
Supplementary Information for

Rational Thoughts in Neural Codes

Zhengwei Wu, Minhae Kwon, Saurabh Daptardar, Paul Schrater, and Xaq Pitkow

Xaq Pitkow.
E-mail: xaq@rice.edu

This PDF file includes:

Figs. S1 to S3
Table S1
SI References

Zhengwei Wu, Minhae Kwon, Saurabh Daptardar, Paul Schrater, and Xaq Pitkow 1 of 11

www.pnas.org/cgi/doi/10.1073/pnas.1912336117

Belief MDP. In a belief MDP, an agent chooses actions based on the belief state bt, so the agent must compute the belief state
at each time given its observations and actions up to that time. This can be computed online using the Markov property,
according to

B(st|bt) = B(st|o1:t, a1:t−1) [1]
= B(st|ot, at−1, bt−1) [2]

= 1
Z
O(ot|st)

∫
dst−1 T (st|st−1, at−1)B(st−1|ot−1, at−2, bt−2) [3]

= 1
Z
O(ot|st)

∫
dst−1 T (st|st−1, at−1)B(st−1|bt−1) [4]

To find the optimal policy, an agent evaluates the value of each action and state. If the agent were given future observations
and actions, then its future beliefs would be known. But when observations are unknown, the agent has only a distribution
over beliefs, arising from the distribution of future observations it may encounter from the distribution of future world states.
The transition probability between belief states is then

T (bt+1|bt, at)=
∫
dot+1 P (bt+1|bt, at, ot+1)O(ot+1|bt, at) [5]

where

O(ot+1|bt, at)=
∫
dst+1 dstO(ot+1|st+1)T (st+1|st, at)B(st|bt) [6]

is the distribution of future observations given the present belief and action. The parameters of this belief transition probability
T (bt+1|bt, at) therefore include parameters from both the world state transitions T (st+1|st, at) and observation functions
O(ot|st).

The true instantaneous reward function R(s, a) depends on the actual state and action. But for planning into the future,
the agent must consider the reward as a function of its beliefs, which it expects to be

R(bt, at) =
∫
dstR(st, at)B(st|bt) [7]

These beliefs, belief transitions T , and rewards R then determine the value of any policy through the recursive Bellman equation
(1),

Q(bt, at) = R(bt, at) + γ

∫∫
dat+1dbt+1 T (bt+1|bt, at)π(at+1|bt+1)Q(bt+1, at+1) [8]

The optimal policy deterministically selects whichever action maximizes that value function given the current belief, at =
argmaxaQ(bt, a). As a generalization, here we allow actions to be sampled randomly from the softmax policy

at ∼ π(a|bt) = 1
Z
e
Q(bt,a)

τ [9]

with temperature τ and normalization Z.
One subtle point to note is that for a deterministic policy, for which π(a|b) = δ(a − a∗(b)) with optimal action a∗(b),

the next belief state is only a function of the last belief state and the current observation. Although the next world
state does of course depend on the selected action, this action is perfectly predictable from the last belief state and so
P (bt+1|bt, at, ot+1) = P (bt+1|bt, ot+1). In contrast, for a stochastic policy like the one we allow in our simulations, the belief
state does not fully determine the action, and thus to know future belief states the agent would have to also observe the action
that was actually sampled from the policy. This could be notated in multiple equivalent ways. For example, the graphical
models in Figure 1 could include arrows from each action to the next belief state. Alternatively, the selected action could be
considered part of the world state that is perfectly observed, and so it would be transmitted automatically to the next belief
state without the addition of any explicit arrows. For ease of exposition and clarity of the trellis diagram we have chosen this
latter approach. The mathematics, however, make these particular dependencies explicit.

Markov structure in Inverse Rational Control. The log-likelihood of the observed data L(θ) can be decomposed as the product
of terms at each time point.

L(θ) = log p(o1:T , a1:T , s1:T |θ, φ) [10]

= log
∫
db1:T p(b1:T , o1:T , a1:T , s1:T |θ, φ) [11]

= log
∫
db1:T p(s1|φ)p(b1, o1|θ)

∏
t

π(at|bt, θ)p(bt+1|bt, at, ot+1, θ)O(ot+1|st+1, φ)T (st+1|st, at, φ) [12]

2 of 11 Zhengwei Wu, Minhae Kwon, Saurabh Daptardar, Paul Schrater, and Xaq Pitkow

According to the graphical model in Figure 1, the true world states s are outside the Markov blanket of the belief states b, and
only appear in terms with the experimental parameters φ. They do not appear with the agent’s parameters θ in this likelihood,
because what matters to our model is not what actually happens in the world but rather what the agent thinks happens. As a
result, the first term and the last two terms in the integral [12], which depend on experimental parameters φ, can be factored
out, simplifying the calculation of the log-likelihood of the observed data L(θ).

Another factor we did not consider here is that the agent’s observations o1:T could have appreciable sensory noise that is
private to the agent and thus latent for IRC. The model likelihood [11] would then have to integrate over them as well (2, 3).
In this paper we assumed tasks are structured so that uncertainty about the world state st is dominated by external noise, not
internal noise, so the observations o1:T are known to the experimenter.

As in the Expectation-Maximization (EM) algorithm (4)∗, the log-likelihood of the observed data L(θ) [10] can be written
as the sum of the expected complete data log-likelihood Q(θ) and the entropy H of the posterior over beliefs, L(θ) = Q(θ) +H.
Each of these terms can be decomposed into sums of transition probabilities and policies at each time, due to the Markov
property. Using the graphical model structure shown in Figure 1B, we have

Q(θ) =
〈

log p(b1, o1, s1|θ, φ) [13]

+
∑

t
log p(bt+1|bt, at, ot+1, θ) [14]

+
∑

t
logO(ot+1|st+1, φ) [15]

+
∑

t
log T (st+1|st, at, φ) [16]

+
∑

t
log π(at|bt, θ)

〉
p(b1:T |a1:T ,o1:T ,s1:T ,θ,φ)

[17]

The term in [14] depends only on the parameters for the state dynamics and observations, while the policy term in [17] depends
on the dynamics, observation parameters, and reward functions.

According to (5), the entropy H of the posterior over beliefs can be calculated recursively as

H(b1:t−1|bt, o1:t, a1:t, s1:t, θ, φ) =
∫
dbtH(b1:t−2|bt−1, o1:t−1, a1:t−1, s1:t−1, θ, φ)p(bt−1|bt, o1:t, a1:t, s1:t, θ, φ) [18]

+H(bt−1|bt, o1:t, a1:t, s1:t, θ, φ) [19]

where p(bt−1|bt, o1:t, a1:t, s1:t, θ, φ) can be calculated with Bayes rule. For the last time point, t = T , the entropy of the entire
belief sequence can be obtained similarly as

H(b1:T |a1:T , o1:T , s1:T , θ, φ) =
∫
dbT H(b1:T−1|bT , o1:T , a1:T , s1:T , θ, φ)p(bT |a1:T , o1:T , s1:T , θ, φ) [20]

+H(bT |a1:T , o1:T , s1:T , θ, φ) [21]

Line search method. In small problems like the foraging task considered in the main text, we can sometimes optimize the
log-likelihood function L(θ) directly by a greedy line search method. Here we iteratively perform one-dimensional grid searches
along random directions in parameter space. Once we find the optimal parameters on a line, we choose a new direction
randomly from that starting point. We repeat this procedure until convergence.

EM algorithm. The EM algorithm (4) enables us to solve for the parameters that give best explanation of the observed data,
while inferring unobserved states in the model. Recall that the log-likelihood of the observed data logL(θ) can be written as

L(θ) = log
∫
db1:T p(b1:T , o1:T , a1:T , s1:T |θ, φ) [22]

Here θ is a parameter vector which includes both assumptions about the world dynamics and the parameters determining
the subjective magnitudes of rewards and action costs. We alternately update the parameters θ to improve the expected
complete-data log-likelihood, and calculate the posterior over latent states based on the estimated parameters from the most
recent iteration.

In the E-step of the EM algoritm, the estimated parameters θold from the previous iteration determine the posterior
distribution over the latent variables given the observed data, p(b1:T |a1:T , o1:T , s1:T , θ

old, φ). In the M-step, the observed data
log-likelihood function to be maximized reduces to

L(θ) = Q(θ, θold) +H(b1:T |a1:T , o1:T , s1:T , θ
old, φ) [23]

∗Unfortunately, the conventional notations in EM and reinforcement learning collide here, both using the same letter: thisQ auxiliary function is denoted in the Calligraphic font to distinguish it from the
state-action value functionQ in the MDP model.

Zhengwei Wu, Minhae Kwon, Saurabh Daptardar, Paul Schrater, and Xaq Pitkow 3 of 11

To be consistent with (6), we use Q(θ, θold) as the auxiliary function that describes the expected complete data log likelihood;
H(·) is the entropy of the posterior of the latent variable. Note that H(·) is not a function of θ, and thus has a fixed value if
θold is fixed.

The Q-auxiliary function can be expressed as:

Q(θ, θold) = 〈log p(b1:T , a1:T , o1:T , s1:T |θ, φ)〉p(b1:T |a1:T ,o1:T ,s1:T ,θold,φ) [24]

where φ are the parameters in the experimental setup that determine the world dynamics. Since φ are fixed in the experiment
and known in the analysis, they do not affect the model likelihood.

The complete data likelihood p(b1:T , a1:T , o1:T , s1:T |θ, φ) can be factorized into transition probabilities and policies at each
time due to the Markov property. We can therefore decompose the expected complete data log likelihood Q(θ, θold) using the
graphical model structure, as described in [13–17], except now the posterior distribution over beliefs is based on the previous
iteration’s parameters:

Q(θ, θold) =
〈

logP (b1, o1, s1|θ, φ) [25]

+
∑

t
log p(bt+1|bt, at+1, ot+1, θ) [26]

+
∑

t
logO(ot+1|st+1, φ) [27]

+
∑

t
log T (st+1|st, at, φ) [28]

+
∑

t
log π(at|bt, θ)

〉
p(b1:T |a1:T ,o1:T ,s1:T ,θold,φ)

[29]

Instead of solving for the optimal θ in a closed form, we use gradient descent to update the parameter θ in the M-step.
With fixed parameters θold from the previous iteration, the entropy of the latent state H(b1:T |a1:T , o1:T , s1:T , θ

old, φ) is
fixed. As a result, we only need to update parameter θ to maximize function Q(θ, θold) in the M-step. The first term in [25]
reflects the initial belief distribution, and it has a negligible contribution to Q when there are many time points t. In [26], the
transition probability p(bt+1|bt, at+1, ot+1, θ) is a function of the dynamics parameters, while in [29], the policy term π(at|bt, θ)
is a function of both the dynamic parameters and the rewards. Since the transition probability is a matrix whose elements are
functions of the dynamics parameters, the gradients can be taken element-wise. We will show how the gradient of the policy
function can be derived based on the Q value function in the next part.

Over iterations of the EM algorithm, the value of the log-likelihood L(θ) always increases toward a (possibly local) maximum.

Value gradient in IRC. To take gradient of the Q(θ, θold) auxiliary function, it is critical to have the gradient of the policy
function. For a softmax policy based on the value function, π(a|b) ∼ 1

Z
eQ(b,a)/τ , if we have the gradient of the value function

with respect to the parameters, we can then obtain the gradient of the policy function using the chain rule:

∂π(a|b)
∂θi

= ∂π(a|b)
∂Q(b, a)

∂Q(b, a)
∂θi

+
∫
a′ 6=a

da′
∂π(a|b)
∂Q(b, a′)

∂Q(b, a′)
∂θi

. [30]

Recall that the Q value function for belief state-action pairs can be written as

Q(bt,at) = R(bt, at)+

γ

∫∫
dat+1dbt+1 T (bt+1|bt, at)π(at+1|bt+1)Q(bt+1, at+1)

Consider now a specific element θi of the parameter vector θ. For a particular (bt, at) pair, taking the derivative of both
sides with respect to θi, we have

∂Q(bt, at)
∂θi

=∂R(bt, at)
∂θi

[31]

+γ
∫
dbt+1

∂T (bt+1|bt, at)
∂θi

∫
dat+1π(at+1|bt+1)Q(bt+1, at+1) [32]

+γ
∫
dbt+1T (bt+1|bt, at)

∫
dat+1

∂π(at+1|bt+1)
∂θi

Q(bt+1, at+1) [33]

+γ
∫
dbt+1T (bt+1|bt, at)

∫
dat+1π(at+1|bt+1)∂Q(bt+1, at+1)

∂θi
[34]

Note here ∂Q(bt, at)
∂θi

is a scalar. We define ci(·) as the sum of the first two lines [31–32]:

ci(bt, at) = ∂R(bt, at)
∂θi

+ γ

∫
dbt+1

∂T (bt+1|bt, at)
∂θi

∫
dat+1π(at+1|bt+1)Q(bt+1, at+1) [35]

4 of 11 Zhengwei Wu, Minhae Kwon, Saurabh Daptardar, Paul Schrater, and Xaq Pitkow

With this substitution we have

∂Q(bt, at)
∂θi

= ci(bt, at)+γ
∫
dbt+1T (bt+1|bt, at)

∫
dat+1

[
∂π(at+1|bt+1)

∂θi
Q(bt+1, at+1) + π(at+1|bt+1)∂Q(bt+1, at+1)

∂θi

]
[36]

where ∂π(at+1|bt+1)
∂θi

can be written as a function of ∂Q(bt+1, at+1)
∂θi

according to the chain rule [30].
Suppose there are |B| distinct belief states, and |A| actions. If we vectorize the matrices Q(bt, at) , π(at|bt) and ci(bt, at)

over these discrete belief states and actions, denoting them as QVt , πVt and cVi,t respectively, then these are vectors with length
|B||A|. Equation [36] can then be rewritten as a linear function

...
∂QVt
∂θi
...

 =


...
cVi,t
...

+ γ


...

...
...

T (bt+1|bt, at) T (bt+1|bt, at) T (bt+1|bt, at)
...

...
...


︸ ︷︷ ︸

Γ(T (bt+1|bt,at))

(
. . .

QVt
. . .




...
∂πVt
∂QVt
...

+


. . .

πVt
. . .


)

...
∂QVt
∂θi
...

 ,

where


...

∂QVt
∂θi
...

 is a |B||A|×1 vector,


...

∂πVt
∂QVt
...

 is a |B||A|×|B||A| matrix,


. . .

QVt
. . .

 and


. . .

πVt
. . .

 are diagonal

matrices with vectors QVt and πVt along the diagonal, and Γ(T (bt+1|bt, at)) is a function of the belief transition probability
T (bt+1|bt, at). The derivative of QVt with respect to the parameter θi can then be solved as

...
∂QVt
∂θi
...

 =

(
I − γΓ(T (bt+1|bt, at))

(
. . .

QVt
. . .




...
∂πVt
∂QVt
...

+


. . .

πVt
. . .

)
)−1


...
cVi,t
...

 [37]

Without the brackets indicating the matrix shapes, finally we obtain

∂QVt
∂θi

=
(
I − γΓ

(
Diag(QVt) ∂π

V
t

∂QVt
+ Diag(πVt)

))−1

cVi,t. [38]

With the chain rule [30], we can obtain the gradients of the policy with respect to the parameters θ, which lets us calculate
the gradient of the Q(θ, θold) function in [25–29], and use them in the M-step of the EM algorithm applied to IRC. The result
is an improved estimate of the agent’s internal model based on its sensory observations and actions.

Foraging task and POMDP agent parameters. The foraging task described in the Results has two reward boxes for which the
true reward availability followed a telegraph process, alternating between available and unavailable at uniform switching rates.
For the two boxes, the true appearance and disappearance probabilities in one time step were γ∗1 = 0.2, γ∗2 = 0.12 and ε∗1 = 0.05,
ε∗2 = 0.07.

Each box also displayed a sensory cue at each time conditioned on the reward availability, comprising five possible colors,
with redder (bluer) colors indicating higher (lower) probability that food is currently available in the box. To be an interesting
task, the distributions under the two states should overlap enough that the animal cannot depend primarily on the color cue to
anticipate the food availability. Color values for both boxes are drawn independently at each time from a binomial distribution
with five states, with mean q∗1 = 0.4 when food is available in the box, and q∗2 = 0.6 otherwise, and variance 0.96 for both of
the two cases.

The target agent makes wrong assumptions about all of these parameters, acting rationally for a task where γ1 = 0.17,
γ2 = 0.1, ε1 = 0.1, ε2 = 0.03, q1 = 0.45, and q2 = 0.55.

We measure gains and losses in currency of reward, R ≡ 1. In those units, our target agent incurs a subjective cost of 0.3
when pressing the button, and a cost of 0.15 when traveling. Switching between boxes requires two steps, for a total cost of
0.3. We also allow a ‘grooming’ reward R = 0.2 for waiting at the center location. Our agent uses a softmax policy with
temperature τ = 0.1.

Zhengwei Wu, Minhae Kwon, Saurabh Daptardar, Paul Schrater, and Xaq Pitkow 5 of 11

Simulated brain. We trained a neural network to match the behavior of multiple rational agents. The target behaviors were
implemented by agents that used optimal belief updates and a softmax policy with nonzero temperature. For simplicity,
we discretized beliefs about reward availability for each box into N = 10 belief states. We defined the transition matrix in
the discretized belief space by binning the continuous transition matrix T (bt+1|bt, at). We allowed a small diffusion between
neighboring bins, which reflects dynamic belief stochasticity. With the defined transition matrices and reward functions for
different actions for the internal model, we can solve for the optimal softmax policy by value iteration (1).

Our neural network used one recurrently connected layer of 100 tanh units that received external inputs from the world-
generated observations, agent-generated actions, and the task parameters. The recurrently connected neurons provided input
to a two-layer perceptron, with 50 ReLU neurons followed by 5 policy neurons (Figure S1).

The architecture was built in PyTorch and optimized by supervised learning using gradient descent on a loss function given
by the average KL-divergence between the neural network’s output policy and the teacher’s POMDP policy:

L = 1
T

∑
t

DKL[πNN(a|rt)||πPOMDP(a|bt)] [39]

The neural network policy πNN samples actions according to a softmax over the five output neurons πNN(a|rt) = softmax(ract
t).

We trained the neural network to match policies with 31 teacher agents following POMDPs with different parameters. After
50 iterations of 310 batches with 1000 time points per batch, the trained neural network successfully reproduced the target
distribution of actions at each time, within an average KL divergence of 0.0047.

6 of 11 Zhengwei Wu, Minhae Kwon, Saurabh Daptardar, Paul Schrater, and Xaq Pitkow

ot
at

100 recurrent
tanh neurons

50 nonlinear
ReLU neurons

5 softmax
policy neurons

target
policy

at–1actions

θtask
parameters

π

actionsample

0

1

di
st

rib
ut

io
n

of
 a

ct
io

ns
 a

t

ac
tio

n

target POMDP

0 30
time

ac
tio

n
neural network

Trained policy match

observations

BA Neural architecture

Fig. S1. A: Architecture of a synthetic brain trained to behave rationally by matching the policy π of a POMDP agent. The recurrent network uses 100 fully-connected neurons
with a tanh nonlinearity, and the feedforward layer uses 50 ReLU neurons. There are 5 policy neurons, one for each possible action, and at each time step the network samples
an action from a softmax applied to these policy neurons’ outputs. B: Neural network reproduces the time-dependent action distribution of a rational agent when tested on a
novel task.

Zhengwei Wu, Minhae Kwon, Saurabh Daptardar, Paul Schrater, and Xaq Pitkow 7 of 11

Ap
pe

ar
an

ce
 ra

te
 (b

ox
 1

)

Ap
pe

ar
an

ce
 ra

te
 (b

ox
 2

)

Di
sa

pp
ea

ra
nc

e
ra

te
 (b

ox
 1

)

Di
sa

pp
ea

ra
nc

e
ra

te
 (b

ox
 2

)

Gr
oo

m
ing

 re
wa

rd
Tr

av
eli

ng
 co

st

Pu
sh

ing
 b

ut
to

n
co

st

Co
lor

 p
ar

am
et

er
 1

Co
lor

 p
ar

am
et

er
 2

Po
lic

y t
em

pe
ra

tu
re

Appearance rate (box 1)
Appearance rate (box 2)

Disappearance rate (box 1)
Disappearance rate (box 2)

Grooming reward
Traveling cost

Pushing button cost
Color parameter 1
Color parameter 2

Policy temperature

Appearance rate (box 1)
Appearance rate (box 2)

Disappearance rate (box 1)
Disappearance rate (box 2)

Grooming reward
Traveling cost

Pushing button cost
Color parameter 1
Color parameter 2

Policy temperature

Correlation of parameter uncertainty

–1

0

1

Ap
pe

ar
an

ce
 ra

te
 (b

ox
 1

)

Ap
pe

ar
an

ce
 ra

te
 (b

ox
 2

)

Di
sa

pp
ea

ra
nc

e
ra

te
 (b

ox
 1

)

Di
sa

pp
ea

ra
nc

e
ra

te
 (b

ox
 2

)

Gr
oo

m
ing

 re
wa

rd
Tr

av
eli

ng
 co

st

Pu
sh

ing
 b

ut
to

n
co

st

Co
lor

 p
ar

am
et

er
 1

Co
lor

 p
ar

am
et

er
 2

Po
lic

y t
em

pe
ra

tu
re

Covariance of parameter uncertainty

low

0

high
A B

H
es

si
an

 e
ig

en
va

lu
es

rank order

C

103

104

105

Fig. S2. Uncertainty for the parameters fit by IRC. Confidence intervals on parameters were estimated by first using finite differences to compute the curvatures (Hessian) of
the observed data log-likelihood Hij = ∂θi∂θi log p(θ|o1:∞, a1:∞), and then calculating the negative inverse Σ = −H−1 to give the local covariance of the equivalent
gaussian at the most probable value of the parameters. (A) The covariance matrix Σ of the local uncertainty of the model parameters. (B) Corresponding matrix of Pearson
correlation coefficients. (C) Eigenvalues of the curvature matrix reveal a spectrum of uncertainties. The lowest curvature mode, i.e. the sloppiest direction in parameter space,
has an eigenvector especially concentrated on the disappearance rate on box 2. This rate was already so low that IRC cannot tell precisely how low.

8 of 11 Zhengwei Wu, Minhae Kwon, Saurabh Daptardar, Paul Schrater, and Xaq Pitkow

Task-relevant neural dynamics all
agree across irrelevant dimensions and

agree with IRC dynamics

Task-relevant components
disagree across

irrelevant dimensions
OR

Task-relevant components
agree with each other

but not with IRC dynamics

Okay if task-
irrelevant
dynamics
disagree

Okay if task-
irrelevant
dynamics
disagree

Δr

Δb
Δb

Neural
manifold

Neural
manifold

 Task
 relevant
dimensions

 Task
 relevant

b1

b2

Task-
irrelevant

Task-
irrelevant

dimensions
 Task
 relevant

Task-
irrelevant

dimensions

dynamics
near r

dynamics
near r ’

dynamics
near r

dynamics
near r ’

rN

r1 ...

IRC beliefs b̂

ˆ

ˆ

Δb

ˆ
Δr

Δb
Δb̂ ˆ

Δr

Δr

Δb
Δb̂

Δb̂

Δb̂

Δb̂

ˆ

Δb

ˆ

Δb
ˆ

Δb

ˆ

, Δb≠ ˆΔb

ˆ

Δb

ˆ

= Δb= ˆΔb

ˆ

activity near r ’
activity near r

Bad recodingGood recoding

Fig. S3. Expanding on Figure 5, the intrinsic neural dynamics define a vector field over the neural space, where the task variables evolve according to ṙ = f(r) + ξ where ξ
is a stochastic component that may depend on r. An ideal dimensionality reduction from neural responses r (green volumes) to the task-relevant variables b must preserve the
task-relevant dynamics, such that dϕenc(r)/dt = fdyn(ϕenc(r)) + η where η contains only the stochastic elements of r in the task-relevant directions. This would

mean that the vector-valued updates ∆b̌(r) to the neural beliefs would be consistent across the (purple) task-irrelevant dimensions (yellow and magenta neural belief update
vectors agree), and would also agree with the behaviorally inferred belief updates ∆b̂ (black vectors). However, due to stochasticity, limitations in our discovery of the ideal
dimensionality reduction, or a mismatch between our target behavioral model and the brain’s true model, we may find a bad representation of the task space (red volumes) for
which the (yellow or magenta) task-relevant updates depend on the (purple) task-irrelevant dimensions. Two estimates of task-relevant dimensions can even have the same
cross-validated encoding errors while exhibiting different dynamics with different recoding errors.

Zhengwei Wu, Minhae Kwon, Saurabh Daptardar, Paul Schrater, and Xaq Pitkow 9 of 11

Table S1. Glossary of notation.

symbol meaning symbol meaning
t time
s world state T (s′|s, a), T (b′|b, a) transition probability
o observation O(o|s), O(o|b, a) observation probability
b belief B(st|o1:t, a1:t−1) posterior
a action π(a|b) policy
r neural responses R(s, a), R(b, a) reward
x∗ true world variable Q state-action value
x agent’s actual assumption Q auxiliary function in EM
x̂ estimate from behavior L log-likelihood
x̌ estimate from neurons L loss

ϕ̌enc estimate from encoding: r → b̌

f̌rec recoding / neural dynamics: b̌ → b̌ f̂dyn behavioral dynamics: b̂ → b̂

π̌dec decoding / neural policy: b̌ → a π̂act behavioral policy: b̂ → a

10 of 11 Zhengwei Wu, Minhae Kwon, Saurabh Daptardar, Paul Schrater, and Xaq Pitkow

References

1. R Bellman, Dynamic programming. (Princeton University Press), (1957).
2. NM Houlsby, et al., Cognitive tomography reveals complex, task-independent mental representations. Curr. Biol. 23,

2169–2175 (2013).
3. S Daptardar, S Paul, X Pitkow, Inverse Rational Control with partially observable nonlinear dynamics. arXiv preprint

arXiv:1908.04696 (2019).
4. AP Dempster, NM Laird, DB Rubin, Maximum likelihood from incomplete data via the EM algorithm. J. Royal Stat. Soc.

Ser. B (methodological), 1–38 (1977).
5. D Hernando, V Crespi, G Cybenko, Efficient computation of the hidden markov model entropy for a given observation

sequence. IEEE transactions on information theory 51, 2681–2685 (2005).
6. CM Bishop, Pattern recognition and machine learning. (Springer), (2006).

Zhengwei Wu, Minhae Kwon, Saurabh Daptardar, Paul Schrater, and Xaq Pitkow 11 of 11

