Supplemental Figures

Supplemental Figure 1

Supplemental Figure 1. IFN-β and IFN-γ increase CD38 expression on MM cells. (A, B)

RPMI 8226, MOLP-8, H929, and MM.1S cells were cultured with IFN- β (0 to 2500 IU/mL) (A) or IFN- γ (0 to 2500 IU/mL) (B) for 72h. After incubation, CD38 expression was measured by flow cytometry, and relative CD38 MFI was calculated in comparison with MFI of Control. Data are shown as mean ± standard error of the mean.

Supplemental Figure 2

Supplemental Figure 2. Genome-scale CRISPR-Cas9 knockout screening in RPMI 8226 cells. (A, B) Scatter plot of sgRNA representation between control cells and sorted cells in the GeCKO library A (A) and library B (B). (C) Comparison of total sgRNA reads between control and sorted cells in two libraries. (D-G) Read counts in top 5 genes (*SWSAP1* (D), *hsa-mir-1181* (E), *ARID1A* (F), and *KLF1* (G)) enriched in sorted cells compared to control cells. *SWSAP1*, *SWIM-type zinc finger 7 associated protein 1*; *ARID1A*, *AT-rich interaction domain 1A*; *KLF1*, *Kruppel like factor 1*.

Supplemental Figure 3

Supplemental Figure 3. Validation of top positive genes identified by genome-scale CRISPR-Cas9 knockout screening. (A, B) qRT-PCR analysis of some genes in high positive rank listed in Figure 3B was carried out in RPMI 8226 (A) and MOLP-8 cells (B) treated with control culture medium or IL-6 (0.2 or 2 ng/ml) for 6 h. The values were normalized to invariant control *GAPDH* expression. Data are shown as mean ± standard error of the mean. Specific primers for each gene are listed in Supplemental Table 2. *SWSAP1*, *SWIM-type zinc finger 7 associated protein 1; ARID1A, AT-rich interaction domain* 1A; KLF1, Kruppel like factor 1; JAK1, Janus kinase 1; EPOR, Erythropoietin receptor, CCDC130, Coiled-coil domain containing 130; GAPDH, glyceraldehyde-3-phosphate dehydrogenase.

Supplemental Figure 4

Supplemental Figure 4. *STAT3* knockout inhibits CD38 downregulation induced by BMSC-sup or IL-6. (A, B) MOLP-8 cells were infected with sgNT (non-target control), sgSTAT3 #1 or #2 expressing lentiviral vector, and cultured with control culture medium (Control), BMSC-sup or IL-6 (1 ng/ml) for 72 h. (A) CD38 expression was assessed by flow cytometry. Relative CD38 MFI was calculated in comparison with MFI of Control. (B) STAT3 downregulation was confirmed by immunoblotting.

Supplemental Tables

Supplemental Table 1. Antibodies used in this study

Antibodies	Sources	Catalog #	Applications
STAT1	Cell signaling technology	9176	WB
STAT3	Cell signaling technology	9139	WB
phospho-STAT1 (Tyr701)	Cell signaling technology	7649	WB
phospho-STAT3 (Tyr705)	Cell signaling technology	9145	WB
phospho-STAT3 (Ser727)	Cell signaling technology	9134	WB
FLAG-Tag	Cell signaling technology	14793	WB
β-actin-HRP	Cell signaling technology	12262	WB
rabbit IgG-HRP	Cell signaling technology	7074	WB (2nd Ab)
mouse IgG-HRP	Cell signaling technology	7076	WB (2nd Ab)
CD38 PE/Cy7	BioLegend	356608	FC
lgG1, к PE/Cy7	BioLegend	400126	FC
CD138 BV421	BioLegend	356516	FC
lgG1, к BV421	BioLegend	400158	FC
7-AAD	BD Pharmingen	559925	FC

WB, western blot; HRP, horseradish peroxidase; Ab, antibody; FC, flow cytometry; PE/Cy7, phycoerythrin-cyanin 7; BV421, Brilliant Violet 421; 7-AAD, 7-amino-actinomycin D.

Target genes	Directions	Sequences (5' to 3')
CD38	Forward	CAGCAACAACCCTGTTTCAGT
CD38	Reverse	CCATTGAGCATCACATGGAC
STAT3	Forward	CCTCTGCCGGAGAAACAGT
STAT3	Reverse	CATTGGGAAGCTGTCACTGTAG
SWSAP1	Forward	GGAACGACTCTAGACCCAATGC
SWSAP1	Reverse	CCTCATGGGCAGAGCACAGGA
ARID1A	Forward	AAGCCACCAACTCCAGCATCCA
ARID1A	Reverse	CGCTTCTGGAATGTGGAGTCAC
KLF1	Forward	TTGCGGCAAGAGCTACACCAAG
KLF1	Reverse	GTAGTGGCGGGTCAGCTCGTC
JAK1	Forward	GAGACAGGTCTCCCACAAACAC
JAK1	Reverse	GTGGTAAGGACATCGCTTTTCCG
EPOR	Forward	TTCTGTGCTTCACCGAGCGGTT
EPOR	Reverse	CGACACAGCTTCCATGGCTCAT
CCDC130	Forward	CTCTCAACCGATACCACAACAGC
CCDC130	Reverse	CATGCCGATGTGGTTCTTGCAG
GAPDH	Forward	CCTGCACCACCAACTGCTT
GAPDH	Reverse	CCATCACGCCACAGTTTCC

Supplemental Table 2. Primers for quantitative real-time PCR

SWSAP1, SWIM-type zinc finger 7 associated protein 1; ARID1A, AT-rich interaction domain 1A; KLF1, Kruppel like factor 1; JAK1, Janus kinase 1; EPOR, Erythropoietin receptor, CCDC130, Coiled-coil domain containing 130; GAPDH, glyceraldehyde-3-phosphate dehydrogenase.

Supplemental Table 3. Plasmid vectors used in this study

Plasmids	Sources	Catalog #
lentiCRISPR v2	Addgene	52961
pCMV-dR8.2 dvpr	Addgene	8455
pCMV-VSV-G	Addgene	8454
EF.STAT3DN.Ubc.GFP	Addgene	24984
EF.STAT3C.Ubc.GFP	Addgene	24983
MSCV IRES Luciferase	Addgene	18760

Supplemental Table 4. sgRNAs used in this study

Target	Vectors	Clone IDs	Target sequences
genes			
STAT3	sgRNA	HGLibA_47386	AGATTGCCCGGATTGTGGCC
STAT3	sgRNA	HGLibB_47330	ACTGCTGGTCAATCTCTCCC
Non-target	sgRNA	HGLibA_64388	CCATATCGGGGCGAGACATG

sgRNA, single guide RNA.

	Concentration	RPMI8226	MOLP8	MM.1S	H929
	0.1 ng/ml	75.5	74.8	96.8	90.0
IL-6	1 ng/ml	57.8	65.3	83.1	78.2
	10 ng/ml	58.5	62.2	76.6	78.5
	1 ng/ml	107.5	101.5	99.5	106.5
MIP-1α	10 ng/ml	107.6	99.8	99.5	98.3
	100 ng/ml	106.8	94.7	100.8	97.8
	1 ng/ml	110.1	93.5	102.0	94.6
SDF-1α	10 ng/ml	106.6	98.1	103.9	90.6
	100 ng/ml	106.1	104.0	104.0	91.0
	1 ng/ml	102.3	102.9	106.3	90.5
IL-1β	5 ng/ml	100.1	110.7	103.6	93.7
	25 ng/ml	102.0	113.8	105.3	96.6
	5 ng/ml	99.6	101.4	96.0	103.2
IL-8	25 ng/ml	99.3	101.1	100.9	100.5
	100 ng/ml	99.6	108.3	99.8	110.1
	25 ng/ml	98.8	87.2	98.0	104.6
IGF-1	100 ng/ml	87.7	81.9	100.8	93.1
	250 ng/ml	83.7	83.0	105.5	98.7
	0.2 ng/ml	125.1	89.1	97.1	104.9
TGF-β	1 ng/ml	137.9	87.1	98.7	100.9
	5 ng/ml	134.5	87.8	100.3	93.0
	1 ng/ml	96.9	98.0	96.9	95.2
OSM	10 ng/ml	96.5	98.7	98.6	92.5
	100 ng/ml	97.4	99.6	96.6	94.2
	1 ng/ml	96.2	96.7	98.4	98.5
LIF	10 ng/ml	96.1	99.1	98.3	98.5
	100 ng/ml	97.5	99.5	98.0	101.5
IL-10	1 ng/ml	76.8	97.2	99.2	101.1

Supplemental Table 5. Relative CD38 mean fluorescence intensities of cytokine profiling in 4 MM cell lines

	10 ng/ml	65.7	95.1	98.3	98.2
	100 ng/ml	64.7	99.6	101.0	96.0
	1 ng/ml	105.0	108.4	102.2	99.3
IL-2	10 ng/ml	98.4	105.5	101.1	97.7
	100 ng/ml	99.8	102.8	99.2	92.6
IFN-β IFN-γ	20 IU/ml	156.3	160.1	256.9	342.2
	100 IU/ml	235.9	190.2	478.8	731.9
	500 IU/ml	336.9	229.8	923.1	1060.7
	20 IU/ml	130.5	140.5	185.7	138.8
	100 IU/ml	148.6	166.6	254.7	211.6
	500 IU/ml	167.0	169.5	312.0	311.0

IL-6, interleukin-6; MIP-1 α , macrophage inflammatory protein-1 α ; SDF-1 α , stromal cellderived factor-1 α ; IL-1 β , interleukin-1 β ; IL-8, interleukin-8; IGF-1, insulin-like growth factor 1; TGF- β , transforming growth factor- β ; OSM, oncostatin-M; LIF, leukemia inhibitory factor; IL-10, interleukin-10; IL-2, interleukin-2; IFN- β , interferon- β ; IFN- γ , interferon- γ .

	Concentration	RPMI8226	MOLP8	MM.1S	H929
	0.1 ng/ml	0.0002	0.0080	0.0007	0.0049
IL-6	1 ng/ml	0.0001	0.0000	0.0003	0.0013
	10 ng/ml	0.0000	0.0000	0.0002	0.0005
	1 ng/ml	0.0105	0.5623	0.8810	0.0377
MIP-1α	10 ng/ml	0.0098	0.9707	0.8883	0.6629
	100 ng/ml	0.0658	0.1158	0.8087	0.1227
	1 ng/ml	0.0355	0.0673	0.5484	0.0062
SDF-1α	10 ng/ml	0.2317	0.7216	0.2954	0.0072
	100 ng/ml	0.0182	0.1936	0.2848	0.0007
	1 ng/ml	0.7635	0.4836	0.1463	0.0185
IL-1β	5 ng/ml	0.9712	0.0812	0.3251	0.0723
	25 ng/ml	0.6902	0.0081	0.2074	0.2650
	5 ng/ml	0.8578	0.3445	0.2565	0.5457
IL-8	25 ng/ml	0.4660	0.5290	0.8505	0.9140
	100 ng/ml	0.6332	0.1018	0.9695	0.1312
	25 ng/ml	0.5541	0.0178	0.4733	0.3411
IGF-1	100 ng/ml	0.0103	0.0286	0.5822	0.1991
	250 ng/ml	0.0001	0.0005	0.0248	0.7776
	0.2 ng/ml	0.0016	0.0045	0.3546	0.3194
TGF-β	1 ng/ml	0.0004	0.0056	0.5857	0.8621
	5 ng/ml	0.0001	0.0028	0.8121	0.1909
	1 ng/ml	0.0559	0.0635	0.1045	0.1514
OSM	10 ng/ml	0.0509	0.2374	0.6052	0.0688
	100 ng/ml	0.1248	0.6223	0.0805	0.1044
	1 ng/ml	0.2045	0.1488	0.3564	0.5661
LIF	10 ng/ml	0.2016	0.3064	0.3376	0.6072
	100 ng/ml	0.1953	0.5737	0.2241	0.6643
11 10	1 ng/ml	0.0002	0.0638	0.5994	0.7109
IL-10	10 ng/ml	0.0012	0.0774	0.2835	0.5140

Supplemental Table 6. p-value of student t-test in cytokine profiling in 4 MM cell lines

	100 ng/ml	0.0000	0.4472	0.6245	0.3201
	1 ng/ml	0.3130	0.0038	0.4374	0.8798
IL-2	10 ng/ml	0.6223	0.0857	0.7209	0.6942
	100 ng/ml	0.9471	0.5259	0.7923	0.1838
	20 IU/ml	0.0000	0.0037	0.0000	0.0004
IFN-β	100 IU/ml	0.0006	0.0021	0.0001	0.0010
	500 IU/ml	0.0003	0.0025	0.0030	0.0002
	20 IU/ml	0.0013	0.0046	0.0000	0.0000
IFN-γ	100 IU/ml	0.0001	0.0007	0.0002	0.0040
	500 IU/ml	0.0029	0.0129	0.0000	0.0010

IL-6, interleukin-6; MIP-1 α , macrophage inflammatory protein-1 α ; SDF-1 α , stromal cellderived factor-1 α ; IL-1 β , interleukin-1 β ; IL-8, interleukin-8; IGF-1, insulin-like growth factor 1; TGF- β , transforming growth factor- β ; OSM, oncostatin-M; LIF, leukemia inhibitory factor; IL-10, interleukin-10; IL-2, interleukin-2; IFN- β , interferon- β ; IFN- γ , interferon- γ .

Supplemental Table 7. Significantly enriched pathways in CD38 high sorted cells in genome-scale CRISPR-Cas9 knockout screening

KEGG Pathway	Number of	p-value
	related	
	genes	
Jak-STAT signaling pathway	7	4.80E-03
Signaling pathways regulating pluripotency of stem cells	6	1.80E-02
Pancreatic cancer	4	3.40E-02

Supplemental Table 8. GO analysis in CD38 high sorted cells in genome-scale CRISPR-Cas9 knockout screening

GO term	Number of	p-value
	related	
	genes	
positive regulation of gene expression	10	5.60E-04
long-chain fatty acid metabolic process	4	8.10E-04
cholesterol metabolic process	5	3.10E-03
negative regulation of transcription from RNA	15	4.90E-03
polymerase II promoter		
cellular lipid metabolic process	4	5.70E-03
vitamin K catabolic process	2	1.80E-02
menaquinone catabolic process	2	1.80E-02
cholesterol homeostasis	4	1.90E-02
somatic stem cell population maintenance	4	2.00E-02
regulation of cell cycle	5	2.50E-02
phylloquinone catabolic process	2	2.60E-02
liver development	4	2.80E-02
cytokine-mediated signaling pathway	5	2.90E-02
transcription, DNA-templated	26	3.80E-02
positive regulation of tyrosine phosphorylation of Stat3	3	4.50E-02
protein		

GO, gene ontology.