1465.
- [8] a) V. N. Staroverov, G. E. Scuseria, J. Tao, J. P. Perdew, J. Chem. Phys. 2003, 119, 12129–12137; b) J. Tao, J. P. Perdew, V. N. Staroverov, G. E. Scuseria, Phys. Rev. Lett. 2003, 91, 146401.
- [9] F. Weigend, R. Ahlrichs, Phys. Chem. Chem. Phys. 2005, 7, 3297–3305.
- [10] C. Y. Legault, *CYLview*, Université de Sherbrooke, **2009**.
- [11] C. Riplinger, B. Sandhoefer, A. Hansen, F. Neese, J. Chem. Phys. 2013, 139, 134101.
- [12] T. J. Lee, P. R. Taylor, Int. J. Quantum Chem. 1989, 36, 199–207.
- [13] A. V. Marenich, C. J. Cramer, D. G. Truhlar, J. Phys. Chem. B 2009, 113, 6378–6396.
- [14] a) M. Page, C. Doubleday, J. W. McIver, J. Chem. Phys. 1990, 93, 5634–5642; b) M.
 Page, J. W. McIver, J. Chem. Phys. 1988, 88, 922–935.