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1. An extended Model 
 
Persistent groups 
 
In the simple model described in the main text and methods, we assumed a well-mixed 
population in which groups are repeatedly formed at random to contest each resource 
item (so that a given individual will be associated with different group mates in every 
encounter), adopting a classical game theoretical approach similar to that of the original 
Hawk-Dove model.  Here, we consider instead the possibility of persistent groups. 
 
We focus on an infinite, asexual population, divided into discrete groups of size n (an 
‘infinite island’ model), with non-overlapping generations. In each generation every 
individual produces a large number of offspring, of which a fraction h remain in their 
natal group, while the remaining fraction 1-h disperse, each to a random other group in 
the population. After dispersal, the current generation of adults die, and offspring in a 
group (both native and immigrant) compete for the n breeding vacancies created 
thereby. Those that successfully claim a breeding position become the adults of the next 
generation (while the remainder die). 
 
An individual’s fecundity reflects the outcome of inter-group conflict. In each 
generation, every group engages in a large number of pairwise interactions with other, 
randomly chosen groups. In each encounter, as in the preceding model, the two groups 
contest ownership of a resource, with a single, randomly-chosen leader in each 
determining whether the group in question collectively adopt Hawk or Dove tactics. 
Payoffs from an interaction, for both leaders and followers, are as described in the 
preceding model. Fecundity is equal to a baseline value wB plus and individual’s 
average payoff from the group interactions in which it participates. For an individual 
that plays Hawk with probability pi, in a local group that otherwise plays Hawk with 
mean probability ploc, in a population that plays Hawk with mean probability p, this 
average payoff 𝑤"(𝑝! , 𝑝"#$ , 𝑝) is given by 
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To model the evolution of aggression, i.e. the probability with which an individual plays 
Hawk when acting as leader, we adopt an adaptive dynamic approach, assuming that 
evolution proceeds through the successive substitution of mutations of small effect. 
Given that selection is weak, the fitness of an individual that plays Hawk with 
probability pi, in a local group that otherwise plays Hawk with mean probability ploc, in 
a population that plays Hawk with mean probability p, can be approximated as 
 

www.pnas.org/cgi/doi/10.1073/pnas.2003745117



𝑊(𝑝! , 𝑝"#$ , 𝑝)

≅
ℎ4𝑤' +𝑤"(𝑝! , 𝑝"#$ , 𝑝)5

ℎ *𝑤' +𝑤"4()𝑝! +
)*(
) 𝑝"#$ ,

(
)𝑝! +

)*(
) 𝑝"#$ , 𝑝5/ + (1 − ℎ)4𝑤' +𝑤"(𝑝, 𝑝, 𝑝)5

 

 

+
(1 − ℎ)4𝑤' +𝑤"(𝑝! , 𝑝"#$ , 𝑝)5

4𝑤' +𝑤"(𝑝, 𝑝, 𝑝)5
 

 
where the first term on the right-hand side of the above equation reflects the 
contribution to fitness from young that claim a breeding vacancy in the local group, and 
the second term from young that claim a breeding vacancy in other groups. Using a 
neighbour-modulated, direct fitness approach to capture the impact of kin selection, the 
rate and direction of evolutionary change in p in such a population is then proportional 
to the selection gradient  
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where r denotes the mean coefficient of relatedness between two distinct individuals 
chosen at random from the same group. 
 
Assuming haploid inheritance for simplicity (though a diploid model yields identical 
results given additive allelic effects), this coefficient of relatedness is equivalent to the 
probability of identity by descent between gene copies sampled from two distinct 
females chosen at random from the same group, which satisfies  
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since the females were born to the same group with probability h2, in which case with 
probability 1/n they derive from the same individual in the previous generation and are 
therefore identical by descent, while with probability (n-1)/n they derive from distinct 
individuals in their natal patch, and are therefore (at demographic equilibrium) identical 
by descent with probability r. This yields 
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Substituting the above expression for r into the expression for Sp we can then solve for 
an equilibrium level of aggression p* for which Sp = 0 (or identify conditions for which 
Sp is negative or positive over the whole range 0 < p < 1, implying that selection favours 
an extreme level of aggression p* = 0 or p* = 1). This yields the unique solution  
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which is identical to that of our earlier analysis of a game in which groups are randomly 
assembled in each interaction (and which leads to identical mean payoffs from inter-
group contests).  In other words, allowing for persistent groups does not affect our 
conclusions in any way, regardless of the level of philopatry h in the population. This 
is to be expected given Taylor’s (1992) general result that in a structured population of 
the kind we have considered, the effects of local relatedness and of local kin 
competition ‘cancel out’, with the result that selection is unaffected by the rate of 
dispersal of offspring between groups. 
 
Consistent leadership 
 
In our analysis of persistent groups, we have continued to assume that one member of 
a group is selected at random to act as leader during each encounter (so that all members 
of the group lead equally often). Here, by contrast, we shall assume consistent 
leadership within each generation; that is, one member of a group is selected at random 
to act as leader during every encounter in that generation. Under these circumstances, 
the average payoff 𝑤"%(𝑝! , 𝑝)  to a leader that plays Hawk with probability pi, in a 
population that plays Hawk with mean probability p, is given by 
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while the average payoff 𝑤"&(𝑝% , 𝑝)  to a follower whose leader plays Hawk with 
probability 𝑝%, in a population that plays Hawk with mean probability p, is given by 
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The fitness of a leader that plays Hawk with probability pi, in a population that plays 
Hawk with mean probability p, can then be approximated as 
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and the fitness of a follower in a group with a leader that plays Hawk with probability 
pL, in a population that plays Hawk with mean probability p, as 
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The rate and direction of evolutionary change in p in such a population is then 
proportional to the selection gradient 
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where r again denotes the mean coefficient of relatedness between two distinct 
individuals chosen at random from the same group. 
 
In this model with consistent leadership, r satisfies 
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where L denotes the probability that a randomly chosen offspring born in a group 
derives from the leader, and is given by 
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and substituting the above expression for r into the expression for Sp we can derive the 
selection gradient for any given parameter values and thus again solve for the 
equilibrium level of aggression p*. As the model does not yield simple, closed-form 
solutions in this case, we present illustrative numerical results in the figure below. As 
is apparent from the graphs, the introduction of consistent leadership has only a small 
quantitative impact on the model’s predictions, favouring a slightly higher level of 
aggression at equilibrium (an effect that is more pronounced when leaders gain a greater 
share of benefits or pay a smaller share of costs, when groups are small, and when the 
probability of philopatry is high). 
 
  



 
 
Figure S1. Evolutionarily stable probabilities of escalated fighting (upper panel) and 
mean payoffs (lower panel), as a function of the total cost c of losing a fight relative to 
the value of the contested resource v (plotted on a log scale), in the original pairwise-
interaction Hawk-Dove game (blue curves), in the group-interaction game with 
persistent groups but no consistency in leadership (red curves), and in the group-
interaction game with persistent groups and consistent leadership (green curves). For 
the group-interaction results, leaders are assumed both to claim a disproportionately 
large share of resources and to suffer a disproportionately small share of the cost of 
losing a fight (solid red and green curves, dv = dc = 0.2; dotted red curves, dv = dc =  
0.4; dashed red curves dv = dc =  0.6. In all cases wb = 4,  n = 5 and h = 0.9. Note that 
the solid red and green curves overlap so closely that the latter are not clearly visible in 
the figure. 
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2. Video Legends 
 
Video 1 Battle lines. After detecting each other, groups bunch together and advance 
toward one other in tight ‘battle lines’.  
 
Video 2 Intergroup violence. Fights between groups involve repeated waves of attack 
and retreat. Individuals that become separated from their group are surrounded and 
attacked on all sides. 
 
Video 3 Intergroup mating. In the confusion and chaos of battle, females mate with 
males from the opposing group. 
 
 
 


