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Fig. S1. Generation and characterization of AEx51 mice.

(A and B) Genotyping strategy for AEx51 mice. Complementary sequences of the
sgRNAs used to remove exon 51 are labelled in red. Primers Gen-Del51-F (yellow)
and Gen-R (green) detected the AEx51 band in the AEx51 but not in the WT mice.
Primers Gen-WT-F (blue) and Gen-R (green) detected the WT band in the WT but
not in the AEx51 mice. (C) Sequencing of the AEx51 band confirmed the deletion
of exon 51 and the formation of a new junction between intron 50 and intron 51.

(D) Sequencing of RT-PCR products from muscles of AEx51 mice confirmed



deletion of exon 51 at RNA level, resulting in the inclusion of 32 novel amino acids
prior to the stop codon. (E) Western blot analysis showing loss of dystrophin
expression in the diaphragm and heart of AEx51 mice. Vinculin is the loading
control (n = 3). (F) Dystrophin staining of the diaphragm and heart of WT and
AEx51 mice. Dystrophin is shown in green. Nuclei are marked by DAPI stain in
blue. Scale bar, 100 um. (G) H&E staining of the diaphragm and heart of WT and
AEx51 mice. Scale bar, 100 um. (H) H&E images of TA muscle of WT and AEx51
mice. White arrow indicates fibrotic tissue, yellow arrow indicates degenerating
myofiber, black arrow indicates myofiber central nucleation. Scale bar, 100 um. (/)
Quantification of area of fibrotic tissue in whole sections of TA muscles of WT and
AEx51 mice (n = 3). Data are represented as mean + SEM. Unpaired Student’s t
test was performed, *P < 0.05. (J) Percentage of muscle fibers with centralized
nuclei in TA muscles of WT and AEx51 mice (n = 3) (1,413 average muscle fibers
per muscle). Data are represented as mean + SEM. Unpaired Student’s t test was
performed, **P < 0.01. (K) Size distribution of muscle fibers of TA muscles of WT
and AEx51 mice. Size was calculated as minimal Feret’s diameter. Muscle fibers
were grouped in size classes of 10 um and the number of fibers in each class was
plotted (n = 3) (250 muscle fibers per muscle for a total of 750 muscle fibers per
condition). (L) Forelimb grip strength analysis of WT and AEx51 mice (n = 6). Data
are represented as mean + SEM. Unpaired Student’s t test was performed, **P <
0.01. (M) Serum creatine kinase (CK), a marker of muscle damage and membrane
leakage, was measured in WT and AEx51 mice (n = 6). Data are represented as
mean = SEM. Unpaired Student’s t test was performed, ****P < 0.001. (N)
Percentage of ejection fraction of hearts of WT and AEx51 mice (n = 3). Data are
represented as mean + SEM. Unpaired Student’s t test was performed, and no
significant difference was observed (n.s.). (O) Percentage of fractional shortening
of hearts of WT and AEx51 mice (n = 3). Data are represented as mean + SEM.
Unpaired Student’s t test was performed, and no significant difference was

observed (n.s.).
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Fig. S2. Comparison of transcriptional changes of muscles of AEx51 and
mdx/mTR mice.

(A) Principal component (PC) analysis of RNA sequencing data of WT and AEx51
TA muscles (n = 3). (B) Volcano plot showing fold changes in expression and p-
values of genes of WT and AEx51 TA muscles. The Dmd transcript is the most
significantly down-regulated. (C) Principal component (PC) analysis of RNA
sequencing data of TA muscles of 1-month old WT and AEx51 mice and of 4-
months old WT and mdx/mTR mice. (D) Logarithmic fold change (LogFC) of DE
genes comparing transcriptome of 1-month old WT and AEx51 muscles or 4-
months old WT and mdx/mTR muscles. DE genes are grouped according to their

significant deregulation in the two analyses.
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Fig. S3. snRNA-seq analysis of WT and AEx51 TA muscles.
(A) Preparations of nuclei before and after Fluorescence-activated Cell Sorting

(FACS). Nuclei stained with Hoechst dye are shown in blue. Nuclei isolated from

myofibrillar debris were used for snRNA-seq. (B) Mapping statistics of the

sequencing results from each sample. (C) Violin plots showing the number of UMI

counts (nUMI) and detected genes (nGenes) in each sample.
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Fig. S4. Transcriptomic characterization of nuclear populations of WT and

AEx51 TA muscles.

(A) Heatmap showing relative expression levels of the top 5 marker genes for each

cluster of nuclei. (B) UMAPs depicting the expression of the marker genes of each

cluster of nuclei. (C) Violin plots showing the expression of genes highly expressed

in the Cluster lIx_b. (D) Three-dimensional UMAP representation of the skeletal

muscle snRNA-seq data.
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in gene expression and GO term analysis in AEx51

myonuclei compared to WT myonuclei.

(A) Volcano plots showing fold changes in gene expression and p-values of genes
of lla, lIx, and lIlb myonuclei of WT and AEx51 TA muscles. (B) Selected top GO
terms enriched in down-regulated genes from the different clusters of AEx51

myonuclei.
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Fig. S6. ldentification of specific markers and analysis of gene expression
dynamics of WT versus AEx51 populations of nuclei involved in regeneration
of muscle.

(A) Violin plots showing the differential expression of the top up- and down-
regulated genes in WT and AEx51 MuSC cluster. (B) Violin plots showing the
differential expression of the top up- and down-regulated genes in WT and AEx51
Myob cluster. (C) Pseudo-time ordering of all the nuclei of clusters MuSC, Myob,
and RegMyon. Each dot represents one nucleus (color coded by cell states (top)
or sample origin (bottom)) and each branch represents one cell state. Activation of
the MuSC cluster can lead to Myob fate A or to RegMyon fate B, according to
Figure 4C. (D) Selected top GO terms enriched in genes up-regulated in the nuclei
of Myob fate A (top), or Myob fate B (bottom). (E) Pie-chart showing the

8



percentages of the RegMyon marker genes with MyoD binding sites associated,
Jdp2 motifs in the promoter regions, or both. MyoD binding sites were identified
from MyoD ChIP-seq in C2C12 cells. Jdp2 motifs were analyzed using iRegulon.

Dataset S1 (separate file). Differentially expressed genes in AEx51 skeletal
muscle bulk RNA-seq.

Dataset S2 (separate file). Gene ontology analysis of differentially expressed
genes in AEx51 skeletal muscle bulk RNA-seq.

Dataset S3 (separate file). Marker genes of nuclear clusters of skeletal muscle.

Dataset S4 (separate file). Differentially expressed genes in AEx51 muscle in
different types of myonuclei and in different states of Myob.

Dataset S5 (separate file). Gene ontology analysis of differentially expressed
genes in AEx51 muscle in different types of myonuclei and in different states of
Myob.

Dataset S6 (separate file). iRegulon analysis of marker genes of Cluster of
RegMyon.



