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1 MLC can filter out low-quality samples
As mentioned in section 2.1 of the main document, as a pre-processing step we removed samples
with fewer than 10 million reads mapped and applied ComBat to reduce the technical variation
among samples. As a side experiment, we ran MLC using all the samples, i.e. bypassing the
coverage filter, to test whether MLC will preferentially set the weights of these supposedly lower-
quality samples to 0.

We ran MLC again for all GO terms including the whole double-loop cross-validation scheme,
but now using all 4,215 samples. We removed 7 samples that were in “singleton” batches in order
to be able to run ComBat (section 2.1, main document and Supplementary Material 2), leaving
us with 4,208 samples. Then, we ranked the samples based on the weight values they get assigned
for each term. The sample with lowest weight gets a rank of 0 and the one with the highest 4,207.
If multiple samples (for instance say 1,000) get a weight value of 0, then all these samples get a
rank of 0 and the immediately next sample gets a rank of 1,000. Other ties are handled similarly.
Then, we used the median of each sample’s ranks over all GO terms as a measure of how often it
is selected by MLC (the higher the rank, the more often a sample is selected).

We found that MLC preferentially selected samples from the ones we had initially removed
(left panel of Figure S1). We found that samples with about 1 million to 100 million reads have a
similar distribution of median ranks, but samples with lower coverage tend to have larger median
ranks. More specifically, for 188 out of 226 the terms for which MLC selected fewer than 500
samples, we found significant enrichment of the low-coverage samples using Fisher’s exact test.
Despite this, the performance of MLC was not affected (mean of 0.72), neither that of MR (also
mean of 0.72). On the contrary, the performance of PCC slightly increased, from 0.69 to 0.7,
remaining significantly worse than the other two methods.

However, when we removed the ComBat from our pipeline and repeated the whole experiment
again, we found that the vast majority of samples with fewer than 1 million reads had a median
rank of 0 (right panel of Figure S1). In that case, MLC suffered a performance drop, performing
equal to PCC (mean ROCAUC of 0.7). Despite this, MLC remained superior on specific terms
(Spearman ρ between % improvement and term information content = 0.26).

This shows that – indeed – our method can identify poor-quality samples and avoid selecting
them.
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Figure S1: Sample median weight rank (y axis) as a function of the total number of reads (x
axis, log10 scale) when using ComBat (left) and when not using ComBat (right). The threshold
we initially used to filter out samples is shown as black dashed line. Samples are shown as blue
dots. For each GO term, we sort the MLC weights and convert them to rank values. Then, for
each sample, we plot the median of its ranks over all GO terms. The 2-dimensional density of
the points as estimated using Gaussian kernels is also shown, with darker areas corresponding to
higher density.
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2 Use of ComBat with batches containing only 1 sample
If a batch contains only one sample, the variance of a gene within the samples of the batch is
not defined, in which case ComBat only standardizes the means. Since different batches have
widely different read counts, samples from batches with higher average coverage will contribute
considerably more to the total variance of each gene’s expression. This is undesirable, as this
variance most probably represents technical and not biological variation. Therefore, we deemed it
necessary to also standardize the variance of each gene within each batch, which meant that we
had to remove all studies that had only one sample, leaving us with 2,959 samples.
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3 Competing Methods

3.1 Mutual Rank (MR)
An alternative way to measure co-expression is using the Mutual Rank (MR) which has been
successfully used in the ATTED-II co-expression database [1]. For every gene i, the co-expression
values to all other genes are ranked in descending order. We use ranki(j) to denote the rank of
gene j in terms of similarity to i. Note that ranki(i) = 0. The MR value between two genes is
calculated as the geometric mean of ranki(j) and rankj(i):

MR(xi,xj) =
√
ranki(j)× rankj(i) (1)

MR is expected to be more robust to spurious correlations caused by outliers (due to the geomet-
ric mean) and can also handle cases where a gene tends to have very high or very low correlations
with many other genes, which bias the co-expression ranks leading to poorer performance for the
k -NN classifier. We downloaded the pairwise MR values constructed from public RNA-Seq data
for all A. thaliana genes from the ATTED-II website (http://atted.jp/top_download.shtml).

3.2 GAAWGEFA

For GAAWGEFA [2] we used the MATLAB code provided by the authors at http://sampa.
droppages.com/GAAWGEFA.html. Because of the long runtime we did not tune any of the param-
eters of the algorithm and used the default settings as mentioned in the paper:

• Initial population size: 20

• Crossover Probability: 0.85

• Mutation Probability: 0.1

• Maximum iterations: 1000

After the 150-th iteration we enabled the extra option of early termination, i.e. we stopped
the optimization if the fitness function had not increased by at least 1% between two consecutive
generations. We did tune the number of nearest neighbors used in the k -NN classifier as previously.
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4 Evaluation Modes

4.1 Cross-Validation Experiment
We used the k -Nearest Neighbors (k -NN) classifier to compare the function prediction performance
of the different studied co-expression measures on all A. thaliana genes with at least one BP anno-
tation. To counter the imbalance in the dataset, we restricted ourselves to GO terms that annotate
at least 1% of the genes. Also, for the weight optimization stage of MLC, we randomly sampled
an equal number of genes with and without each term. The optimal number of nearest neighbors
(k) is a parameter of all methods. MLC has an extra regularization parameter α (equation 6,
main document). We tuned the parameters of MLC independently for each GO term, while we
selected the value of k that maximized the mean performance over all tested GO terms for the
other methods. Parameter tuning was done in a double 3-fold cross-validation loop [3] (Figure S2)
using the term-centric ROCAUC as performance criterion. The inner loop was used to select the
optimal parameter values and the outer loop to evaluate the performance of the tuned models on
previously unseen genes.

Figure S2: Schematic representation of a nested cross-validation loop.

4.2 CAFA3 Experiment
We also evaluated the same methods on the preliminary test set from CAFA3, released by the
organizers in June 2017. This dataset contains 6,077 training and 137 test genes from A. thaliana.
After ID mapping, we restricted ourselves only to the genes for which we had both expression
data from ArrayExpress and MR values from the ATTED database and passed the filtering step
described in section 2.1 (main document). This left us with 4,889 training genes and 90 test genes,
annotated with 707 GO terms. We used the training set to tune the parameters of the tested
methods using a 3-fold cross-validation loop. We removed the 10 rarest terms, as there were not
enough training and testing genes in all folds. Then, we re-trained each method on the whole
training set, using the optimal parameter values found with cross-validation and made predictions
for the 697 remaining terms on the 90 test genes (reported as CAFA3 results). To assess the
variability of the results, we performed 1,000 bootstraps, choosing at random with replacement
90 genes at each iteration and re-evaluating the mean term-centric performance. We used these
bootstraps to construct 95% confidence intervals.
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4.3 CAFA-π
Finally, we compared MLC to MR and PCC using data from the CAFA-π challenge [4]. The
goal of CAFA-π was to make term-specific predictions for biofilm formation and motility in Pseu-
domonas aeruginosa and Candida albicans, which were then tested using genome-wide assays. For
pseudomonas, the organizers of the challenge used two baseline methods that made use of an ex-
isting microarray dataset with 1,051 samples and PCC [5]. These baseline methods turned out
to be the top-performing methods in the challenge. We compared our method and MR to these
PCC -based baselines. GAAWGEFA, uses all available GO terms and is trained in a protein-centric
way, so we did not test GAAWGEFA in this strictly term-centric setting.

As starting point, all methods use the genes that were already experimentally annotated with
the function of interest (biofilm or motility) before the challenge (training genes). Note that
these training genes are only of the positive class, however some of them were not validated as
positives by the assay. Nevertheless, we still used all these genes as positive genes, to ascertain a
fair comparison with methods implemented before the challenge. For the baseline methods, the
posterior probability of a test gene being involved in the function was calculated as either the
maximum PCC value between that gene and all training genes, or the average value of the top-
10 most co-expressed training genes [4]. We applied the same strategy for MR and MLC. MLC
requires a negative set during training, i.e. a set of genes known not be involved in the function
of interest. In this case, we chose the negative set as a random subset of the genes for which
expression data were available, but they were not screened for the function, so their involvement
in the function is unknown both before and after the CAFA-π challenge. For example, these could
be essential genes whose knock-out is lethal. MLC has a parameter α which we previously tuned
using cross-validation. This is not possible in this setting due to the small number of training
genes, so we further tested MLC with two values of α: one that performs sample selection (0.75,
selecting fewer than 10% of the samples) and one that does not (0.25, selecting all samples).
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5 Evaluation Measures

5.1 Unweighted and Weighted term-centric ROC AUC
In the setting used in this work, we are interested in finding the genes that perform a given
function, so term-centric evaluation is the most interesting. As in the CAFA papers, we use
the term-centric area under the ROC curve (ROCAUC). For every GO term l, we compute a
ROCAUC score for the binary problem of finding all test genes that are annotated with that term
and then we report the average of that value over all GO terms. We also use the weighted version
of this measure (ROCAUCw), in which we calculate a weighted average, weighing each term by
its Resnik Information Content (IC(l)) [6].

5.2 Protein-Centric Measures
For protein-centric evaluation, we use the F1 score (Fmax) and the Semantic Distance (Smin) [7].
Similar to the CAFA evaluation, we start with the posterior probabilities for each pair of test
gene and GO term. As these measures require hard predictions (i.e. either 0 or 1, not a posterior
probability) we compute them for 21 equally-spaced thresholds from 0 to 1 (i.e. in steps of 0.05).
We then only report the metric value at the optimal threshold for each measure (the maximum for
the F1 and the minimum for the Semantic Distance) and for each evaluated algorithm [8].
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6 Protein-Centric Results
We compared 5 methods: PCC, PCC+MR, GAAWGEFA, MLC and MLCG using 2 term-centric
and 2 protein-centric evaluation measures. Term-centric performance is shown in Table 1 in the
main document. Tables S1 and S2 show the protein-centric Fmax and Smin for these methods on
the cross-validation and CAFA3 datasets respectively. We observe that, according to both metrics,
all methods achieve more or less equivalent protein-centric performance, with the exception of
the PCC, which performs significantly worse (Supplementary Material 7). The MR seems to be
consistently the top method, but the differences are very small and not statistically significant (See
also Supplementary Material 7).

Table S1: Comparison of the protein-centric Fmax and Smin of the tested methods using 3-fold
cross-validation. For each method and metric the mean and standard error are shown. Higher
Fmax and lower Smin denote better performance.

Method Fmax Smin

PCC 0.34± 0.001 19.12± 0.11
PCC + MR 0.36± 0.001 18.85± 0.11
GAAWGEFA 0.35± 0.002 18.97± 0.10
MLC (Sw) 0.35± 0.001 18.89± 0.13
MLCG (Sw) 0.35± 0.003 19.00± 0.17

Table S2: Comparison of the protein-centric Fmax and Smin of the tested methods using the
CAFA3 data. For each method and metric the mean and 95% confidence interval is shown. Higher
Fmax and lower Smin denote better performance.

Method Fmax Smin

PCC 0.25 [0.22, 0.29] 21.27 [18.78, 29.17]
PCC + MR 0.27 [0.24, 0.30] 21.18 [18.78, 28.99]
GAAWGEFA 0.25 [0.22, 0.29] 21.32 [18.90, 29.10]
MLC (Sw) 0.26 [0.23, 0.29] 21.56 [18.87, 29.11]
MLCG (Sw) 0.27 [0.24, 0.31] 21.27 [18.81, 29.22]
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7 Statistical Significance of Differences in Cross-Validation
Performance

We use four evaluation metrics (ROCAUC, ROCAUCw, Fmax, Smin) to compare 5 methods (PCC,
PCC + MR, GAAWGEFA, MLC and MLCG). We used the paired-sample t-test to compare
all 10 different pairs of methods across the three cross-validation folds. This test tests the null
hypothesis that the mean difference in performance between two methods across the three folds is
not different from zero. For every combination of two methods and a metric we obtained a p-value,
so in total we obtained 40 p-values. We corrected all these p-values jointly for multiple testing
using the Benjamini-Hochberg method for controlling the False Discovery Rate (FDR). The results
are listed in tables S3 to S6. MR and MLC are significantly better than PCC according to all four
metrics.

Table S3: FDR-corrected p-values for the null hypothesis that the cross-validation ROCAUC of
two methods is not different from zero. Entries are colored in red if the row method is significantly
worse than the column method (FDR < 0.05) and in green if the row method is significantly better
than the column method (FDR < 0.05).

PCC + MR GAAWGEFA MLC (Sw) MLCG (Sw)
PCC 0.008 0.038 0.021 0.041

PCC + MR 0.088 0.272 0.180
GAAWGEFA 0.066 0.175
MLC (Sw) 0.372

Table S4: FDR-corrected p-values for the null hypothesis that the cross-validation ROCAUCw of
two methods is not different from zero. Entries are colored in red if the row method is significantly
worse than the column method (FDR < 0.05) and in green if the row method is significantly better
than the column method (FDR < 0.05).

PCC + MR GAAWGEFA MLC (Sw) MLCG (Sw)
PCC 0.008 0.038 0.016 0.041

PCC + MR 0.088 0.229 0.189
GAAWGEFA 0.041 0.178
MLC (Sw) 0.155

Table S5: FDR-corrected p-values for the null hypothesis that the cross-validation Fmax of two
methods is not different from zero. Entries are colored in red if the row method is significantly
worse than the column method (FDR < 0.05) and in green if the row method is significantly better
than the column method (FDR < 0.05).

PCC + MR GAAWGEFA MLC (Sw) MLCG (Sw)
PCC 0.038 0.113 0.038 0.155

PCC + MR 0.154 0.302 0.047
GAAWGEFA 0.258 0.180
MLC (Sw) 0.180

Table S6: FDR-corrected p-values for the null hypothesis that the cross-validation Smin of two
methods is not different from zero. Entries are colored in red if the row method is significantly
worse than the column method (FDR < 0.05) and in green if the row method is significantly better
than the column method (FDR < 0.05).

PCC + MR GAAWGEFA MLC (Sw) MLCG (Sw)
PCC 0.021 0.066 0.038 0.155

PCC + MR 0.119 0.223 0.138
GAAWGEFA 0.246 0.181
MLC (Sw) 0.229
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8 MLC does not pick up artificial information
We started from the label matrix Y ∈ {0, 1}N×L, where L is the total number of GO terms.
Column l of Y represents to the vector y(l) that contains a 1 at the rows that correspond to the
genes annotated with l. We randomly permuted the rows of the label matrix, so that each gene is
assigned to a random set of GO terms, but both the consistency of the ontology graph and the GO
term frequencies are preserved. Then we ran both PCC and term-specific MLC on this random
dataset, including the tuning of the parameters using a double-loop cross-validation as described
in Supplementary Material 4. We found that both PCC and MLC achieved a mean term-centric
ROCAUC of 0.5 (i.e. equal to random guessing). This shows that in absence of real structure
in the data, sample selection or re-weighing does not artificially generate information (i.e. false
positives are controlled).
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9 False positive rates for general and specific terms
To explain why MLC performs better for specific terms than for general ones, we compared the
ROC curves of the 20% most specific terms to those of the 20% most general ones. Term specificity
was measured by the Resnik Information Content [6]. To get an indication of the general behaviour
pattern of MLC, we averaged all ROC curves in each of the two groups of GO terms. Figure S3
shows these two average curves. We observed that near the point (0, 0), which corresponds to the
genes that MLC classified as positive with high posterior probability, the average ROC curve of the
specific terms is increasing a lot more sharply than the one of the general terms which is smoother.
This means that genes for which MLC is most confident that are positive are indeed enriched with
positive labels for the specific terms. The curve of the general terms is increasing more smoothly,
meaning that for those terms, MLC is scoring a lot of negative genes highly, resulting in more false
positive predictions.
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Figure S3: Term-centric ROC curves averaged over the terms with the 20% highest IC (purple)
and with the 20% lowest IC (red). The y = x line which represents the expected ROC of a random
classifier is shown with a black dashed line.
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10 Performance as a function of term specificity
For each pair of methods, we calculate the percent difference in ROCAUC between them for each
GO term. Tables S7 and S8 show the Spearman correlation of these values with the Information
Content and the maximum path length to the ontology root of each term respectively. Moreover,
in Figures S4 and S5 we plot these differences for each pair. From these we can clearly conclude
that term-specific MLC is the best of all tested methods at predicting specific terms.

Table S7: Spearman correlation of the % difference in performance between the method in each row
and the one each column with term Resnik Information Content. Statistically significant values
(FDR < 0.05) are shown in bold.

PCC PCC + MR GAAWGEFA MLC MLCG

PCC - -0.028 -0.041 -0.174 -0.055
PCC + MR 0.028 - 0.016 -0.165 0.029
GAAWGEFA 0.041 -0.016 - -0.163 0.003

MLC 0.174 0.165 0.163 - 0.164
MLCG 0.055 -0.029 -0.003 -0.164 -

Table S8: Spearman correlation of the % difference in performance between the method in each
row and the one each column with term path length to the ontology root. Statistically significant
values (FDR < 0.05) are shown in bold.

PCC PCC + MR GAAWGEFA MLC MLCG

PCC - -0.007 -0.035 -0.259 -0.035
PCC + MR 0.007 - 0.022 -0.246 0.015
GAAWGEFA 0.035 -0.022 - -0.244 -0.018

MLC 0.259 0.246 0.244 - 0.255
MLCG 0.035 -0.015 0.018 -0.255 -

13



0-20% 20-40% 40-60% 60-80% 80-100%
Quintiles of Resnik Information Content

−10

0

10

20

30

%
 d
iff
er
en

ce
 in

 R
OC

AU
C

(a) MR - PCC

0-20% 20-40% 40-60% 60-80% 80-100%
Quintiles of Resnik Information Content

−10

0

10

20

%
 d
iff
er
en

ce
 in
 R
OC

AU
C

(b) GAAWGEFA - PCC

0-20% 20-40% 40-60% 60-80% 80-100%
Quintiles of Resnik Information Content

−40

−20

0

20

40

60

80

%
 d
iff
er
en

ce
 in
 R
OC

AU
C

(c) MLC - PCC

0-20% 20-40% 40-60% 60-80% 80-100%
Quintiles of Resnik Information Content

−20

−10

0

10

20

%
 d
iff
er
en

ce
 in
 R
OC

AU
C

(d) MLCG - PCC

0-20% 20-40% 40-60% 60-80% 80-100%
Quintiles of Resnik Information Content

−10

−5

0

5

10

%
 d
iff
er
en

ce
 in

 R
OC

AU
C

(e) GAAWGEFA - MR

0-20% 20-40% 40-60% 60-80% 80-100%
Quintiles of Resnik Information Content

−15

−10

−5

0

5

10

15

20

%
 d
iff
er
en

ce
 in

 R
OC

AU
C

(f) MLCG - MR

14



0-20% 20-40% 40-60% 60-80% 80-100%
Quintiles of Resnik Information Content

−40

−20

0

20

40

60

%
 d
iff
er
en

ce
 in
 R
OC

AU
C

(g) MLC - GAAWGEFA

0-20% 20-40% 40-60% 60-80% 80-100%
Quintiles of Resnik Information Content

−10

−5

0

5

10

15

%
 d
iff
er
en

ce
 in

 R
OC

AU
C
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Figure S4: Percent difference in ROCAUC of all pairs of methods as a function of Resnik Infor-
mation Content. For each set of terms in each quintile of Information Content, the corresponding
box includes the two middle quartiles of the percent difference for these terms. An orange line
denotes the median and a green triangle the mean. The error bars extend to 1.5 times the range
of the two middle quartiles.
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Figure S5: Percent difference in ROCAUC of all pairs of methods as a function of path length to
the ontology root. For each set of terms with a given path length, the corresponding box includes
the two middle quartiles of the percent difference for these terms. An orange line denotes the
median and a green triangle the mean. The error bars extend to 1.5 times the range of the two
middle quartiles. The numbers in parentheses next to each path length level denote the number
of terms in the dataset at that level.

17



11 Only reducing the number of samples does not boost PCC
performance

We tested the performance of the PCC on a randomly selected subset of 250 samples out of the
original 2,959 samples. We repeated this experiment with 5 different subsets of the same size and in
all cases we found the mean ROCAUC to be similar to that of PCC with all samples (0.69±0.01).
This shows that simply reducing the number of samples is not enough to get a performance boost
and that we really need to identify the relevant samples for each GO term.
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12 Comparison of GAAWGEFA and MLC weights
In Figure S6a we show the distribution of the weight values of the "average" weight profile of
MLC. To obtain that, we sort all term-specific weight profiles from the smallest to the largest
value and then calculate the average weight value at each rank over all term profiles. Figure S6b
shows the weight distribution of the GAAWGEFA, which is not term-specific. We calculated the
PCC between each term-specific profile and the GAAWGEFA profile and also between each term-
specific profile and the MLCG profile. Figure S7 shows the distribution of these two similarities.
In conclusion, the weights learned by GAAWGEFA were not correlated to the ones learned by
MLC or MLCG.
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Figure S6: Histogram (y-axis) of the sample weight values (x -axis) for the average MLC profile
(a) and the GAAWGEFA profile (b). The best fitting exponential distribution (a) and uniform
distribution (b) are shown in red.
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Figure S7: Distribution of the pairwise Pearson correlation values between the MLC -derived GO-
term-specific weight profiles and the weight profile of MLCG (green) and GAAWGEFA (orange).
The x axis corresponds to the correlation values and the y axis to the probability density.

20



13 Samples from the same study tend to get either selected
or not selected together

We tested whether samples from a relevant batch are more often selected together than expected.
The null hypothesis in this case is that which batch a sample comes from is independent of whether
it gets selected for a particular term. Under the null hypothesis, the number of samples that get
selected from each batch are proportional to the total number of samples in the batch. This can
be modelled using a multinomial distribution: Each batch is viewed as a categorical variable and
under the null hypothesis the probability of observing a sample from that batch is equal to the
number of samples in that batch divided by the total number of samples. In each cross-validation
fold, we looked at the GO terms for which MLC selected fewer than 1,000 samples. For each
of those terms, we performed the multinomial test, testing whether more or fewer samples were
selected from the same batches than expected under the null hypothesis. To save computation
time, we did not perform an exact test, but rather two approximations, one using the chi-squared
test and one using Monte Carlo sampling (drawing 1 million samples per test), both implemented
in the R package XNomial (https://cran.r-project.org/package=XNomial). With both ap-
proximations, we found that for at least 97% of the terms, the observed batch frequencies were
significantly different from what would be expected by the global batch frequencies with a False
Discovery Rate of 0.05 (Table S9). This shows that batches indeed tend to be either enriched or
depleted with selected samples for each GO term.

Table S9: Results of two approximations of the multinomial test with null hypothesis that the
sample selection is independent of which batches samples come from. For each cross-validation
fold, we show the number and fraction (in parentheses) of the terms for which the null hypothesis
was rejected with a False Discovery Rate of 0.05.

Fold Terms tested Terms significant by Monte Carlo Terms significant by χ2

0 176 175 (99.4%) 171 (97.2%)
1 187 186 (99.5%) 183 (97.9%)
2 164 163 (99.4%) 163 (99.4%)
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14 Evaluation on simulated data
We simulated an expression dataset with 7,000 genes and 3,000 samples, which is similar to the
size of our real A. thaliana dataset. 15% of these genes were annotated with a GO term of interest
(target class). The remaining 85% were evenly split between two other GO terms (background
classes 1 and 2). The genes of each of the three classes had a distinct expression pattern: For the
target class, the genes within this class have an expression pattern that changes as a noisy sine
wave for the first x samples. The expression values for the remaining n − x samples are drawn
from a Gaussian noise distribution. The background classes had similar expression patterns, but
the starting location, frequency and phase of the sine were different for both classes. Note that
the number of informative samples, x, is the same for all three classes, but which samples are
informative is different for each of them. To model different basal expressions, each gene was given
a random mean expression drawn from a Gaussian distribution (N(0, 3)). Examples of the three
classes are shown in Figure S8.
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Figure S8: Examples of the generated expression profiles from the three classes, where the relevant
number of samples x is equal to 500. The gene expression is on the y axis and the samples on the
x axis. The example from the target class is shown in blue and the ones from the other classes in
orange and red. Two black dashed lines denote the relevant samples for the target class.

We split the dataset into a training (5,000 genes), validation (1,000 genes) and test set (1,000
genes) in a stratified way. We used the validation set to tune the α parameter of MLC and then
trained on both the training and validation set and tested on the test set. For the PCC (which
uses all samples) and the ground-truth PCC (which uses only samples 1 to x), we also used the
training and validation set as training genes. The number of nearest neighbors (k) was set to 30
for all three methods.

We then varied the number of relevant samples (x) from 10 to 500 and repeated the experiment
5 times for each value of x instantiated, where each time we generate a different simulated dataset.
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Figure S9: (a) Distribution of weights learned by MLC (y axis, scaled in the range [0-1]) for the
relevant samples (blue) and the rest of the samples (red) for different numbers of relevant samples
(x axis) on simulated data. The mean of each distribution is denoted by a horizontal line. (b)
Fraction of the samples that were selected by MLC (y axis) for the relevant samples (blue) and the
remaining samples (red) for different numbers of relevant samples (x axis). The error bars denote
the standard deviation over 5 repetitions.
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15 Weight profile
Figure S10 shows the weight profile that MLC learned for term GO:1903047 (mitotic cell cycle
process).
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Figure S10: The weight profile learned by MLC for term GO:1903047. On the x axis are the 2,959
RNA-Seq samples and on the y axis the weight value of each sample.
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16 The weights learned by MLC are consistent with the on-
tology structure and the existing annotations

We compared the sample weights learned by MLC between parent-child GO term pairs in the
following three cases: 1) the parent has only one child term and both parent and child annotate
exactly the same genes, 2) the parent has only one child term but annotates more genes than its
child, and 3) the parent has exactly two children, meaning that the parent annotates the union
of the genes of its children. In the first case, the weight profiles for parent and child are identical
(mean Pearson correlation of 1). In the second case, the profiles are similar but not identical (mean
Pearson correlation of profiles 0.47). The difference in mean similarity between the two groups is
statistically significant (permutation p-value < 10−5). Furthermore, the larger the difference in
number of extra genes of the parent term, the smaller the profile correlation (Spearman ρ = −0.53,
CI95% = [−0.65,−0.40]). The profile similarities are even smaller in the third case (mean of 0.36)
and significantly smaller than those of case 2 (permutation p-value = 0.0002). This is expected as
in this case the parent contains two distinct sets of genes that correspond to two different biological
processes. Again, we found a negative correlation between the number of different genes and the
profile similarity of pairs (Spearman ρ = −0.47, CI95% = [−0.61,−0.31]).

To generalize this finding, we hierarchically clustered the GO terms (complete linkage, Jaccard
distance between the gene sets associated with each GO term cutoff of 0.6). The resulting clusters
are shown in Figure S11 along with the pairwise distances of the GO terms. 64 out of 176 clusters
contained at least three terms. For each of these 64 clusters, we randomly sampled 10,000 equal-
sized sets of GO terms and calculated the mean pairwise similarity in those sets to calculate a
permutation p-value. For 62 out of these 64 clusters we found that the pairwise weight-profile
similarities of their members (Figure S2, SM2) are significantly higher than random with a False
Discovery Rate of 0.05. Also, pairwise profile similarities are positively correlated with the pairwise
Resnik semantic similarity of GO terms (Spearman ρ = 0.16, CI95% = [0.15, 0.17]). Based on these
observations, we conclude that sample weights reflect the gene annotations of each term.
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Figure S11: Pairwise Jaccard similarities (below the anti-diagonal) and weight profile similarities
(Pearson correlations, above the anti-diagonal) of the tested GO terms. Both the x and y axes
show the GO terms ordered so that terms in the same cluster are adjacent. The grey-scale indicates
the similarity, with dark being low and bright being high similarity. The profile correlations have
been scaled so that they are in the range [0, 1]. The squares highlight the clusters containing at
least 3 terms, (cutting the dendrogram at a Jaccard distance threshold of 0.6 when using complete
linkage). Light blue boxes indicate the clusters that are not significantly enriched with terms with
similar weights and orange-colored clusters are significantly enriched after FDR correction.
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17 CAFA-π Results
PCC, MR and MLC achieve similar ROCAUC (around 0.6 for both biofilm and motility, Table
S10)

Table S10: ROCAUC achieved by PCC, MR and MLC at the CAFA-π dataset for biofilm forma-
tion and motility in Pseudomonas aeruginosa. The highest performance per column is shown in
bold.

Method ROC AUC Biofilm ROC AUC Motility
PCC - top 1 0.56 0.56
PCC - top 10 0.58 0.60
MR - top 1 0.57 0.58
MR - top 10 0.60 0.60

MLC - top 1 (α = 0.25) 0.56 0.56
MLC - top 10 (α = 0.25) 0.58 0.60
MLC - top 1 (α = 0.75) 0.57 0.54
MLC - top 10 (α = 0.75) 0.59 0.56

Again, the samples selected by MLC were informative: For motility, the most informative
sample was a phhR mutant. phhR is a transcription factor which – under certain conditions –
regulates the biosynthesis of a molecule called PQS (pseudomonas quinolone signal) [4] which has
been shown to repress motility [5]. Among a few wild-type samples, in the top-10 highest scored
we found three samples from the same study that studied the effect of Phosphorus on motility [6].
For biofilm formation, 4 of the 10 highest-scored samples were isolates from cystic fibrosis patients,
where Pseudomonas is known to produce biofilms [7]. Also samples from a BF8 treatment (inhibits
biofilm formation, [8]) and a hydrogen peroxide treatment (promotes biofilm formation in other
bacteria,[9]) were highly scored, as well as three sulfur starvation samples from the same study.

Moreover, we had a look at genes that were highly scored by MLC for biofilm but were not
found by the screen to be involved in it (i.e. false positives of our method). Among the 8 top-scored
false positives were 4 genes that are consecutive in the genome (so very likely to be part of the
same operon), namely PA0088, PA0089, PA0090 and PA0091. Two out of these genes (PA0089 and
PA0090) are annotated with the KEGG pathway for biofilm formation (pae02025). This makes
it probable that the other two genes are also members of the same pathway. For instance, it is
possible that these genes participate in biofilm formation under different conditions from those
used at the experimental screening during CAFA-π. For motility, the highest-scored false positive
was PA2496, a gene that has been found to be down-regulated in knockouts of the gene HapZ,
which mediates motility [10].

These show that the CAFA-π is not a perfect ground truth, as it reflects only one experimental
condition, whereas our method can find good candidate genes for a particular process under various
conditions.
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Figure S12: (Left) In black, the expression profile (y axis) of gene PA0091 over the 1,051 samples
of the dataset (x axis). In red, the profile of the training gene with the highest PCC to PA0091
over all the samples. The samples were ordered using hierarchical clustering on all genes, so that
similar samples are next to each other. (Right) In black, the expression profile of PA0091 (y axis)
on the samples that were selected by MLC (x axis). In red, the profile of the training gene with
the highest PCC to PA0091 over only these samples. The samples are ordered in decreasing weight
order and the expression is multiplied by that weight.
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