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Supplementary Information Text 
 
Supplementary Methods 
 
Preparation.  
 
Animals were immobilized under cold anesthesia (0.5°C) for 60s and positioned for tethering on a 
custom-made preparation block. The flies were then glued dorsally to a tungsten rod by means of 
dental cement (Coltene Whaledent Synergy D6 Flow A3.5/B3) and cured with blue light (Radii 
Plus, Henry Schein Dental). To avoid movement artefacts due to wing movements of the fly, its 
wings were folded up and glued to the tungsten rod with dental cement. The head was 
immobilized by gluing it to the thorax with dental cement. After tethering, the animals were 
provided with water and allowed to rest for about 30 min before further preparation and testing. 
To access the brain for recordings, a small rectangular-shaped portion of the cuticle around the 
ocelli was cut out with a 0.3mmx13mm syringe (BD Microlance) and the edges of the rectangle 
were surrounded by dental cement in order to form a walled pod around the open brain section. 
The pod was filled with oxygenated extracellular solution (in mM): 103 NaCl, 10.5 trehalose, 10 
glucose, 26 NaHCO3, 5 C6H15NO6S, 5 MgCl2 (hexa-hydrate), 2 sucrose, 3 KCl, 1.5 CaCl 
(dihydrate), and 1 NaH2PO4, which was regularly renewed during the experiment in order to 
ensure sufficient oxygenation of the fly brain. To facilitate access to the brain and dissolve non-
neuronal tissue, 0.5% collagenase/extracellular solution was applied directly in the fly head and 
flushed out with pure extracellular solution after 20s. 
 
Electrophysiological Analysis. 
  
Using MATLAB 2019, all local field potential (LFP) data were first downsampled to 1000Hz.  To 
analyze the LFP data in the time-frequency domain we applied a Morlet wavelet transformation 
using a custom written MATLAB script and the Fieldtrip toolbox (1). We used a 0.01Hz spectral 
resolution and a 30ms time window sliding every 5ms in the open-loop experiments, and a 
0.01Hz spectral resolution and a 20ms time window sliding every 7ms in the closed-loop 
experiments. To average the closed-loop data, we first extracted the average LFP power for both 
input frequencies (5.9Hz±0.2Hz and 6.6Hz±0.2Hz), when either the small bar or the larger bar 
was in the frontal visual field (FVF), or in the periphery, for each condition. For this purpose, we 
binned all LFP data according to positions of the stimuli on our 6 LED panels (60° wide each) and 
averaged all instances when a bar was on a specific panel. For all experiments, we defined the 
first 5s prior to stimulus presentation in open loop and closed loop as baseline. For baseline 
normalization we used the time domain averaged Morlet wavelet coefficient amplitude for each 
extracted frequency domain during baseline. We then divided the Morlet wavelet coefficient 
amplitude during stimulation for both input frequencies separately by the baseline average. We 
first normalized data from each animal, then averaged all trials corresponding to every condition 
for each animal, before averaging across animals. In some cases, we normalized the data 
between [0 1] in order to compare differences in range between conditions.  

For the analysis of LFP power after visual perturbations, we extracted all instances of 
perturbations and partitioned the data for when the small or the large bar were in the FVF. We 
used epochs of 500ms pre-perturbation (baseline) and 2s post-perturbation, and subsequently 
ran a time-frequency analysis for each epoch. We subtracted the averaged LPF power during 
baseline from the post-perturbation LFP power, averaged this for each animal, and then averaged 
across animals. Finally, we z-scored the spectrogram data and plotted the significant changes 
from baseline, which was set to 0. We performed the analysis for the stimulation frequencies as 
well as 10-20Hz, 20-30Hz, 30-40Hz, 40-50Hz, and 50-100Hz.  

Signal to noise ratio (SNR) of the frequency tags as well as z-scores were analyzed with 
Letswave6 (http://nocions.webnode.com/letswave) running on Matlab2016b.  All LFP data were 
downsampled to 1000Hz, band-pass filtered between 0.1Hz-100Hz using a 4th order butterworth 
filter. For the open-loop experiments, every trial was segmented into 16s segments (20s 
stimulation, minus 2s after the start and 2s before the end of stimulation). We averaged these 
trials for each condition in the time domain separately for each animal. We then applied a fast 
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Fourier transformation to the averaged segments to reveal the tagged frequencies and 
harmonics. The SNR was calculated to exclude variable noise effects across animals and trials. 
The SNR was the ratio between the amplitude at the fundamental input frequencies of 5.9Hz and 
6.7Hz and their surrounding frequency bins (20 bins, 10 on each side, excluding the immediately 
adjacent bin). Finally, we z-scored the data using the z-score function of Letswave6 to detect 
significances in frequency tags. For the analysis of endogenous oscillations we first applied a 
single frequency filter (for both input frequencies 5.9Hz and 6.6Hz and up to their 4th harmonic) 
with a range of ±0.1Hz around the peak frequencies using the iirnotch.m function of the MATLAB 
signal processing toolbox, to exclude the influence of our stimulation frequencies. We further 
removed line noise around 50Hz with the same function. Subsequently, we calculated the data in 
the time-frequency domain using Morlet Wavelet Transformation as described above for 10-20Hz, 
20-30Hz, 30-40Hz, 40-50Hz and 50-100Hz, averaged the data over the period of visual 
stimulation, and performed a baseline subtraction of the average of the 5 s baselines for each 
trial. We averaged the power of each trial for each animal and then averaged the mean power 
across all animals.  

The envelope-to-signal correlation (ESC) determines the correlation between the amplitude  
envelope of a filtered high frequency signal (in our case 20-30Hz and 30-40Hz) and the phase of 
the filtered low frequency signal (in our case our frequency tags 5.9Hz and 6.6Hz)(3) 
(Supplementary Figure 7). ESCs were performed using the MATLAB Toolbox Phase Amplitude 
Coupling Toolbox (4) for MATLAB. For this purpose, we first filtered the data for the 
corresponding frequency domains that are supposed to show the amplitude modulation (e.g 0.2-
100Hz, Supplementary Figure 8; 20-50 Hz Figure 6) and the frequency domains that contained 
the stimulation frequencies (4-10Hz). We used the find_pac_shf.m function to calculate the ESC. 
This function compares the two signals by using the envelope amplitudes of the higher frequency 
bins and the phase of the lower frequency bins (phase calculated by using a Hilbert 
transformation for the frequency bins of the filtered data). To test for significance, the data were 
shuffled 200 times and, by applying a Pearson’s correlation, significant positive correlations were 
extracted and plotted in a co-modulation map (Supplementary Figure 7, upper panels). ESCs 
were first calculated for every condition and then averaged to plot baseline vs stimulation activity. 
To compare ESC values between baseline and visual stimulation we extracted ESC values for 
the frequency bands for 20-30Hz and 30-50Hz and compared these between the conditions.  
For open-loop conditions, phase locking values were calculated by extracting data phase locked 
to the stimulus onset (start of visual stimulation) and using 5s post-stimulus onset. 5s pre-
stimulus onset was used for baseline conditions. Phase locking value (PLV) was calculated by 
applying a Hilbert transformation on the filtered data (5.9Hz±0.2Hz, 6.6±0.2Hz, 20-30Hz) and 
then applying the PLV.m function of the Phase-Locking-Value (5) toolbox for MATLAB (Eden M. 
Gerber (2020). PLV - phase locking value 
(https://www.mathworks.com/matlabcentral/fileexchange/71739-plv-phase-locking-value), 
MATLAB Central File Exchange. Retrieved January 8, 2020.). Baseline subtracted PLV values for 
each animal where bootstrapped using the MATLAB function bootstrap.m to create 1000 means 
and 95% confidence intervals (CI) were calculated using the function bootci.m. For closed-loop 
conditions, PLV was calculated on data extracted from successful fixations following a 
perturbation of the small and the large bar (stimulus was returned into FVF in less than 10s). We 
used epochs of 2s post-perturbation. 500ms pre-perturbation onset was used as baseline. 
Statistics was performed as for the open-loop condition. 
 
Generation of simulated data for ESC analysis. 
 
In order to test whether the significant increase in ESC and the PLV that we observed during 
dNPF circuit activation could be simply due to an increase in LFP amplitude for one of the 
frequency tags, we generated artificial data (Supplementary Figure 12) in which we kept the 
phase of our signals constant while manipulating the amplitude of select oscillations. For this 
purpose, we generated signals comprising both our stimulation frequencies (5.9Hz and 6.6 Hz) as 
well as two endogenous frequency domains (25-28Hz and 35-38Hz) and added Gaussian white 
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noise (WN) with a standard deviation of 2. For baseline conditions we used the same amplitudes 
for all frequencies. To simulate our data we used following equation: 

 𝑠𝑖𝑔𝐵𝐿 = ∑ sin(2𝜋 ∗ 𝑘𝑡)!"#$
%"#& +∑ sin(2𝜋 ∗ 𝑘𝑡) + sin	(2𝜋 ∗ 5.9𝑡!"'$

%"'& ) +
sin(2𝜋 ∗ 6.6𝑡) + 2 ∗ 𝑊𝑁	 

In this equation, t is the time of our simulation, which was 10s at a sampling rate of 1000Hz. And 
WN is Gaussian white noise (Matlab command: WN=sigBL+randn(size(t))) added to the signal. 
We created a signal of 20s length where the first 10s described baseline (BL) and the next 10s 
post stimulus (stimulus onset was at 10s).  

Signals generated post stimulus onset had different standard deviations in order to reproduce the 
differences in amplitudes observed in our data (See Supplementary Figure 12). We applied a fast 
Fourier Transformation on the simulated data, to confirm our frequency components. We then ran 
a ESC analysis as described above for our collected data to identify any significant correlations 
between our endogenous frequencies post stimulation and the stimulation frequencies. 
Simulation results were plotted the same way as for real data. 

 
Frequency sweep   
 
Canton-S fruit flies (3-10 days post-eclosion; 18 total) were put under cold anesthesia and 
tethered as described above. A sharpened fine tungsten wire (0.01-inch diameter, A-M Systems) 
acted as the reference electrode and was placed superficially into the thorax. Linear silicon 
probes with 16 electrode sites (Neuronexus Technologies) were inserted laterally into the eye of 
the fly and perpendicularly to the eye’s curvature. Insertion was performed with the aid of a 
micromanipulator (Merzhauser), with the electrode recording sites facing posteriorly. For all 
experiments, probes had an electrode site separation of 25μm. This probe (375µm length) 
covered approximately half of the fly brain. Recordings were made using a multichannel data 
acquisition system with a sampling rate of 25kHz (Tucker-Davis Technologies). The probe was 
fully inserted until all electrode sites were in the fly head, which was confirmed by a significant 
reduction in 50Hz noise. This half-brain multichannel preparation has been described previously 
(8).The flickering stimuli were presented 5 times for each of the 10 flicker frequencies. The 
stimulus was active for 20s and the inter-trial interval was 2s. The stimulus order was randomly 
generated with MATLAB (MathWorks). As it has been demonstrated previously that ipsilateral 
stimuli produce the strongest lateral response in Drosophila, we decided to present the stimuli 
only on the ipsilateral LED panel. Data were downsampled to 1000Hz and high-pass filtered at 
0.5Hz and low pass filtered at 200Hz using a Butterworth filter that caused zero phase distortion 
(filtfilt function, MATLAB). Line noise was reduced at 50Hz with the rmlinesmovingwinc.m function 
in the Chronux toolbox (9), using a window of 2s duration, and a step size of 1s. The data were 
bipolar referenced to create 15 functional channels. A multi-tapered Fourier transform was 
performed using the mtspectrumc.m Chronux function. Once in the frequency domain, data were 
baseline corrected by subtracting a 20s pre-stimulus period. For data analysis, we used central 
channels (channels 5-1), and the medians were taken over the channel and fly. The data were 
then imported into R (version 3.5.3) for statistical analysis. The R packages used included: lme4, 
influence.ME, nlme, ggplot2 (ggplot2 - Elegant Graphics for Data Analysis | Hadley Wickham | 
Springer), and their dependencies. Normality was tested by visually inspecting residuals and Q-
Q-plots using the lmer function (lme4 R package). No skew or heteroscedasticity of variance was 
detected (11). Values that might skew a statistical analysis were detected using the influence.ME 
package (cooks.distance function) and variables higher than 4 times the mean cook’s distance 
were replaced with the median (12) (total of 42 of 900 values). A linear mixed-effects model 
testing the sole influence of the frequency on the LFP power (LFP power ~ Stimulus Frequency + 
(1|Fly)) was then conducted using the restricted maximum likelihood method (REML) with the 
intercept set to 7.7Hz (nlme package)  and 95% confidence intervals fit with the intervals function 
(Supplementary Figure 3A).  
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Fig. S1. mVenus-guided LFP recordings.  

A) Fly placed on an air-supported ball, tethered to a tungsten rod. B) A close-up of the prepared 
fly head (left) and a schema of the recording preparation (right). Removal of the cuticle from the 
top of fly’s head provides access to the central complex. ES=extracellular solution. C) Reference 
electrode and ground electrode were placed in the ES pod on the top of the fly head. D) Electrode 
insertion (left) guided by green-tagged fan-shaped body in dNPF-Gal4/ UAS-
CsChrimson::mVenus flies. Red fluorescent protein (RFP) visible in the electrode was also used 
for guidance (middle). After recording (right) the electrode recording site is visible based on RFP 
released in proximity of the green fan-shaped body (box, arrow). Scale bar= 0.5mm. 
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Fig. S2. Behavioral choices separated by stimulus brightness. 

Stimulus choice averaged for all trials and experimental animals separated by stimulus 
brightness. (F(DFn,dFd)=4.852(3,20), p=0.0.107). One-way ANOVA with Tukey’s multiple 
comparisons test, alpha=0.05. N=6, n=40. *p<0.05, n.s.=not significant. 
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Fig. S3. Flicker frequency preferences and neural gain in LFP recordings.  

A) Mean local field potential (LFP) power (dB) for 10 different flicker frequencies (see Methods). 
Canton S female flies, N=18; blue shading shows range evoking strongest neural response to 
visual flicker. Data shows estimated means with 95% confidence intervals. (Asterisk shown above 
7.7Hz with a power value of 7.04 with a confidence interval 5.31- 9.11; the bounds do not overlap 
the confidence intervals of other frequencies). Arrows indicate flicker frequencies F1 and F2 
chosen in this study.  B) Average proportioned choice (%) for 12 different flicker frequencies in a 
multiple-choice paradigm (10). Female Canton S flies, N=24, Wilcoxon rank-sum test, α=0.05, 
compared to 8.333% (random choice, red dotted line), error bars=SEMs. Blue=neutral visual 
flicker that do not evoke strong attraction or aversion. C) Table with all presented frequencies, 
each corresponding to one side of a geometric maze (D). Order of frequency combinations was 
defined by virtual path along edges of the virtual maze (E), green line, see Methods). *p<0.05, 
n.s.=not significant. 
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Fig. S4. LFP gain to different stimulus flicker frequencies and brightness depending on object 
position within LED arena. 

A) Normalized local field potential (LFP) power for both stimulus frequencies in closed loop when 
stimulus was in the frontal visual field (FVF, yellow triangle) (left) and in every other position in the 
arena except the FVF (right). Data were analyzed by paired t-test on averaged LFP power for 
corresponding stimulus positions of each animal. Data points represent individual instances of 
averaged LFP power for the corresponding stimulus within the highlighted positions in the LED 
arena. B) LFP power normalized to the maximum LFP power of each brightness for the large bar. 
Statistical comparisons are between the mean normalized LFP power of the FVF to the rest of the 
arena for each contrast separately using a Kruskal-Wallis test.  For both panels: N=6, error 
bars=SEM, dNPF-Gal4; UAS-CSChrimson(x)::mVenus flies, ATR-, *p<0.05 **p<0.01, p***<0.001, 
n.s.=not significant. 
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Fig. S5. Flies do not display walking direction preferences in the open-loop paradigm.  

A) Flies were presented with 14 different conditions of paired visual stimuli. Stimuli differed in 
size, brightness, arena position, and flicker frequency. B) Mean walking speed during dNPF 
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activation. Each data point represents the average speed for all animals for a particular condition 
seen in (competing stimuli in A). Red represents conditions where red LEDs were turned on. 
dNPF activation represents animals fed with ATR and exposed to red light. ATR- represents 
control flies that have not been fed with ATR (see Methods). One-way ANOVA 
(F(DFn,dFd)=6.857(3,210), p=0.0002). C) Walking direction of the fly, extracted from turning 
direction of the ball. Arena schemas represent the two configurations for the stimulus position, 
narrow (configuration 1) and wide (configuration2). Data is shown for control (-ATR) and 
stimulation conditions (+ATR, with and without red light activation). Symbols on the left and right 
represent the stimulus pair for each condition in each configuration. Positive values represent a 
walking direction to the right side (the stimulus displayed on the right side) and negative values 
represent a walking direction to the left side (the stimulus displayed on the left side). Red data 
points show trials with red LEDs turned on, grey data points show trials with no red light. ANOVA 
Statistics for panels: Controls: Configuration 1 (F(DFn,dFd)=0.6642(12,119), p=0.78), 
configuration 2 (F(DFn,dFd)=1.024(12,126), p=0.43); ATR+ red LED OFF:  Configuration 1 
(F(DFn,dFd)=1.27(11,29), p=0.28), configuration 2 (F(DFn,dFd)=0.65(12,40), p=0.78), ATR+ red 
LED ON: Configuration 1 (F(DFn,dFd)=0.48(10,40), p=0.889), Configuration 2 
(F(DFn,dFd)=0.29(12,39), p=0.98). D) Mean walking speed for all conditions, averaged across 
flies pooled for large vs large, small vs small and small vs large conditions for both configurations 
(F(DFn,dFd)=1.948(5,161),p=0.089). All data were compared with one-way ANOVA and a 
Tukey’s multiple comparisons test, alpha=0.05. N=13 for controls (-ATR) and N=10 for ATR+. All 
data shows mean with SEM. n.s.=not significant, *p<0.05, ***p<0.001. 
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Fig. S6. dNPF circuit activation increases the gain for frequency tags associated with both visual 
objects.  

Mean normalized LFP power for large bar (left) and small bar (right) for 2 controls (ATR-, no red 
LED light and ATR-, red LED light, N=6) and dNPF activation (ATR+, red LED light, N=7). Small 
object (right): ANOVA p=0.0012, F(DFn,dFd)=6.157(2,16); large object (left): ANOVA p=0.0267, 
F(DFn,dFd)=3.017(2,16), Tukey’s multiple comparison test, α=0.05,  error bars=SEM, n.s.=not 
significant, *p<0.05, ***p<0.001. 
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Fig. S7. Schemas showing analyses of phase amplitude coupling and phase locking.  

Raw LFP data is first downsampled to 1000Hz and filtered for endogenous oscillation bands 
(blue, 20-30Hz in this example) and evoked oscillation frequency bands (green, stimulus 1 and 
stimulus 2, see Supplementary Methods). Envelope-to-signal correlation (ESC) (upper panels) is 
then calculated separately between the envelope amplitude of the endogenous oscillation bands 
(fast oscillation) and the phase of the slower, evoked oscillations. The phase (Φ) of the slower 
oscillations is calculated using a Hilbert transformation. The envelope signal and the phase 
values are then tested for significant correlations using the Pearson’s correlation. Data that 
passes a threshold of p<0.05 is then plotted in a comodulation map. The phase locking value 
(PLV) (lower panels) is calculated by first applying a Hilbert transformation on each of the filtered 
data to define the instantaneous phase of the signal, and then calculating the difference between 
these phases over time. PLV covers a range between 0 (zero phase synchrony, or random) and 
1, representing identical signals (constant). 
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Fig. S8. Analysis of phase amplitude coupling.  

Mean envelope to signal correlation (ESC) reveals a correlation between 20-50Hz and 4-10Hz 
during dNPF-circuit activation in open loop. Graphs show comodulation maps plotting ESC values 
with a Pearson’s correlation above p<0.05. Control: ATR-, red LED light, N=6 dNPF 
activation=ATR+, no red LED light, N=7. 
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Fig. S9. Broad spectral responses (10-100Hz) following a perturbation of the small bar. 

Top: Flies returning the small bar to the frontal visual field (FVF) activates dNPF circuit in closed-
loop experiments. Bottom: colored spectrograms on the left show mean local field potential (LFP) 
power over time for all perturbations of a small bar for controls (ATR-, red LED light, left, N=6) 
and dNPF-circuit activation (ATR+, red LED light, right, N=9). Black and white spectrograms on 
the right show significant changes (p<0.05) of baseline corrected LFP power between baseline 
and post perturbation LFP power (z-scored data). Except for the 20-30Hz frequency domain (also 
shown in Figure 6E) there was no area of broad change of significant difference in LFP power for 
any frequency band between pre-perturbation baseline and post perturbation LFP activity 
between controls and dNPF activation. 
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Fig. S10. Endogenous 20-30Hz responses following a perturbation of the large bar.  

Top: Flies return the large bar to the frontal visual field (FVF) in closed loop, without activating 
dNPF circuits. Bottom left: Spectrogram showing mean LFP power after perturbation (red) 
normalized to local field potential (LFP) power 250ms pre perturbation. Bottom right: Statistically 
different values (p<0.05) from spectrogram plot on the left (z-scored data). ATR+, no red LED 
light, N=9. 
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Fig. S11. Return of the small bar without dNPF-circuit activation does not result in increased 
phase locking between 20-30Hz and frequency tags associated with the small bar.  

A) Control condition (ATR-, red LED light) for fixation behavior after perturbation for the small 
visual object. B) Left: Spectrogram showing mean LFP power over time for endogenous 20-30Hz 
frequency band. Right=spectrogram showing p-values significantly different (p<0.05) from pre 
perturbation baseline (z-scored data). (ATR-, red LED light, N=6). C)  Left: Spectrogram showing 
mean LFP power over time for evoked frequencies during visual stimulation by small visual 
object. Right: Spectrogram showing p-values significantly different (p<0.05) from pre perturbation 
baseline (z-scored data). Note that this spectrogram shows a significant decrease in power 
between stimulus frequencies. (ATR-, red LED light, N=6). D) Mean PLV of evoked frequencies 
of visual objects and endogenous 20-30Hz oscillations. Baseline PLV values were subtracted 
from values during visual stimulation. (ATR-, red LED light, N=6 n=21 (bootstrapped data, mean 
with 95% confidence intervals, p=0.8, effect size=0.07). 
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Fig. S12. Simulation demonstrating that an increase in LFP amplitude alone does not promote 
increased correlation among simulated endogenous and evoked oscillations. 

Data shows simulated local field potential (LFP) traces, generated by addition of sinusoidal 
signals of 5.9Hz, 6.6Hz, 25-28Hz and 35-38Hz as well as Gaussian white noise with a standard 
deviation of 2. Baseline data (pre stimulus onset) contained the same magnitude for all oscillation 
components. Post stimulus data varied in standard deviation (SD) from the other signals. Fast 
Fourier transformations of generated data revealed peak amplitudes at input oscillations 
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(Frequency spectra). For all simulations, envelope to signal correlation (ESC) analysis showed no 
significant correlations between amplitudes of endogenous frequencies (signal1) and the phase 
of the frequency tags (signal2), when phase was kept constant throughout the generated signals. 
A) Left: The amplitude of the two stimulation frequencies (frequency tags) was increased by 6 SD 
for 5.9Hz and 3 SD for 6.6Hz.  Right: The amplitude of the two stimulation frequencies was 
increased by 3 SD for 5.9Hz and 6 SD for 6.6Hz. In both instances an increase in LFP amplitude 
did not alter the ESC between the phases of the stimulation frequencies (signal 2) and the 
amplitude of the endogenous frequencies (signal 1). B) We simulated an increase in the 35-38Hz 
frequency domain, which was observed during visual stimulation. For this purpose, additionally to 
an increase in stimulation frequencies as in A) we also increased 35-38Hz by 2 SD compared to 
baseline. No significant correlation was found between endogenous frequencies and the phase of 
stimulus frequencies. C) Last, we simulated an increase in the 35-40Hz and 25-28Hz frequency 
domains, in addition to our stimulation frequencies. Additional to the 2 SD increase in amplitude 
of the 35-38Hz oscillation compared to baseline we increased the 25-38Hz component by 2.5 SD. 
Again, we found no significant correlation between our endogenous frequencies and the phase of 
our stimulation frequencies.   
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