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1 Rate network

1.1 The network model

We consider a network of N randomly connected rate units, each of which make an average of K connections
with other units. Unless otherwise noted, for all rate network simulations, N = 40,000 and K = 200. In
analytical calculations, we take N →∞ and K →∞ while K/N → 0. In all but Figure 7, units are governed
by the following dynamics

τ
dri
dt

= −ri + φ (hi) , hi =
∑
j 6=i

Jijrj (1)

where τ is the time constant of the rate dynamics, and hi is the total synaptic input to neuron i. Synaptic
input is transformed through a sigmoidal neural transfer function

φ(x) =
rmax

2

(
1 + erf

(
x− θ
σ
√

2

))
(2)

where rmax is the maximal firing rate, θ is the input at which the firing rate is rmax/2, and σ controls the
gain of the transfer function. In particular, for σ → 0 the transfer function becomes the Heaviside function,
φ(x) = 1 for x > θ, and zero otherwise.

1.2 Learning rule

The temporally asymmetric Hebbian learning rule produces the following connectivity matrix Jij :

Jij = A
cij
K

S∑
s=1

P−1∑
µ=1

f(ξs,µ+1
i )g(ξs,µj ) (3)

where A is a learning rate, cijs are i.i.d. Bernoulli random variables (cij = 1 with probability c and 0
otherwise) and K = Nc represents the average in-degree of a neuron. This connectivity matrix stores S
sequences of P patterns {ξs,µi }, where ξs,µi can be thought as the input to neuron i (i = 1, . . . , N) in pattern
µ (µ = 1, . . . , P ) of sequence s (s = 1, . . . , S), using a temporally asymmetric Hebbian rule. With such a rule,
synapses are modified for each pair of successive patterns in the sequence by an amount f(ξs,µ+1

i )g(ξs,µj ),
where the function f describes the dependence of the learning rule on input to the post-synaptic neuron,
and g describes the dependence on input to the pre-synaptic neuron. The patterns are identically and

independently distributed (i.i.d.) as ξs,µi
iid∼ N (0, 1).

In the first part of the paper (Figures 1-3 and Supplementary Figures 1-6,10-11) we use a bilinear rule,
f(x) = g(x) = x. In Figure 4-7 and Supplementary Figures 7-9,12 we use a non-linear learning rule, with

f(x) =

{
qf if x > xf

qf − 1 if x ≤ xf
(4)

g(x) =

{
qg if x > xg

qg − 1 if x ≤ xg
(5)

The variable xf (xg) defines the threshold separating potentiation and depression when post (pre) synap-
tic firing rates are varied, while qf (qg) controls the strength of plasticity at high post (pre) firing rate. In
order to keep the average sum over incoming connection strengths zero, we set qg = Fz(xf ), where Fz is the
cumulative distribution function of a standard Gaussian [1].
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1.3 Sequences in continuous time

The network defined above can also learn and retrieve sequences in continuous time. We simulated a
network storing sequences ηsi (t) defined as realizations of Ornstein-Uhlenbeck (OU) processes, with zero
mean, standard deviation σOU and correlation time constant τOU , using the connectivity matrix

Jij = A
cij
K

S∑
s=1

∫ T−∆t

t=0

f(ηsi (t+ ∆t))g(ηsj (t)) (6)

Note that Eq. 6 will produce connectivity with the same statistics as in Eq. 3 when τOU � ∆t, σOU = 1,
T/∆t = P and the OU process is discretized with a timestep of ∆t.

In Figure 1 of the paper (left column), we use the continuous learning rule of Eq. 6 to store and retrieve
OU processes generated using a time constant of τOU = 4ms and standard deviation σOU = 1 with a
discretization of 1ms. We use a temporal offset ∆t = 10ms and neuronal time constant τ = 10ms.

2 Mean-field theory of sequential activity

2.1 Overlap with network activity

In this section we derive a mean field theory for a network where stored patterns are Gaussian and the
learning rule is bilinear, i.e. f(x) = x and g(y) = y. With this choice, the connectivity matrix is given by

Jij =
cij
Nc

S∑
s=1

P−1∑
µ=1

ξs,µ+1
i ξs,µj . (7)

where the learning rate A in Eq. (3) has been absorbed in the parameters of the transfer function (Eq. 2),
by rewriting σ∗ = σ

A and θ∗ = θ
A . The input current to neuron i at time t is given by a weighted sum of the

firing rates of all its pre-synaptic neurons:

hi(t) =
∑
j 6=i

Jijrj(t). (8)

We start by assuming that the number of sequences S is large, S � 1, and the number of patterns per
sequence is much smaller than the in-degree, P � cN . Assuming that the dynamics start from an initial
condition that is correlated with the first pattern of sequence s, i.e. ~ξs,1, the input current can be re-written
as

hi(t) =

P−1∑
µ=1

ξs,µ+1
i

1

Nc

N∑
j 6=i

cijξ
s,µ
j rj(t) + Yi(t) (9)

where Yi describes the ‘noise’ term,

Yi(t) =
1

Nc

S∑
l 6=s

P−1∑
µ=1

ξl,µ+1
i

N∑
j 6=i

cijξ
l,µ
j rj(t). (10)

In the large cN limit, due to the law of large numbers, and using the fact that P � cN , the first term
in Eq. (9) converges in probability to

P−1∑
µ=1

ξµ+1
i qsµ(t), (11)

where the qsµs are given by

qsµ(t) =
1

N

N∑
j=1

ξs,µj rj(t). (12)
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The overlaps {qsµ(t)}Pµ=1 are our first P order parameters. They describe how correlated the network state is

with the stored patterns ~ξs,1, ~ξs,2, · · · , ~ξs,P . We assume that the network state is uncorrelated with the rest
of stored patterns since qlµ(t) ∼ O(1/

√
N) for l 6= s. The ‘noise term’ Yi then has mean zero, and variance

Var (Yi(t)) = αM(t) (13)

where the sequential load is defined by

α ≡ S(P − 1)

Nc
(14)

while M , the mean of the squared firing rate, is an additional order parameter defined by

M(t) =
1

N

N∑
j=1

r2
j (t). (15)

In this theory we assume that the total number of stored patterns is much larger than the number of
patterns in a sequence, i.e. S � 1. We can now plug Eqs. (9-15) in Eq. (1) to yield

τ
dri
dt

= −ri + φ

(
P−1∑
µ=1

ξµ+1
i qµ(t) + Yi(t)

)
. (16)

Since all sequences are statistically equivalent, we have dropped the index s corresponding to the par-
ticular sequence of concatenated patterns. The variable Yi(t) corresponds to the interference produced by
stored patterns that do not belong to the sequence being retrieved (in this case, sequence s). By the cen-
tral limit theorem, the variables Yi are approximately i.i.d. Gaussian random variables across neurons, i.e.

Yi(t)
iid∼ N (0, αM(t)). Using equation (12) we get the following dynamical equations for the overlaps:

τ
dql
dt

= −ql +

∫
D~ξDyξlφ

(
P−1∑
µ=1

ξµ+1qµ(t) +
√
αM(t)y

)
(17)

where Dy = e−y
2/2/
√

2π and D~ξ =
∏P
i=2Dξi.

The dynamical equation for the first overlap (i.e. q1) simplifies to

τ
dq1

dt
= −q1. (18)

where we have used the fact that ξ1 does not appear in the argument of φ in the r.h.s. of Eq. (17).
To simplify the equations for the other overlaps, we define

R2
l (t) =

P−1∑
k 6=l

q2
k(t) + αM(t). (19)

Since the stored patterns are Gaussian, we write Eq. (17) as

τ
dql
dt

= −ql +

∫
DξlDxξlφ

(
ξlql−1(t) +Rl−1(t)x

)
l = 2, . . . , P (20)

where ξl and x are independent standard normal random variables. Using the change of coordinates

v =
ξlql−1 + xRl−1√
q2
l−1 +R2

l−1

u =
ξlRl−1 − xql−1√
q2
l−1 +R2

l−1
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where u and v are also uncorrelated standard normal random variables, equation (20) becomes

τ
dql
dt

= −ql + ql−1G

(
P−1∑
µ

q2
µ(t) + αM(t)

)
l = 2, . . . , P (21)

where

G(x) ≡
∫
Dvvφ (v

√
x)√

x
. (22)

Using the neural transfer function of Eq. (2), we can use integration by parts to simplify:

G(x) ≡ 1√
2π(σ2 + x)

exp

(
− θ2

2(σ2 + x)

)
. (23)

By defining the ‘delay line’ matrix as Lij = δi,j+1 we can also write equation (22) in vectorial form

τ
d~q

dt
= −~q +G

(
P−1∑
µ

q2
µ(t) + αM(t)

)
L~q. (24)

When S is of order 1, and P is of order Nc, the variance of the two terms in the r.h.s. of Eq. (9) are of the
same order, and in particular the variance of the first term no longer vanishes. In this scenario, we assume
that at any given time during retrieval of a sequence, the network state has a finite overlap with only a small
fraction of the patterns in the retrieved sequence. The ‘signal’ term in Eq. (9) then needs to include only
those patterns, while the noise term Yi(t) includes all the patterns that are far from the patterns that have
currently a finite overlap with the network state. All the resulting equations are therefore the same as the
ones derived above in the case S � 1. Note that when S is of order 1, and P � cN , the dynamics of Eq. 24
are driven mainly by the “signal” term, the “noise” term becomes negligible, and so incorrect assumptions
about the statistics of the noise have only minimal consequences for the dynamics of the overlaps.

2.2 Average squared firing rate

The system of equations describing the dynamics of the overlaps, Eq. (24), depends on M(t). The next step
is therefore to find a self-consistent mean-field equation for M :

M(t) =
1

N

N∑
i

r2
i (t). (25)

Taking the derivative with respect to time, we find

τ
dM

dt
= τ

2

N

N∑
i

ri(t)
dri(t)

dt
(26)

= −2M +
2

N

∑
i

ri(t)φ(hi(t)) (27)

= −2M + e−t/τ
2

N

[∑
i

ri(0)φ(hi(t)) +
∑
i

∫ t

0

du

τ
eu/τφ(hi(u))φ(hi(t))

]
(28)

where we have used the general solution of the ODE for ri:

ri(t) = e−t/τ
(
ri(0) +

∫ t

0

du

τ
eu/τφ [hi(u)]

)
. (29)
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Recalling Eqs. (9-12), the field hi(t) in the first sum in the r.h.s. of Eq. (28) can be described as a random
Gaussian variable, whose variance σ2

h(t) is the sum of the norm of the vector of overlaps, plus the noise term
due to interference with the other stored sequences,

σh(t)2 =

P−1∑
µ

q2
µ(t) + αM(t). (30)

In the large N limit, this sum can be replaced by an integral over the Gaussian distribution of hi(t).
We turn now to the other sum in the r.h.s. of Eq. (28). This sum can also be replaced in the large N
limit by an integral over the joint distribution of h(u) and h(t), which is a correlated bivariate Gaussian
distribution. Here we write h(u) and h(t) in terms of 3 uncorrelated Gaussian variables, where each are the
sum of an independent and shared variable. Specifically, we write hi(u) = σh(u)(a(u, t)x + b(u, t)z), and
hi(t) = σh(t)(a(t, u)y + b(t, u)z). It remains now to find the time-dependent parameters a and b in terms of
the original order parameters. By computing the variance and covariance of the fields using both the original
mean-field description and our Gaussian formulation, we can solve for a and b:

〈hi(t)2〉 =
P−1∑
k

q2
k(t) + αM(t) = σh(t)2(a2(u, t) + b2(u, t)) (31)

〈hi(t)hi(u)〉 =

P−1∑
k

qk(t)qk(u) + αC(t, u) = σh(u)σh(t)b2(u, t) (32)

where in Eqs. (31,32) we have used the fact that patterns {ξµi } are independent, and that x, y, and z are
independent and uncorrelated. We have also defined C(t, u) = 1

N

∑
i ri(u)ri(t). Solving Eqs. (31,32), we find

a(t, u) =
√

1− ρ(u, t) (33)

b(t, u) =
√
ρ(u, t) (34)

where we have defined

ρ(u, t) =

∑P−1
k qk(t)qk(u) + αC(t, u)

σh(u)σh(t)
.

Averaging over the statistics of x, y, and z we obtain:

τ
dM

dt
=− 2M + 2e−t/τ

∫
DξDzφ(ξ)φ(σh(t)z)

+ 2

∫ t

0

du

τ
e(u−t)/τ

∫
DxDyDzφ

(
σh(u)

√
1− ρ(u, t)x+ σh(u)

√
ρ(u, t)z

)
φ
(
σh(t)

√
1− ρ(t, u)y + σh(t)

√
ρ(t, u)z

)
. (35)

The time evolution of C(t, u) can be derived similarly as for Eq. (28),

τ
dC(t, u)

dt
=− C(t, u) + e−u/τ

∫
DξDzφ(ξ)φ(σh(t)z)

+

∫ u

0

dv

τ
e(v−u)/τ

∫
DxDyDzφ

(
σh(v)

√
1− ρ(v, t)x+ σh(v)

√
ρ(v, t)z

)
φ
(
σh(t)

√
1− ρ(t, v)y + σh(t)

√
ρ(t, v)z

)
. (36)

The dynamics of the average firing rate r̄(t) = 1
N

∑
i r(t) are given by:

τ
dr̄

dt
=

∫
Dzφ(σh(t)z) + e(−t/τ)

(
− r̄(0)−

∫ t

0

du

τ
e(u/τ)

∫
Dzφ(σh(u)z)

)
. (37)

In Supplementary Figure 4, solutions to equations (35-36) are plotted along with numerically computed
values from a full network simulation of size N = 50,000.
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2.3 Retrieval properties

To study the time-dependent properties of retrieval, we can analyze Eq. (21) for the case in which the gain is
constant: G = 1 + ε. With this approximation, it is straightforward to analytically derive several properties
of the recalled sequence, including retrieval speed and the scaling of overlap widths.

For l = 2, . . . , P , we have:

τ
dql
dt

= −ql + (1 + ε)ql−1

which leads by recursion to

ql(t) =
q1(t = 0)(1 + ε)l−1tl−1exp(−t/τ)

τ l−1(l − 1)!
(38)

From this equation, we can easily see that for ε > 0, sequences grow unbounded, while for ε < 0 sequences
decay. Furthermore, by computing the derivative of ql(t) with respect to time, we find that the overlaps ql
peak at t = τ(l − 1), which shows that the sequence progresses at a speed proportional to τ .

To determine the widths of the overlaps vs time curves, we compute the standard deviation of the
distribution given by ql(t)/

∫
ql(u)du. We find that the mean is equal to τ l, while the standard deviation

is τ
√
l. Thus, the width of the overlap vs time curves is proportional to the square root of the peak time.

This prediction agrees well with the empirically measured values for full network simulations (see Figure 2
of main article).

2.4 Sequence capacity

In the following sections, we will calculate the maximum number of sequences that a network can store and
successfully retrieve as a function of network parameters.

2.4.1 Conditions on transfer function for successful retrieval

In the previous section we found that recalled sequences with a constant gain above one grow unbounded,
while those with gain below one decay. To make the notion of retrieval more precise, we can define a sequence
of asymptotically long size as being successfully retrieved if the gain converges to a value larger or equal to
one during the sequence.

The shape of the gain function G in Eq. (23) dictates whether it can take values that are greater than
one, and its form depends on the transfer function parameters θ and σ. By examining the dependence of G
on these two parameters, we can bound the region for which successful retrieval is possible. Note that the
shape of G only determines whether it is in principle possible to successfully retrieve a sequence. Whether
or not the temporal trajectory of the gain rises above one during recall depends on the initial condition of
the overlaps and mean squared firing rate, as well as the number of stored sequences. We find that G is
either a monotonically decreasing function (if G′(0) < 0), or that it is a monotonically increasing function
for small values of its argument, reaching a maximum Gmax, and then monotonically decaying towards zero
(see Fig. 3c for examples). Thus, successful retrieval is possible if at least one of the following conditions is
satisfied:

1. G(0) is larger than one

2. G′(0) is positive, and the maximum of G, Gmax, is larger than one

These criteria lead to the following conditions for θ and σ, using G defined in Eq. (23):

1. If |θ| < σ

√
− log(

√
2πσ2), then G(0) > 1

2. If |θ| > σ, then G′(0) > 0

3. If |θ| < 1/
√

2eπ and |θ| < σ

√
− log(

√
2πσ2) then Gmax > 1.
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These conditions define 6 possible regions, that are plotted in Supplementary Figure 3a. In region D
and E (see figure), condition 1 is satisfied (G(0) > 1), so retrieval is possible for vanishingly small initial
overlaps, provided α is sufficiently small. In region F, conditions 2 and 3 are satisfied but not 1 (G(0) < 1,
but G initially increases with its argument and reaches a peak Gmax > 1), so retrieval is possible for initial
overlaps of small but finite size, again provided α is small enough. In regions A, B, and C retrieval is not
possible, as both G(0) < 0 and Gmax < 1.

2.4.2 Maximum load

As already mentioned, a necessary condition for sequence retrieval is that the function G(x) has a maximum
that is larger than 1. If this condition is satisfied, then let xc be the largest value of x such that G(x) = 1.
For α→ 0, the condition Gmax > 1 guarantees that a sequence can be retrieved, provided the initial overlap
with the first pattern is large enough. If G

(∑P−1
µ=1 q

2
µ(0)

)
> 1, the overlaps initially grow until the norm of

the overlap vector stabilizes at a value where G
(∑P−1

µ=1 q
2
µ(t)

)
∼ 1.

When α > 0, the gain now depends on the additional ‘noise term’ αM(t), since the argument of G is

now
∑P−1
µ=1 q

2
µ(t) + αM(t). If this noise term is larger than xc, then the gain will be smaller than one for

any ~q(t), and therefore sequences will decay starting from any initial condition. The maximal value of α for
which sequences can be retrieved is therefore given by

G(αcM) = 1, (39)

where M is given by its steady state value when ~q = 0:

M =

∫
Dvφ2

(
v
√
αcM

)
. (40)

When α < αc, there exists an overlap vector for which
∑P−1
µ=1 q

2
µ(0) + αM = xc. With suitable initial

conditions, the dynamics of the network will converge to a vector with such a norm, and sequences will be
retrieved. When α > αc,

∑P−1
µ=1 q

2
µ(0) +αM > xc and hence G < 1 for any ~q, and therefore stored sequences

cannot be retrieved.
Equations (39-40) were solved numerically. Solutions are plotted in Fig. 3 of the main text as a function

of σ for a few values of θ, and in Supplementary Fig. 7 in the whole σ-θ plane.

2.5 Sequence robustness

We assessed sequence robustness by perturbing the initial condition of the rates by a Gaussian pattern:
r(t = 0) = φ(ξ1,1 + σzz0), where σz controls the standard deviation of the standard Gaussian perturbation
z0 ∼ N (0, 1). We focused specifically on transfer function parameters in region F (see section 2.4.1), as
sequences with parameters falling in regions D and E will still be retrieved for arbitrarily small initial
overlaps. Surprisingly, we find in region F that increasing α results in higher robustness to perturbations
(Supplementary Figure 10). Mean-field analysis of the perturbation provides an explanation for this effect.
The perturbed initial conditions for q and M are given by:

q1(t = 0) =

∫
DvDzvφ(v + σzz)

M(t = 0) =

∫
Dvφ(v

√
1 + σ2

z)2

with all other overlaps equal to zero, ql(t = 0) = 0, l 6= 1. Increasing perturbation strength increases slightly
M(0) while more dramatically decreasing q1(0). Looking at the mean-field dynamics of M in Eqs. (35) and
(36), we can also see that the effect of the perturbation decreases exponentially with τ .

As explained in the previous section, successful recall depends on the argument of G:
∑P−1
µ=1 q

2
µ(t) +αM ,

specifically on whether or not this argument stabilizes to a value around xc. For small α, this argument

8



is dominated by the overlap norm, and as the perturbation strength increases, the initial value of this
norm decreases. When the initial norm becomes too small, the dynamics of q and M decay to a region
where G

(∑P−1
µ=1 q

2
µ(0) + αM

)
< 1, and the sequence is not retrieved. For example, for S = 1 and P = 16

corresponding to an α = 0.08, when σ = 2.5 the initial argument of G is too small to converge to xc
(Supplementary Figure 10, left).

For large α, the initial argument is dominated by αM(0). Increasing perturbation strength decreases the
initial norm of the overlaps, as in the case for small α, but αM(0) can remain large enough such that the
argument converges in time to xc. This phenomenon ensures that the critical initial overlap below which a
sequence is not retrieved (due to the dynamics of the argument not converging to xc) is smaller, and thus
confers a higher tolerance for perturbation strength.

3 Excitatory-inhibitory rate network

So far, we have analyzed a simplified rate network that ignores the separation between excitation and
inhibition. To assess whether our results hold also in networks that obey Dale’s law, we developed a procedure
to build an E/I network that can store and retrieve sequences. Our goal is to transform a rate network of
the form

τ
dhi
dt

= −hi +

N∑
j=1

Jijφ(hj) (41)

where Jij are unconstrained, into the following two-population network, composed of NE E neurons and NI
I neurons:

τE
dhEi
dt

= −hEi +

NE∑
j=1

JEEij φE(hEj )−
NI∑
j=1

JEIij φ
I(hIj ) (42)

τI
dhIi
dt

= −hIi +

NE∑
j=1

JIEij φ
E(hEj ) (43)

such that the excitatory population in Eq. (42) shares the same pattern overlap dynamics as those in Eq. (41),
and excitatory (inhibitory) units send only positive (negative) projections. Note that for simplicity we ignore
inhibitory to inhibitory connections,

The four connectivity matrices are given by

JEEij =
cEEij√
KEE

ω

(
AEE√
KEE

S∑
s=1

P−1∑
µ=1

f(ξs,µ+1
i )g(ξs,µj )

)
(44)

JEIij =
cEIij JEI√
KEI

(45)

JIEij =
cIEij JIE

KIE
(46)

where the synaptic transfer function ω has zero support at negative values, and all types of connections have
sparse connectivity (i.e. E(cEEij NE) = KEE � NE , E(cIEij NE) = KIE � NE , E(cEIij NI) = KEI � NI).
Note that in this model, both excitatory and inhibitory synaptic efficacies onto excitatory neurons scale as
1/
√
K, as in the balanced network model [2, 3] and other associative memory models with separate E and I

populations [4, 5], while excitatory synapses onto inhibitory neurons scale as 1/K.
Note also that we have assumed that TAH learning takes place only in excitatory recurrent weights JEEij ,

and that all other connection strengths are fixed. For the sake of simplicity, we make the following additional
assumptions:

1. Inhibition is fast (τI � τE)

9



2. Inhibitory firing rates depend linearly on their input (i.e. φI(hI) ≈ gIφhI)

Using these assumptions, we can reduce Eqs. (42) and (43) to the following equation, that now only
describes inputs to E neurons:

τE
dhEi
dt

= −hEi +

NE∑
j=1

JEEij φ(hEj )−
NE∑
j=1

JIijφ(hEj ) (47)

where JIij represents an effective inhibitory connectivity matrix, given by:

JIij = gIφ

NI∑
k=1

JEIik J
IE
kj =

gIφJIEJEI

KIE

√
KEI

NI∑
k=1

cEIik c
IE
kj , (48)

Taylor expanding the excitatory connectivity in Eq. (44) around all but the first stored sequence, we find
that only the first and second order terms will contribute to the total synaptic inputs in the K →∞ limit:

JEEij ≈
cEEij√
KEE

(
ω

(
AEE√
KEE

S∑
s>1

P−1∑
µ=1

f(ξs,µ+1
i )g(ξs,µj )

)

+
AEE√
KEE

ω′
(

AEE√
KEE

S∑
s>1

P−1∑
µ=1

f(ξs,µ+1
i )g(ξs,µj )

) P−1∑
µ=1

f(ξ1,µ+1
i )g(ξ1,µ

j )

)
. (49)

Plugging the above into Eq. (47) and averaging the field over sequences s 6= 1, we get:

E

(
NE∑
j=1

JEEij φ(hEj )−
NE∑
j=1

JIijφ(hEj )

)
=
(√

KEEω̄EE−
√
KEIg

I
φJIEJEI

)
RE+AEEω̄

′
EE

P−1∑
µ=1

f(ξ1,µ+1)mµ (50)

where E denotes an average over patterns in all sequences except the retrieved one, and the random structural
connectivity matrix cij , and in addition we have defined

ω̄EE =

∫ ∞
−∞
Dxω(AEE

√
αγx)

ω̄′EE =

∫ ∞
−∞
Dxω′(AEE

√
αγx)

γ =

∫ ∞
−∞

∫ ∞
−∞
DxDyf(x)2g(y)2

and introduced the following order parameters:

RE = E
(
φ(hE)

)
qµ = E

(
g(ξµ)φ(hE)

)
.

RE represents the mean firing rate of the excitatory population, while qµs are the overlaps with the patterns
of the retrieved sequence.

The mean field, Eq. (50), is composed of two terms: The first term in the r.h.s. is proportional to the
mean firing rate of the excitatory population. Such a term does not appear in the one population network.
It scales as

√
K, and therefore diverges in the large K limit, unless there is a balance between excitation

and inhibition,
√
KEEω̄EE =

√
KEIg

I
φJIEJEI . The second term contains the sum over overlaps with the

patterns in the sequence. This term is the same as in the one population network, except for the additional
factor ω̄′EE . Thus, for the E-I network to be described by the same equations as the one population network,
a balance between excitation and inhibition is required [2, 3, 4, 5].
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Thus, in the E-I network, we impose the condition√
KEEω̄EE =

√
KEIg

I
φJIEJEI . (51)

In numerical simulations we used a rectified linear transformation ω(x) = [gω · x+ oω]+. Other parameters
are specified in Table 7b.

3.1 Simulation procedure

To construct the excitatory-inhibitory rate network, we take the following steps:

1. We begin by simulating the single population rate network of Eq. (41) with connectivity specified by
Eq. (3). We use a rectified linear rate transfer function, φ(h) = [gφ · h]+, and the threshold plasticity
rule of Eqs. (6-7) in the main text. We fix xf and qg to a desired coding level, and find values for A
and gφ that lead to sequence recall for a given sequence length.

2. We next construct a two-population rate network (Eqs. 42-43). We start by defining NE excitatory
neurons, each with the same rectified linear rate transfer function as in the previous step, φE(h) =
[gφ · h]+. We then construct the recurrent excitatory connectivity as specified in Eq. (44), with all
plasticity-related free parameters fixed as before. To impose non-negative weights, we choose a rectified
linear transformation for the synaptic transfer function ω(x) = [gω · x+ oω]+.

3. We next add NI inhibitory neurons, each with a rectified linear rate transfer function, φI(h) = [gIφ ·h]+.

For sparse E-I and I-E connectivity, the weights JIEij and JEIij are constrained by our choice of ω, and
Eq. 51. The initial condition for the inhibitory neurons is fixed to the initial excitatory population
average firing rate (i.e. E(φE(f(ξ1,1

i )))).

4 Spiking network

To transform the rate network of Eqs. (42,43) into a spiking network, we mapped dynamics to a current-
based leaky integrate-and-fire network. Single unit dynamics were governed by the following current-based
equations. For α, β ∈ {E, I}:

ταm
dV iα
dt

= Θ
(
V iα − V floor

α

)−V iα + V rest
α +

∑
β

Kαβ∑
j 6=i

Sijαβ + Iα + σα
√
ταmWα(t)

 (52)

ταs
dSijαβ
dt

= −Sijαβ + J ijαβτ
α
s

∑
tkβ

δ
(
t− tkβ −D

)
(53)

where D controls the synaptic delay, Iα controls the external input drive, and τrp controls the refractory
period. σα controls the strength of the stochastic fluctuations induced by a white noise input Wα(t) with
unit variance density. The Heaviside function Θ sets a lower bound on the attainable voltage, so that the
membrane potential cannot be more hyperpolarized than a ‘floor’ V floor

α . This lower bound captures in
a simplified fashion the inhibitory reversal potential that prevents the neuronal membrane potential from
going to arbitrarily hyperpolarized values. Without this lower bound, many neurons have voltages with
unrealistically large hyperpolarizing deflections, as large as 100 mV below the resting potential. Note that
retrieval still occurs without the implementation of this lower bound.

We simulated a spiking network with NE = 20,000 excitatory units, and NI = 5,000 inhibitory units.
V floor
α was set to −80 mV for excitatory units and −∞ mV for inhibitory units, with V rest

α = −70 mV. We
set D = 1 ms, τrp = 1 ms, the reset potential V reset

α = V rest
α , and the input drive Iα = 0 mV. We used the

Euler-Maruyama method with a time step of 1 ms. A full list of parameters can be found in Table 7c.
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4.1 Simulation procedure

To construct the full spiking network, we take the following steps:

1. We start by simulating an excitatory-inhibitory rate network, following the steps as outlined in section
4.2.

2. We then match both rectified linear rate transfer functions to those derived from leaky-integrate and
fire (LIF) units operating in the presence of noise. We use the following equation for the transfer
function of unit activity in population α [6]:

να(x) = τrp + ταm
√
π

∫ V thresh
α −x
σα

V reset
α −x
σα

dueu
2

(1 + erf(u)).

To fit the LIF transfer function, we fix the reset potential to zero, and the refractory period and
membrane time constant to desired values. The desired membrane time constant should be less than
the synaptic time constant (see final step). We leave as free parameters the threshold and strength
of external white noise (σα). We minimize the Euclidean distance between the two transfer functions
over the interval x ∈ {xlower, xupper} using the L-BFGS-B optimization algorithm, bounding both the
threshold and noise strength from below at zero. Starting from many random initial conditions we find
that a global minimum is reached by the procedure.

3. To produce threshold, reset, and resting membrane potentials within a physiological range, we apply
a linear transformation φV (x) = λαV x + ∆α

V that shifts and scales these parameters. All connectivity
weights are also scaled by the same factor. To impose a nonzero resting membrane potential, we fix
V rest
α = V reset

α = ∆α
V . Note that all weights Jαβij taken from the rate network are also divided by the

synaptic time constant τα. The new parameters and connectivities are therefore:

V thresh∗

α = λαV V
thresh
α + ∆α

V

V reset∗

α = ∆α
V

J ijαβ = λαV J
αβ
ij /τα

σα = λαV σα.

The initial conditions are SEE(0) = φE(λEV f(ξ1,1)), SIE(0) = E[SEE(0)], SEI(0) = 0, VE(0) = ∆E
V ,

and VI(0) = ∆I
V , where z is a standard Gaussian variable.

4. We aim to keep the range of neural firing rates below saturation, and adjust several parameters to this
effect:

(a) The dynamic range of excitatory firing can be adjusted by scaling the gain of the excitatory linear
transfer function, gEφ . The dynamic range of inhibitory firing can be adjusted by rescaling JEI
and JIE while keeping their product constant.

(b) The gain of the excitatory LIF transfer function is fixed by the gain of the original linear transfer
function, gφ. The gain of the inhibitory LIF transfer function can be controlled by adjusting the
gain of the corresponding linear transfer function, while scaling JEI inversely.

5. Finally, we build the LIF spiking network of Eqs. (52,53). We now have two timescales, one for the
synapses (τs) and one for the single units (τm). The time constants of the rate network are mapped
to the synaptic time constants. All other parameters, including weight matrices, are taken from the
previous two steps. Note that if the fitted σVα is unrealistically large and disrupts retrieval, we reduce
it to a more realistic value. This is the case for the parameters of Figure 7 in the main article, and
so we lower it to a value equal to half the spiking threshold (see Table 7c). An alternative approach
would be to fix σα to a desired value, and fit the LIF transfer function using only the threshold as a
free parameter.

12



5 Supplemental Procedures

All rate network simulations were performed using an adapative Runge-Kutta method of order 2(3) with
relative and absolute error sizes of 1e-3 and 1e-6, respectively.

Measuring robustness

To measure robustness in the top row of Supplementary Figure 10, we computed the difference in the
time-averaged norm of the overlaps between perturbed and unperturbed trials:

κ(t0, t1) = Et0<t<t1(‖~munperturbed(t)‖2)− Et0<t<t1(‖~mperturbed(t)‖2)

where the expectation is over the time interval starting at t0 and ending at t1. Unperturbed overlaps
~munperturbed(t) in Supplementary Figure 10 correspond to those in Figure 1 of the main article. To generate
the perturbed overlaps ~mperturbed(t), we fixed the initial condition of rate units to r(t = 0) = φ(ξ1,1 + σzz0),
where σz controls the standard deviation of the the standard Gaussian perturbation z0 ∼ N (0, 1).

We measured κ in two time intervals: 1) in the time interval leading up to the observed retrieval time,
where t0 = 0 and t1 = argmaxtmP (t), and 2) in the latter half of this interval, where t0 = argmaxtmP (t)/2
and t1 = argmaxtmP (t).

Retrieval time ratio

To compute the retrieval time ratio (RTR) in Supplementary Figure 2, we divided the observed retrieval
time by the predicted retrieval time (see Section 2.3.1): RTR = argmaxtmP (t)/(τ(P − 1)).

Peak distributions

Neurons

To find firing rate peaks for a given unit during a single trial of recall, we computed the average firing rate r̄i
for unit i and selected all continuous intervals of firing occurring one standard deviation above this threshold.
The nth peak midpoint time for unit i was computed using a weighted average,

tmidpoint
i,n =

∑
tn0<t<t

n
1
r(t) · t∑

tn0<t<t
n
1
r(t)

.

where tn0 and tn1 mark the beginning and end of the nth continuous interval. The width σwidth
i,n of a peak was

defined as the length of the continuous interval: tn1 − tn0 . Single unit peaks that had maximal firing rate at
t=0 were excluded from the analysis, but do not qualitatively alter the distribution if included.

Overlaps

To measure the width of each overlap, we used the following equation:

σwidth
µ =

√∑
tmµ(t) · (t− tmean

µ )2∑
tmµ(t)

where tmean
µ is defined as:

tmean
µ =

∑
t t ·m(t)∑
tm(t)

.

To compute the cumulative density of peak times for single neurons and overlaps, we measured the time
interval starting at t = 0 and lasting up to the retrieval time (defined in the previous sections).
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Measuring capacity in a finite network

To compute the mean-field correlation in Fig 3b, we use both M and r̄ to normalize the overlaps by the
standard deviation of the firing rates (see section 2.2).

To compute the mean-field capacity curve in Fig. 3c (dashed curves), we use a bisection method to con-
verge on the smallest α for which the maximal overlap values in the sequence {argmaxt q1(t), argmaxt q2(t), ...,
argmaxt qS(t)} are a monotonically decaying function.

Retrieval with nonlinear rule

We initialize the network to r(t = 0) = φ(f(ξ1)). To measure the pattern correlations in Figure 4d, we
compute the Pearson correlation coefficient between r(t) and g(ξl) for each pattern ξl.

Selectivity criterion

To generate the sorted raster plots of Fig. 5, we first divided units into active (silent) pools according to their
maximum firing rate: argmaxt r(t) > θ (argmaxt r(t) < θ), where θ defines a minimal activity threshold.
We set θ = 0.05 · rmax. Selective units were defined by the union or intersection of these pools in different
stimulus contexts.

Turn selective units

Right (left) selective units were those that had membership in the active pool during recall of the right (left)
sequence, and were in the silent pool during recall of the left (right) sequence.

Non-specific units

To determine non-specific units, we first sought neurons that were active in both left and right stimulus
contexts. We then computed the mean absolute difference (MD) in activity between the left and right trial

for each of these units: MD = 1
NT

∑N
i

∑T
t

[
rleft
i (t) − rright

i (t)
]
. Units with MD < 0.075 were identified as

non-specific.

Decaying weight perturbations

To generate the sorted raster plots of Fig. 6a, we included units that had a maximal activity of at least
0.15 · rmax on day 1 (for day 1 sorted) or day 30 (for day 30 sorted). These accounted for roughly half of the
total population of neurons.

Activity profile correlation

To measure the similarity of activity across days in Fig. 6c, we computed the Pearson correlation coefficient
between rate trajectories ~rin and ~rim, where n and m are simulation days, and i is the index of the neuron.
We averaged this quantity across all neurons.

Spiking network

Quantifying correlations

To compute pattern correlations in Figure 7c, we transformed spiking activity into rates by convolving spikes
with a Gaussian kernel (20 ms standard deviation). We then computed the Pearson correlation between rates
and transformed patterns as in the rate network case with a nonlinear rule.
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Sequential capacity of the nonlinear rule

To compute the storage capacity in Supplementary Figure 9, we numerically simulated retrieval of a sequence
of length P = 16 in the presence of an unretrieved stored sequence of length P ′. We used a bisection method
to find the largest P ′ for which the final retrieved pattern correlation exceeded a threshold of κ = 0.025. If
the final pattern correlation was less than κ for P ′ = 0, then the sequence capacity was αc = 0, otherwise it

was reported as αc = (P−1)+(P ′−1)
K .

We choose for simplicity σ → 0 and rescaled the transfer function threshold θ by defining θ0 = θ/(p(1−
p)(p(1 − q)2 + (1 − p)q2)), where p = 1 − qg and q = 1 − qf . We have assumed that the plasticity rule
thresholds are the same (i.e. xf = xg), and as in Section 1.2, that qg = Fz(xf ). This rescaling of the
threshold θ is necessary as the variance of the field scales with p, and so the threshold must be adjusted to
maximize capacity [7, 1].
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6 Supplemental Figures
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Figure 1: Single unit retrieval examples for the network in Figure 1 in the main text. Units are randomly
selected from the whole population.
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P, as a function of rate transfer function parameters θ and σ. All other parameters are as in Figure 1 of the
main text.
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Figure 3: Gain function behavior a. Conditions for successful retrieval. Sequences can be retrieved for
appropriate α and q1(0) in the green regions, and cannot be retrieved in the blue regions. Within D and E,
retrieval is possible for vanishingly small initial overlaps. In region F, retrieval is possible for initial overlaps
of small but finite size. In regions A, B, and C retrieval is not possible, as both G(0) < 1 and Gmax < 1.
The blue line corresponds to condition 1, the orange line to condition 2, and the green line to condition 3
(see section 2.4.1). The maximal capacity within the green region is shown in Supplementary Figure 5. The
red dot corresponds to the parameters in panel b. b. Overlaps as a function of time (top), average squared
rate (middle), and gain function (bottom) for full network (left), and overlap dynamics with a constant M
and G approximation (right). In the constant gain case, G has been fixed to the average value of G during
retrieval in the dynamic gain case: 1.0718, and M is shown purely for illustration. All parameters in the
”dynamic gain” case are as in Figure 1 of the main text. c. Solid lines are profiles of gain function G(x) as a
function of x, for three sets of parameters corresponding to the three possible regions of successful retrieval.
Dashed lines indicate threshold at one. The parameters chosen for region F correspond to the the red dot
in panel a.
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are as in Figure 1 of the main text.
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Figure 11: a. Conditions for successful retrieval (see Supp. Figure 3). Red dots correspond to panels in (b).
b. Distribution of firing rates across neurons and time (the interval between time 0 and retrieval time). All
other parameters are as in Figure 1 of the main text.
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Figure 12: a. Spiking network from Figure 7 of the main text. b. Excitatory-to-inhibitory connection
strength is decreased by 20%. c. Excitatory-to-inhibitory connection strength is increased by 5%. All other
parameters are as in Figure 7 of the main text.
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7 Parameter tables

Figure 1, 2: Retrieval of a stored sequence

Parameter Value Comment

N 40,000 Neuron count

c 0.005 Connection probability

θ 0.22 Rate transfer function offset

σ 0.1 Rate transfer function inverse gain

τ 10 ms Time constant

S 1 Sequence number

P 16 Sequence length

Figure 3a: Sequence capacity

Parameter Value Comment

N 40,000 Neuron count

c 0.005 Connection probability

θ 0.22 Rate transfer function offset

σ 0.1 Rate transfer function inverse gain

τ 10 ms Time constant

S 2 Sequence number

P 16 Sequence length

Figure 3b: Sequence capacity

Parameter Value Comment

θ 0.22 Rate transfer function offset

σ 0.1 Rate transfer function inverse gain

τ 10 ms Time constant

Figure 3c: Sequence capacity

Parameter Value Comment

N 40,000 Neuron count

c 0.005 Connection probability

θ 0.2 Rate transfer function offset

σ 0.1 Rate transfer function inverse gain

τ 10 ms Time constant
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Figure 4: Retrieval with nonlinear learning rules

Parameter Value Comment

N 40,000 Neuron count

c 0.005 Connection probability

θ 0.005 Rate transfer function offset

σ 0.00357 Rate transfer function inverse gain

τ 10 ms Time constant

S 1 Sequence number

P 30 Sequence length

xf 1.645 Post-synaptic threshold of plasticity rule

xg 1.645 Pre-synaptic threshold of plasticity rule

qf 0.8 Plasticity rule parameter

qg 0.95 Plasticity rule parameter

Figure 5: Selectivity emerges from random input patterns

Parameter Value Comment

N 40,000 Neuron count

c 0.005 Connection probability

θ 0.005 Rate transfer function offset

σ 0.00357 Rate transfer function inverse gain

τ 10 ms Time constant

S 2 Sequence number

P 30 Sequence length

xf 1.645 Post-synaptic threshold of plasticity rule

xg 1.645 Pre-synaptic threshold of plasticity rule

qf 0.8 Plasticity rule parameter

qg 0.95 Plasticity rule parameter
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Figure 6: Changes in synaptic connectivity preserve collective sequence retrieval

Parameter Value Comment

N 40,000 Neuron count

c 0.005 Connection probability

θ 0.005 Rate transfer function offset

σ 0.00357 Rate transfer function inverse gain

τ 10 ms Time constant

S 1 Sequence number

P 30 Sequence length

xf 1.645 Post-synaptic threshold of plasticity rule

xg 1.645 Pre-synaptic threshold of plasticity rule

qf 0.8 Plasticity rule parameter

qg 0.95 Plasticity rule parameter

λ 0.85 Decay rate

σz 0.03 Perturbation strength

Figure 7a: One population rate network

Parameter Value Comment

N 20,000 Neuron count

c 0.04 Connection probability

gφ 12 Rate transfer function gain

τ 20 ms Time constant

S 1 Sequence number

P 32 Sequence length

A 6.3 Learning strength

xf 1.5 Post-synaptic threshold of plasticity rule

xg 1.5 Pre-synaptic threshold of plasticity rule

qf 0.8 Plasticity rule parameter

qg 0.933 Plasticity rule parameter
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Figure 7b: Two population rate network

Parameter Value Comment

NE 20,000 Excitatory neuron count

NI 5,000 Inhibitory neuron count

cEE 0.04 Connection probability

cIE 0.04 Connection probability

cEI 0.04 Connection probability

gE
φ 12 Rate transfer function gain, excitatory

τE 20 ms Time constant, excitatory

gI
φ 20 Rate transfer function gain, inhibitory

τI 5 ms Time constant, inhibitory

S 1 Sequence number

P 32 Sequence length

AEE 6.3 Learning strength

xf 1.5 Post-synaptic threshold of plasticity rule

xg 1.5 Pre-synaptic threshold of plasticity rule

qf 0.8 Plasticity rule parameter

qg 0.933 Plasticity rule parameter

gω 1 Synaptic transfer function gain

oω -0.0038 Synaptic transfer function offset

J IE 0.0673 Synaptic weight

JEI 0.0250 Synaptic weight
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Figure 7c: Two population spiking network

Parameter Value Comment

NE 20,000 Excitatory neuron count

NI 5,000 Inhibitory neuron count

cEE 0.04 Connection probability

cIE 0.04 Connection probability

cEI 0.04 Connection probability

τE
m 10 ms Membrane time constant, excitatory

τE
s 20 ms Synaptic time constant, excitatory

V E
thresh -50 mV Spiking threshold, excitatory

V E
reset -70 mV Voltage reset, excitatory

V E
rest -70 mV Voltage resting potential, excitatory

V E
reversal -80 mV Voltage floor potential, excitatory

τE
rp 1 ms Refractory period, excitatory

σE 10 mV White noise strength (std dev), excitatory

τ I
m 2 ms Membrane time constant, inhibitory

τ I
s 5 ms Synaptic time constant, inhibitory

V I
thresh -50 mV Spiking threshold, inhibitory

V I
reset -70 mV Voltage reset, inhibitory

V I
rest -70 mV Voltage floor potential, inhibitory

V I
reversal −∞ mV Voltage reversal potential, inhibitory

τ I
rp 1 ms Refractory period, inhibitory

σI 10 mV White noise strength (std dev), inhibitory

S 1 Sequence number

P 32 Sequence length

A 6.3 Learning strength

xf 1.5 Post-synaptic threshold of plasticity rule

xg 1.5 Pre-synaptic threshold of plasticity rule

qf 0.8 Plasticity rule parameter

qg 0.933 Plasticity rule parameter

gω 1 Synaptic transfer function gain

oω -0.0038 Synaptic transfer function offset

J IE/KIE 0.204 mV Synaptic weight

JEI/
√
KEI 0.228 mV Synaptic weight

λEV 5.167 Excitatory rescaling factor

λIV 3.089 Inhibitory rescaling factor
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