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We present the Supplementary Information, Methods, and Supplementary Figures. 

Supplementary Methods and Information 
 

Valleys, Troughs, Canyons and Their Length Scales 

For clear presentation, we discuss below the nomenclature and definitions of valley shaped signal 

patterns, namely valleys, troughs, and canyons. We also discuss the length scales of valley 

shaped signal patterns. 

Valleys. Given a functional genomics signal profile (such as from a ChIP-Seq experiment) a valley 

is basically a region in the genome that shows a “V” shaped signal pattern as shown in Figure 1. 

At the ends of the valley are the summits (local maxima) of the signal profile. There is also one 

dip within the valley which harbor the smallest signal within the valley. A “good” valley exhibits 
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monotonic decrease in the signal level when moving from either of the summit positions to the dip 

position.  

Troughs. We treat the “trough” and “valley” as identical. To the best of our knowledge, troughs 

and valleys are used interchangeably in the literature (1). 

Canyons. The canyons are similar to the valleys except that the basin of the valley is a broad 

region with depletion of signal. The canyons are studied in the context of DNA methylation data 

analysis. Unlike valleys, the canyons have much steeper hills compared to valleys when moving 

from the edge of the canyon to the base of the canyon. Thus, the signal profile over canyons  are 

similar to a broad “U” shaped pattern with large basin (2, 3). A recent publication referred to these 

broad canyon domains as “nadirs” (4). 

Length scales of valleys. As functional genomics signals exhibit dynamic patterns along the 

genome, almost all of the functional genomics signal profiles exhibit valley patterns. The important 

question about these valleys is whether the valleys are biologically meaningful. EpiSAFARI 

represents a general method for sensitive detection of the valleys. In the current manuscript, we 

have focused on punctate valleys that are generally shorter than 5 kilobases. The main reason 

for this is that the punctate valleys have been referenced in the literature and they potentially 

correspond to functional cis-regulatory elements such as promoters, enhancers, and insulators. 

We believe that the default parameters are sufficient to analyze the punctate cis-regulatory 

elements and their properties with respect to the valleys. The valleys for other types of assays 

can have different lengths depending on the assay type and biological context that is being 

analyzed. For other types of data, it is therefore important to visually evaluate the signal using a 

genome browser (such as IGV) and make sure that the parameter selection supports the valleys 

in question. 
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An example of other type of valleys are the valleys manifesting in RepliSeq experiments (5) where 

relative replication timing of each position in the genome are measured in a high-throughput 

manner using a next-generation sequencing based assay. The locations in the genome that 

replicate early show higher signal than those replicate later. Therefore, evaluation of a RepliSeq 

signal profiles shows that large valleys correspond to regions in the genome replicate later than 

the peak regions. These valleys manifest at much larger length scales and they may extend 

several megabases. We currently did not address detection of the valleys at this length scale in 

this manuscript.  

Yet another example of biologically important valleys are observed in digital genomic foot-printing 

experiments(6, 7). In these experiments, DNA that is open and accessible is sequenced. This 

enables probing where the transcription factors can interact with DNA. The functionally important 

valleys in the DNase signal are extremely narrow regions (5-20 base pairs long) and they are 

hypothesized to correspond to transcription binding sites. The reason why we observe a valley in 

the DNase signal is that the bound transcription factor causes a very narrow stretch of the DNA 

(at the location of the binding motif) to be inaccessible to the assay. Indeed, these extremely 

punctate valleys are shown to be associated with exact locations of transcription factor binding 

and positions where proteins interact with DNA upon binding. Related to probing of the open 

chromatin, the genomewide measurement of the nucleosome positioning, through assays such 

as MNase-Seq(8, 9) have also been shown to produce valley shaped patterns(10, 11). In 

essence, these assays measure where the nucleosomes are positioned on the genome. This is 

an important task for mapping the active open chromatin domains in the genome and for 

understanding the biological determinants of how nucleosomes are remodeled and managed by 

the cells. The punctate valley patterns (100-200 base pairs) in these experiments are especially 

well-studied with regard to their impact on gene regulation stemming from nucleosome positioning 

at the transcription start sites and transcription end sites(10).  
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Signal Smoothing by EpiSAFARI by Overlapping Windows 

While smoothing the signal, the starting position of the smoothing window is updated 

using a stepping length that is smaller than the window length. This way, each position 

on the genome is covered by multiple smoothing windows. For each position, the final 

smoothed value is assigned as the maximum of the smoothed values assigned by all the 

windows covering the position. By default, the stepping length is set to 𝑙𝑤, i.e., non-

overlapping windows. 

Selection of the Spline Parameters  

The spline parameters determine the location of the valleys and may impact the accuracy. 

In addition, the hill scores and valley asymmetry may be affected by the spline smoothing 

parameters. Thus, we studied the impact of knot numbers, knot positioning, and spline 

degree on the accuracy of detecting valleys. To determine the effect of spline parameters 

on the valley accuracy, we used the H3K4me3 data for the K562 cell line from the 

ENCODE Project. To generate a ground truth set for the H3K4me3 valleys, we used the 

active genes promoters that overlap with any transcription factor binding peak as detected 

from ChIP-Seq datasets. The basic motivation for using these regions as ground truth is 

following: It is generally known that the promoters of active genes are enriched with 

H3K4me3 histone modification. If we put the additional requirement that these promoters 

overlap with transcription factor binding, these promoters most likely contain a valley 

inside them. 
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To generate the ground truth regions, we first downloaded the gene expression levels for 

K562 cell line from the ENCODE Project. We then identified the genes whose average 

replicate expression level is greater than 0.05. We finally extracted the promoters of these 

active genes and overlapped them with the ChIP-Seq transcription factor peak regions 

for K562 cell line from the ENCODE project. The intersecting promoters are used as the 

ground truth. We denote the genomic locations for the ground truth set of promoter 

regions by 𝑷. It must be noted that these regions do not necessarily correspond to a 

complete set of the H3K4me3 valleys for K562 since this mark can also manifest on the 

enhancers in the intergenic domain. Thus, the valleys that EpiSAFARI detects will most 

likely contain many valleys that do not overlap with this ground truth. For this reason, we 

will evaluate the sensitivity of the valleys, i.e., the fraction of the set of ground truth regions 

that overlap with the detected valleys while evaluating the parameter selection.  

After building the ground truth set, we next ran EpiSAFARI to detect the valleys in the 

H3K4me3 signal profile of K562 cell line with changing spline degree, knot number, and 

knot placement. To decrease the computation time, we focused only on the chromosome 

1 for these analyses. 

Knot Locations. To evaluate the effects of knot locations, we evaluated 3 knot placement 

strategies. First is derivative based knot selection. In this knot selection, we place the 

knots where the read depth signal shows fast changes along the genome. In this knot 

placement, EpiSAFARI places the knots at the locations for which the signal has the 

largest absolute signal derivative. We next implemented the random knot placement 

where the knots are randomly placed along the domain of the signal (Supplementary Fig. 
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1). We finally included the uniform knot placement where the knots are placed at equal 

intervals within the domain of the signal.  

Knot Numbers. In order to include a wide range of knots distributed along the domain of 

the read depth signal, we used between 3 (minimum that we can use) and 15 knots. This 

way we evaluate both the densely and sparsely positioned knot selections. We denote 

the knot number with 𝜅. 

Spline Degree. For each knot selection, we use spline degrees between 1 and 7. This 

way, we assess whether the increasing degree of the splines increase the sensitivity of 

the valley detection. We denote the spline degree with 𝜓.  

We ran EpiSAFARI with the all the knot selection, knot number, and spline degree 

parameter combinations and computed the sensitivity of the identified valleys from each 

parameter combination. We next computed the sensitivity of the valleys as: 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦(𝑽 | {𝑘1, 𝑘2, … , 𝑘𝜅}, 𝜓) =
|𝑷 ∩  𝑽|

|𝑷|
 (18) 

where 𝑽 denotes the set of valleys (i.e., the genomic coordinates of the valleys) that are 

identified by EpiSAFARI with 𝜅 knots positions denoted by  {𝑘1, 𝑘2, … , 𝑘𝜅} and spline 

degree 𝜓. 𝑷 denotes the set of active promoters (the genomic coordinates) that are bound 

by transcription factor peaks. |𝑷 ∩ 𝑽| denotes the number of active and TF bound 

promoters that overlap with the 𝑽 and |𝑷| denotes the number of promoters in 𝑷.  

We computed the sensitivity of the valleys detected using knot selection and spline 

degrees. (Supplementary Figure 3a, b, c). When the knot number and spline degree are 

both small, the sensitivity is smallest at around 0.2. As the number of knots or the spline 
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degree increases, the sensitivities increase reaches around 0.8. This indicates that the 

overly simple smoothing is not powerful enough to detect the valleys. However, as we 

increase the complexity of smoothing, the sensitivity saturates at around 0.80 and starts 

decreasing as the smoothing is made more complex. This result highlights that increasing 

complexity of smoothing splines may decrease the sensitivity of valley detection. When 

different knot selection approaches are compared, the derivative based knot placement 

does not show improved performance over the uniform and random knot placement 

strategies. We also evaluated the number of valleys that are detected by EpiSAFARI 

using different parameter combinations (Supplementary Fig. 3d, e, f). This is important 

because we want to also compare the number of valleys identified using different 

parameters. We observed that the number of valleys increases as the knot number and 

spline degree increases. The number of valleys (and sensitivity) decreases when we use 

parameter configurations with more than 7 knots and spline degree of 6 and higher.  

In summary, we observed that extra complexity does not provide much improvement for 

our sensitivity analysis and in fact increasing complexity too much may cause overfitting 

of the data and may decrease the quality of selected valleys.  Putting all these 

considerations together, we decided to use uniform knot selection with number of knots 

set to 7 and spline degree as 5. This selection is motivated to make balance between the 

accuracy, the number of valleys, and also the computation time that is required to run the 

algorithm (Supplementary Fig. 3g, h). The users can change the parameters to make 

EpiSAFARI run more conservatively or in a relaxed fashion. 

It is worth noting that there are knot placement strategies other than the ones that we 

evaluated here(12). As we discussed before, the knot placement in spline smoothing is 
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an open problem that is currently not solved in general cases. However, our results show 

that when we use a set of basis splines that are reasonably complex, i.e. not-very-low 

spline degree and knot numbers, the placement strategy does not impact the sensitivity 

considerably. 

EpiSAFARI divides the genome into non-overlapping 𝑙𝑤 long windows and performs 

smoothing for each window independently. Within each window, the knots are 

independently added. We evaluated whether the knot selection impacts the valley 

detection. For this we analyzed the relative distribution of the valley dips within their 

corresponding 𝑙𝑤 long windows. Supplementary Figure 3i, j, and k show the distribution 

of the relative valley dip locations for uniform, derivative, and random knot selection 

procedures. For uniform knot selection, there is a clear periodic pattern in the distribution 

of the relative dip locations. This pattern stems from the fact that the knots are positioned 

at the same positions in each window, i.e., uniformly distributed within 𝑙𝑤 long window. 

For derivative and random knot selections, the periodic pattern does not exist. However, 

there is slight enrichment of dips close to the ends of the windows. These biases are 

removed when we use overlapping window-based smoothing (Supplementary Figure 3l). 

Window Length Selection. Window length parameter, 𝑙𝑤, directly relates to smoothing 

as it determines the chunk of signals that will be smoothed at every step of smoothing. 

We computed the sensitivity of the detected valleys with changing 𝑙𝑤 parameter 

(Supplementary Fig. 4). As 𝑙𝑤 < 1000, the sensitivity increases with increasing window 

length, after 𝑙𝑤 > 1000, the sensitivity starts decreasing. The main reason for this is 

possibly that the spline smoothing is underfit, i.e., the number of knots (and basis 

functions) is not large enough to reliably smooth the signal. From this observation, we 



9 
 

suggest usage of 𝑙𝑤 = 1000 for punctate histone modifications. The selection of window 

length for sparse signals should be increased to increase the number of points of interest 

in each window so that the smoothing can be performed reliably. In addition, the expected 

valley lengths must be taken into consideration. For DNA methylation signals, we 

observed that for 𝑙𝑤 = 5000 is sufficient with the knot number of 7 and spline degrees of 

5. 

Impact of Smoothing Parameters on the Hill Score 

The hill score is computed for each valley separately using the smoothed signal profiles 

(Supplementary Figure 5a, b). Thus, the effect of the smoothing parameters on the 

computed hill scores is important. To compare the hill score estimates from different 

smoothing parameters, we computed the correlation between the hill scores assigned to 

valleys detected with different parameters. For this, we ran EpiSAFARI to identify the 

valleys in H3K4me3 data using the knot numbers, 𝜅, between 4 and 15, and spline 

degrees, 𝜓, between 4 and 7. Given two sets of valleys computed by different knot 

numbers and spline degrees, we identified the valleys that share minima between these 

valley sets. Next, we computed the correlation between the left hill scores and the 

correlation between the right hill scores. This correlation computation is performed for all 

pairwise comparisons of parameters. The distribution of the left and right hill score 

correlations (Supplementary Fig. 5c, d) show that there is a substantial agreement 

between the assigned scores such that the correlations are mostly clustered above 0.40 

with the most frequent correlations around 0.80. 

It should be noted that the maximum allowed error in smoothing was set to a very large 

value while signal is smoothed in the above computations. This was performed to 
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compare the impact of the parameters on the hill score without any parameter updates. 

When we decrease the maximum error in smoothing to the default values, we observed 

that the correlations between the assigned hill scores increases much. For example, the 

correlation of left and right hill scores for the most distant parameter sets (𝜓 = 4, 𝜅 = 4) 

and (𝜓 = 7, 𝜅 = 15) is 0.59 and 0.66, respectively. Whereas, without the parameter 

updates, the left and right hill score correlations between valleys detected from these 

parameter sets is 0.49 and 0.44, respectively. This indicates that the hill scores of valleys 

detected with the parameter updates will exhibit higher consistency.  

Selection of hill score threshold with respect to sensitivity and valley redundancy. 

One of the important parameters is the hill score threshold that is used to filter out 

topologically low-quality valleys (Supplementary Fig. 5b). In principle, the higher hill 

scores correspond to valleys that have very good topologies such that hills are 

monotonically increasing as we move from the valley’s dip to the valley’s summits. Thus, 

setting the hill score threshold high enables selecting good valleys. The distribution of left 

and right hill scores (Supplementary Fig. 5e, f, g) show that there are substantial number 

of valleys with hill scores very close to 1.  

We next evaluated how the sensitivity of valleys changes with changing hill score 

threshold. We detected valleys using hill score parameters between 0.1 and 0.99. It can 

be seen that the sensitivity decreases as we increase the hill score. While the sensitivity 

of the valleys is decreasing with increasing hill score, another competing factor is the 

valley redundancy (Supplementary Figure 5k, l, m). The valley redundancy refers to how 

many valleys overlap with each other. The valley redundancy will increase with 
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decreasing hill score because valleys may start engulfing other valleys when the hill score 

threshold is decreased. We computed the valley redundancy as: 

𝑉𝑎𝑙𝑙𝑒𝑦 𝑅𝑒𝑑𝑢𝑛𝑑𝑎𝑛𝑐𝑦 = 1 −
|𝑽𝑚𝑒𝑟𝑔𝑒𝑑

(𝜼)
|

|𝑽(𝜼)|
 

(19) 

where 𝜂 indicates the hill score,  𝑽(𝜼) denotes the valleys detected using 𝜂 and 𝑽𝑚𝑒𝑟𝑔𝑒𝑑
(𝜼)

 

denotes the set of valleys generated by merging the valleys in 𝑽(𝜼) where any two valleys 

with at least 1 base pair overlap are merged into one valley. As expected, the valley 

redundancy decreases with increasing 𝜂 because valleys have distinctly uniform shapes. 

For 𝜂 = 0.1, the redundancy is around 40% and decreases to around 3% for 𝜂 = 0.99. 

This result indicates that hill score cutoff of 0.99 enables identification of distinct valleys 

at a cost of sensitivity. We have decided this is a fair tradeoff to generate high quality 

valleys and used 𝜂 = 0.90. 

Impact of Read Depth on Valley Detection 

An important question about detection of valleys is to evaluate how many reads are necessary to 

for robust detection of valleys. To evaluate the impact of sequencing depth, we downloaded a 

high depth ChIP-Seq sequencing data from another study where 100 million reads are sequenced 

from H3K4me3 ChIP sample of GM12878 cells(13). For this data, we subsampled reads starting 

with 5 million reads up to 90 million reads with increments of 5 million reads. We next ran 

EpiSAFARI using each the reads generated by each subsampling. We observed the number of 

valleys increases with increasing read depth. Supplementary Figure 4i shows the additional 

number of valleys detected by each read sampling. While increasing read depth increases the 
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number of detected valleys, the increase in number of valleys is steady (At around 1000 valleys 

per 5 million reads) beyond 20 million reads. 

We next quantified the increase in the fraction of functional elements (active promoters, 

transcription factor peaks, and DNase peaks) that overlap with the identified elements 

(Supplementary Figure 4j) with increasing read depth. As expected, the overlap with functional 

elements increases with higher read depth. However, the increase in the fraction of identified 

functional elements is stabilized around 35-40 million reads.  

Combining these two observations above, we believe that at least 35-40 million reads are 

necessary to identify meaningful set of valleys. In comparison with literature, this result is higher 

than the results of a previous study on the impact of sequencing depth on ChIP-Seq analysis (14). 

In this study, the authors proposed that around 20-25 million reads are sufficient for detection of 

the peaks for H3K4me3 marks. We believe this difference is expected since valley identification 

requires more reads for detecting the detailed patterns associated with valleys. In addition, it 

should be noted that this estimate will be impacted by the technical factors such as the signal-to-

noise ratio in the sample preparation and IP efficiency. In addition, the biological properties of the 

tested samples (the species, tissue cultures-vs-immortalized cell lines, normal-vs-tumor samples) 

will also have an impact on the required read depth. As such, these “saturation” analysis are fairly 

hard to conduct for technical and biological reasons, as the authors of above referenced study 

also conclude (14). Therefore our estimate should be taken with these factors in mind. 

Impact of Smoothing Parameters on Valley Asymmetry  

Similar to the hill scores, the smoothing parameters may impact the valley asymmetry, 

i.e., the imbalance between the left and right summits of the valleys. We first performed 

correlation of the valley asymmetry between every pairwise set of valleys within the sets 

of valleys detected using the knot numbers between 3 and 15, and spline degrees 
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between 3 and 7 (Supplementary Fig. 6a). Most of the correlations are clustered around 

0.9, which indicates a high consistency between the asymmetry of valleys detected by 

set of parameters. We also evaluated the fraction of valleys that “changed direction” when 

pairwise sets of valleys are compared. To detect valleys that changed direction, we 

compared pairs of valleys detected using different parameters, then we counted the 

number of valleys which have turned from a left-to-right valley to a right-to-left valley. By 

left-to-right (right-to-left) valley, we refer to the valleys whose left (right) summit has higher 

signal than the right (left) summit. The distribution of the fraction of valleys that changed 

direction (Supplementary Fig. 6b) shows that directionality changing valley fraction is 

mostly clustered around less than 5%. These results indicate that the valley asymmetry 

is affected only slightly by the changing smoothing parameters. 

Impact of Search Space and Filtering Parameters on Valley Detection 

𝑙𝑚𝑖𝑛 and 𝑙𝑚𝑎𝑥 parameters describe the minimum distance and maximum distance between valley 

dip and valley summits. This enables decreasing search space by evaluating only the summits 

within certain vicinity of dips to identify valleys. 𝑓𝑚𝑖𝑛 sets the minimum ratio between signal at the 

maxima locations and the signal at the dip. This way the candidate valleys that do not show an 

expected level of signal depletion at the dip compared to the summits.  

In the original manuscript we did not provide a thorough examination of these parameters 

because we have selected relaxed parameters to enable a sensitive valley detection. The users 

can choose to change these parameters in case they believe there is a different type of 

enrichment in the data. For example, the users can evaluate the signal profiles in IGV and get an 

estimate of the valley sizes that they would like to focus on.  
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In the revision, we evaluated changing the impact of 𝑙𝑚𝑖𝑛, 𝑙𝑚𝑎𝑥, and 𝑓𝑚𝑖𝑛 parameters using 

H3K4me3 ChIP-Seq data from K562 cell line.  

Impact of 𝑙𝑚𝑖𝑛: Supplementary Figure 4d shows the impact of changing 𝑙𝑚𝑖𝑛 on the fraction of 

active promoters of top valleys. As expected, for low 𝑙𝑚𝑖𝑛 values (upto 200 base pairs), the 

accuracy stays constant for top valleys. As 𝑙𝑚𝑖𝑛 gets close to 500 base pairs, fraction of detected 

active promoters decreases substantially close to 0. This provides evidence that the valleys 

detected by changing 𝑙𝑚𝑖𝑛 are fairly robust in terms of detected active promoters. Thus, by default, 

we suggest using 𝑙𝑚𝑖𝑛=0 for histone modification valleys. We also evaluated the impact of 

changing 𝑙𝑚𝑖𝑛 parameter on DNA methylation valleys. For this, we changed 𝑙𝑚𝑖𝑛 parameter and 

computed the methyl-valleys using the DNA methylation data for H1HESC cell line. We next 

computed the fraction of the methyl-valleys that overlap with transcription factor peaks. 

Supplementary Figure 4k shows the changing overlap fraction for 𝑙𝑚𝑖𝑛 starting from 0 to 1500 

base pairs. It can be seen that lower 𝑙𝑚𝑖𝑛 parameter enables highest overlap. When 𝑙𝑚𝑖𝑛 is higher 

than 1000 base pairs, we see a sudden decrease in the overlap. By default, we use 𝑙𝑚𝑖𝑛=0 to 

enable a sensitive detection of the methyl-valleys. 

Impact of 𝒍𝒎𝒂𝒙: Impact of changing 𝑙𝑚𝑎𝑥 parameter is shown in Supplementary Figure 4e, where 

we plotted the impact of changing 𝑙𝑚𝑎𝑥 in terms of the fraction of active promoters of top valleys. 

In principle, increase 𝑙𝑚𝑎𝑥 increases the search space and should make detected valleys more 

accurate. For low 𝑙𝑚𝑎𝑥 values (upto 1000 base pairs), the accuracy is low and as 𝑙𝑚𝑎𝑥 is 

increased, the detected valleys overlap better with the active promoters. For 𝑙𝑚𝑎𝑥>1000 base 

pairs, accuracy reaches to a stable value. Thus, we conclude that for 𝑙𝑚𝑎𝑥>1000, valley detection 

is fairly robust in terms of accuracy measure we use.  
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We next studied how the changing 𝑙𝑚𝑎𝑥 parameter changes the accuracy of DNA methylation 

valleys. As before, we changed 𝑙𝑚𝑎𝑥 parameter and computed the methyl-valleys using the DNA 

methylation data for H1HESC cell line. We computed the fraction of the methyl-valleys that 

overlap with transcription factor peaks. Supplementary Figure 4l shows the changing overlap 

fraction for 𝑙𝑚𝑎𝑥 starting from 0 to 5000 base pairs. It can be seen that high 𝑙𝑚𝑎𝑥 parameter 

enables highest overlap. For 𝑙𝑚𝑎𝑥 values smaller than 1000 base pairs, we see a sudden 

decrease in the overlap. By default, we use 𝑙𝑚𝑎𝑥=2000 to enable a sensitive detection of the 

methyl-valleys.  

Impact of 𝒇𝒎𝒊𝒏: Supplementary Figure 4f shows how 𝑓𝑚𝑖𝑛 impacts the fraction of active 

promoters in top valleys. While for most 𝑓𝑚𝑖𝑛 selections, the accuracy is fairly stable. Using high 

𝑓𝑚𝑖𝑛 values (𝑓𝑚𝑖𝑛>3) makes detected valleys less sensitive for detecting the active promoters. 

Interestingly, for top 3000, 4000, and 5000 valleys, there is a “sweet spot” at around 𝑓𝑚𝑖𝑛=2.5. 

Nevertheless, the accuracy for these cases is fairly stable for 𝑓𝑚𝑖𝑛<2.5. These results provide 

justification for usage of the default parameter that we proposed (𝑓𝑚𝑖𝑛=1.2) in the comparisons 

with GM12878 cell line. 

Impact of 𝒍𝒑𝒐𝒔𝒕: The post filtering is performed to smooth the signal and to alleviate the 

discontinuities. We evaluated the accuracy with respect to changing 𝑙𝑝𝑜𝑠𝑡 (Supplementary Figure 

4g). The increasing 𝑙𝑝𝑜𝑠𝑡 smooths the signal after spline smoothing. Increasing 𝑙𝑝𝑜𝑠𝑡 beyond 100 

base pairs slowly decreases the active promoter overlap fraction. We selected 𝑙𝑝𝑜𝑠𝑡=50 to ensure 

a relaxed and sensitive valley detection.  

Impact of p-value estimation window length (𝑙𝑝): The p-value estimation window, which is 𝑙𝑝 

base pair long, is used for estimating the signal around the maxima and minima while p-value is 
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being assigned (Supplementary Figure 7a, 7b). EpiSAFARI uses the 𝑙𝑝 base pair long vicinity of 

the summits and the dip and computes the average signal. Then uses these values to assign the 

p-value. We use alternating values of the p-value window length and evaluate active promoter 

detection accuracy in K562 cell line data. Supplementary Figure 4h shows the changing fraction 

of valleys overlapping with active promoters with changing 𝑙𝑝. Increasing 𝑙𝑝 decreases the active 

promoter fraction of valleys. By default, we use 𝑙𝑝=50 base pairs.  

Impact of Sequence Content (Minimum CG Content and Minimum CpG Content) on DNAm 

valleys: A parameter that we used to filter DNA methylation valleys is the minimum CG Content 

in the methyl-valleys.  Supplementary Figure 4m shows the fraction of methyl-valleys as maximum 

CG nucleotide fraction is changed. For low CG nucleotide fraction, the overlap fraction is steady 

above 95%. As the minimum CG content threshold is increased above 40%, the overlp fraction 

starts dropping. We also tested the impact of minimum number of CpG’s in the methyl-valleys. 

This is particularly important for methyl-valleys because the DNA methylation levels are quantified 

mainly at the positions that have CpG nucleotides at the genome sequence. Supplementary 

Figure 4n shows the impact of changing minimum CpG dinucleotide count within the valleys. 

Below 20 CpG dinucleotides and above 60 CpG dinucleotides, the accuracy decreases. As the 

default parameter, we the minimum CpG dinucleotide count as 20, which enables sensitive 

detection of methyl-valleys with high overlap with the transcription factor peaks. 

 

Detection of Differential Valleys and Differential Valley Analysis 

Before we describe how we identify differential valleys, we would like to first briefly discuss how 

we describe a differential valley. We describe a differential valley as a region where one sample 

shows higher signal at one of the summits and/or shows lower signal at the dip. Thus, a differential 

valley would have a more (or less) pronounced valley shape when two samples are compared.  
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The details are now included in the Methods Section of the main manuscript and in the 

Supplementary Information. In addition, Supplementary Figure 13a illustrates the differential 

valley computation. We describe the differential valley analysis below: 

1. Pool valleys: Differential valley calling starts after the valleys are called for the two 

samples. We refer to these samples as Sample1 and Sample2. EpiSAFARI pools the the 

identified valleys from Sample1 and Sample2 without merging.  

2. Normalization of Profiles: Since the read depth of the samples may be different, it is 

necessary to normalize the signal profiles. To do this, EpiSAFARI uses RPM normalization 

where the total signal in Sample1 and in Sample2 are computed. Next, the scaling factor 

is computed by dividing the larger of the total signal values. Finally, the signal profile of 

the sample with lower total signal is multiplied by this scaling factor. This way, both signal 

profiles contain the same total signal.  

3. Computation of Difference Profile: Next, for each valley in the pooled list, EpiSAFARI 

computes the difference signal profile by subtracting the normalized signal profile of 

Sample2 from the normalized signal profile of Sample1. At any position where the 

difference is negative, we assign 0 value to the location. Thus, the difference profile 

reflects the signal within the valleys that are specific to Sample1. 

4. Significance Assignment to Pooled Valleys: Using the difference profile, EpiSAFARI 

computes the multinomial p-value of all the pooled valleys. The logic of using the 

difference profile to compute the p-values is that if there is a differential pattern at the 

tested valley, the difference profile should also look like a valley. Thus, when p-value 

should provide evidence for a significant differential valley. Note that the multinomial p-

value computation was presented in the original manuscript and in the Supplementary 

Information. The differential p-value for each valley is also computed by using the 

difference profile computed by subtracting Sample2 profile from the Sample1 profile. After 
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this, EpiSAFARI assigns two p-values to each of the pooled valleys where first p-value 

represents the significance of a differential valley in Sample1 compared to Sample2 

(Sample1_vs_Sample2 p-value) and second p-value represents the significance of the 

differential valley in Sample2 compared to Sample1 (Sample2_vs_Sample1 p-value). 

5. Filtering of Differential Events: Since each valley is assigned two p-values, it is 

necessary to filter out the valleys to identify the final differential values. We set a 

significance cutoff, by default log(-10), and filter out the valleys for which the 

Sample1_vs_Sample2 p-value is higher than the threshold. Finally, we ensure that there 

is no evidence of a significant differential valley behavior in Sample2 by making sure that 

the Sample2_vs_Sample1 p-value is higher than a relaxed threshold (log(-2)) and that the 

difference profile shows a valley pattern at the location by making sure the summits in 

difference profile have higher signal than the dip location. 

We applied differential valley analysis by comparing the H3K4me3 valleys detected in GM12878 

(Sample1) and K562 (Sample2) cell lines. To evaluate whether the identified valleys are 

meaningful, we hypothesized that the differential valleys must show differential DNase signal. To 

test this, we computed the average DNase signal on each of the pooled valleys. For each valley, 

we divided the DNase signal by the total number of million mapped nucleotides and then by the 

total length of the valley in kilobases (similar to RPKM normalization). After the DNase signal is 

computed for all valleys using GM12878 and K562 DNase data, we performed quantile 

normalization of the signal. This is necessary to remove sample specific global and technical 

effects and also normalize the distributions of the DNase signal on valleys. We finally computed 

the difference (in terms of fold change) in the normalized DNase signal on the K562 specific 

valleys and GM12878 specific valleys, and all the valleys as comparison. Supplementary Figure 

13b shows the distribution of the logarithm of the DNase signal ratio between GM12878 and K562 

cell line, i.e. log(GM12878 DNase Signal / K562 DNase Signal), on the cell line specific valleys 



19 
 

for both cell lines. From the figure, the log fold change (FC) is almost symmetrically distributed 

around 0 for all the valleys. On the other hand, FC distribution is significantly positively skewed 

for GM12878 specific valleys and significantly negatively skewed for K562 specific valleys when 

they are compared with the FC distribution of all valleys (Wilcoxon test p-value < 2.2x10e-16 for 

both comparisons). In other words, the cell line specific valleys show concordant differential 

enrichment of DNase signal in the respective cell line. This analysis presents supporting evidence 

that the identified differential valleys are enriched in differential DNase signal. We performed the 

differential valley analysis by comparing the valleys in H1HESC cell line and K562 cell line. 

Supplementary Figure 13c shows the DNase FC distribution for the cell line specific and all 

valleys. For the valleys specific to each cell line, we observe higher DNase FC for the 

corresponding cell line. 

In Supplementary Figure 13d, we include an example of a region on chromosome 14 where two 

differential valleys, one in GM12878 and other in K562, are identified close to each other. 

Interestingly, this region contains an H3K4me3 peak that manifests on both cell lines. The figure 

shows the H3K4me3 and DNase signals. The visual examination of the signal profiles alone 

shows that while there is high signal in both cell line, the valley structure shows considerable 

changes among cell lines. In addition, the differential valleys (highlighted on the figure) show clear 

increase in DNase signal for the corresponding cell line. We think that this is an example of how 

that valley-based analysis can provide novel insight while analyzing functional genomics data. 

It must be noted that the valley comparisons can be performed in different ways and we present 

one way to compare the valleys. For example, another differential valley pattern is that while the 

valley’s summit/dip signal ratio does not change, the signal at the summits may change direction, 

i.e., the valleys directionality may change. These comparisons can be easily performed using 

command line tools such as awk to filter out the valleys with respect to their directionality. 



20 
 

 

Assignment of Statistical Significance 

The next step is assignment of statistical significance to the detected valleys (Fig. 1). By 

statistical significance, we refer to how significant the depletion of the signal at the dip is 

compared to the signal levels at the summits. Thus, valleys with low p-value correspond 

to deep valleys. The assigned p-values are used to sort the valleys while performing 

enrichment analysis.  

For a valley at (𝑖, 𝑗, 𝑘), EpiSAFARI first computes the signal around the vicinity of the dip 

and the summits using 

𝑆𝑖 = ∑ 𝑠𝑎

𝑖−
𝑙𝑝

2
<𝑎<𝑖+

𝑙𝑝

2

 
(9) 

𝑆𝑗 = ∑ 𝑠𝑎
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(10) 

𝑆𝑘 = ∑ 𝑠𝑎
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𝑙𝑝
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<𝑎<𝑘+

𝑙𝑝

2

 
(11) 

where 𝑆𝑖, 𝑆𝑗, 𝑆𝑘 denote the average signal in the 𝑙𝑝 base pair (100 base pairs by default) 

vicinity of the summits 𝑖, 𝑗, and the dip 𝑘. Next, EpiSAFARI computes the binomial p-

value of enrichment of signal around summits compared to the dip: 

𝑏𝑖𝑛(𝑆𝑖,  𝑆𝑘) = ∑ (
𝑆𝑘 + 𝑆𝑖

𝑎
) ∙ (

1

2
)

𝑆𝑘+𝑆𝑖
𝑆𝑘
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𝑏𝑖𝑛(𝑆𝑗 ,  𝑆𝑘) = ∑ (
𝑆𝑘 + 𝑆𝑗

𝑎
) ∙ (

1

2
)

𝑆𝑘+𝑆𝑗
𝑆𝑘

𝑎=0

 (13) 
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where (
𝑆𝑘 + 𝑆𝑖

𝑎
) number of combinations for selecting 𝑎 items within 𝑆𝑘 + 𝑆𝑖 items: 

(
𝑆𝑘 + 𝑆𝑖

𝑎
) =

(𝑆𝑘 + 𝑆𝑖)!

(𝑆𝑘 + 𝑆𝑖 − 𝑎)! ∙ 𝑎!
 (14) 

In order to assign the final p-value to the valley, we combine the p-values that are 

assigned to enrichment of the signal at the two summits. This process corresponds to 

combining the null models that are used to assign the two p-values for the observed 

summit-to-dip signal enrichment. We first use intersection of the null models as the joint 

null model (Supplementary Fig. 7a). Assuming that the left and right hills are 

independent, this corresponds to the direct multiplication of the p-values: 

log(𝑝 − 𝑣𝑎𝑙𝑢𝑒∩(𝑖, 𝑗, 𝑘)) =  log (𝑏𝑖𝑛(𝑆𝑗 ,  𝑆𝑘)) + log (𝑏𝑖𝑛(𝑆𝑗,  𝑆𝑘)). (15) 

𝑝 − 𝑣𝑎𝑙𝑢𝑒∩ denotes the p-value computed by intersection-based combination of the p-

values assigned to observed summit-to-dip signal enrichment. In addition, we use the 

union of the null models corresponding to null distribution of signal among summits and 

the dip so as to assign the p-value of the valley. As before, we assume that the p-values 

assigned to summits are independent from each other. Thus, the p-value estimated 

from the union of the null models is: 

log(𝑝 − 𝑣𝑎𝑙𝑢𝑒∪(𝑖, 𝑗, 𝑘))

=  log (𝑏𝑖𝑛(𝑆𝑖,  𝑆𝑘) + 𝑏𝑖𝑛(𝑆𝑗,  𝑆𝑘) −  𝑏𝑖𝑛(𝑆𝑗,  𝑆𝑘) × 𝑏𝑖𝑛(𝑆𝑗,  𝑆𝑘)). 
(16) 

𝑝 − 𝑣𝑎𝑙𝑢𝑒∪ denotes the combined p-value (Supplementary Figure 7a). In (15) and (16), 

we assumed that the p-values assigned to observed enrichment of the signal at the left 

and right summits are independent from each other. This assumption may not hold as 

we see a significant correlation of signals on the left and right summits (Supplementary 
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Methods, Supplementary Figure 8a). As an alternative significance estimation method, 

we computed a multinomial distribution-based p-values without the need for combining 

p-values. The multinomial p-value is computed as: 

log(𝑝 − 𝑣𝑎𝑙𝑢𝑒𝑚𝑢𝑙𝑡𝑖𝑛(𝑖, 𝑗, 𝑘))

= ∑  ∑
(𝑆𝑖 + 𝑆𝑗 + 𝑆𝑘)!

(𝑆𝑘 − 𝑎)! ∙ (𝑆𝑗 + 𝑏)! ∙ (𝑆𝑖 + 𝑎 − 𝑏)!
∙ (

1

3
)

𝑆𝑖+𝑆𝑘+𝑆𝑗𝑎

𝑏=0

𝑆𝑘

𝑎=0

 

(17) 

where the p-value is computed as the probability for different signal configurations at the 

summits and the dip such that the configurations are more extreme than what we 

observed. By more extreme, we mean the signal at one or both of the summits are 

higher than the observed signals (Supplementary Fig. 7b). We compute the p-value as 

the total probability of all the signal configurations that correspond to more extreme 

valleys than the observed valley. In general, the union-based binomial p-value merging 

is more conservative and exhibits lower sensitivity compared to the intersection-based 

p-value merging and multinomial based p-values (Supplementary Methods, 

Supplementary Figure 8b, c). We therefore use intersection-based binomial p-value 

merging in the benchmarking. After the p-values are assigned, the false discovery rate 

at which each valley would be deemed significant is estimated using Benjamini-

Hochberg procedure(Benjamini, 2010).  

The valleys that EpiSAFARI detected may overlap with each other although we 

generally observed that the overlap between detected valleys tends to be very small. To 

ensure that a non-redundant set of minima are reported, EpiSAFARI filters out the 

valleys whose dips are close to each other by selecting the most significant valley (i.e., 

lowest p-value) around local minima positions.  
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An important factor about detecting valleys is the required sequencing depth. For 

analyzing the required read depth, we used a high depth H3K4me3 ChIP-Sequencing 

data from NA12878 sample (Kasowski et al., 2013) and identified valleys. We next 

computed the increase in the number of valleys with increasing read depth and the 

increase in the fraction of identified functional elements (Supplementary Information, 

Supplementary Figure 4i and 4j). We found that beyond 35-40 million reads, the valley 

detection does not provide substantial additional information.   

Valley Annotation  

EpiSAFARI can annotate valleys with respect to genes and transcription factor binding 

peaks. This step compares the valleys with an annotation file in GFF format and assigns 

the valley to the promoters, transcripts, and exons. We also created a GFF file from the 

transcription factor binding peak regions from ENCODE project(Dunham et al., 2012). 

This GFF file contains the peaks of the transcription factors that are identified by 690 

ChIP-Seq experiments performed on cell lines and uniformly processed by the ENCODE 

Project. EpiSAFARI can use these to annotate the valleys with respect to transcription 

factor binding. EpiSAFARI generates an extended BED file which contains the valley 

positions, signal levels, multi-mappability signal, significance, and annotations for each 

the valley. The smoothed signal profiles can be used for visualizing the signal 

(Supplementary Fig. 2). 

Data Availability and Accession Numbers 

The H3K4me3 histone modification ChIP-Seq and DNase data, and transcript expression 

quantifications   for K562, GM12878, and H1hESC cell lines are downloaded from ENCODE 

project website (http: //hgdownload.soe.ucsc.edu/goldenPath/hg19/encodeDCC). The 
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transcription factor binding peaks for K562, GM12878 and H1hESC cell lines are downloaded 

from the uniformly processed datasets of the ENCODE Project. The conservation scores are 

downloaded from the 100-way PhyloP track of UCSC Genome Browser. Whole genome bisulfite 

sequencing-based DNA methylation data for H1hESC data is downloaded from the Roadmap 

Epigenome Project Data Browser. GRO-Seq data is downloaded from GEO website with 

accession number GSM1480326. The GO enrichment analysis is performed using DAVID 

website(15). The random valleys in aggregation analyses and plots are generated by randomly 

shifting each valley within 1 megabase vicinity of itself. The H3K4me3 peaks are identified using 

MUSIC(16) algorithm. The whole genome bisulfite sequencing-based DNA methylation data for 

GM12878 cell line is downloaded from GEO web site with accession number GSM2772524.  

The multi-mappability profile is obtained as described in a previous publication(16). In summary, 

the genomes are fragmented into fragments of the desired read length (denote by 𝑙𝑟𝑒𝑎𝑑) and these 

are mapped back to the reference genome by allowing multimapping reads. After the reads are 

mapped, we count the number of reads that are mapping to every genomic position. For any 

genomic position that is uniquely mappable, this computation yields exactly 2 × 𝑙𝑟𝑒𝑎𝑑 at that 

position. For any genomic position that is multi-mapped, the number of overlapping reads at the 

position will be higher than 2 × 𝑙𝑟𝑒𝑎𝑑, therefore we call this profile the multi-mappability profile. 

This profile quantifies the multi-mappability of each position in the genome for the given read 

length of 𝑙𝑟𝑒𝑎𝑑. 
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Supplementary Figures 
 

 

Supplementary Figure 1: Illustration of basis spline functions of different degrees with 7 knots. 

The x-axis represents the signal domain (between 0 and 1000) and y-axis represents the signal 

value. Each basis spline is shown with a red curve. The spline degree increases from 1 (leftmost) 

to 5 (rightmost). For degree 1, smoothing is basically replacing data with its mean between 

consecutive knots. For degree 2, the smoothing represents the piecewise linear smoothing of the 

data. Above degree of 2, the splines show more complex patterns that can represent different 

types of smooth transitions. The knot positions (excluding the first and last knots that are located 

at the beginning and at the end, respectively) are indicated with light blue arrows on the x-axis. 

The top row shows the basis splines with uniform knot selection. The bottom figure shows the 

basis splines generated by the random knot selection. 
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Supplementary Figure 2: a) Screenshot of valleys detected by EpiSAFARI as visualized using 

IGV. a) The top panel shows the smoothed signal profile. The valleys are shown in the bottom 

panel. The middle panel shows the gene annotations. The gene has a beginning where 

EpiSAFARI detected a valley. Other valleys are identified neighboring this valley. b) Example 

region containing a valley in DNA methylation signal profile. The top track, titled ‘Original Signal’ 

shows the original signal profile from the WGBS experiment. Note the sparseness of the signal 

as it is measured only at the CpG dinucleotides. The second track shows the spline smoothed 

signal profile generated by EpiSAFARI. The signal is turned into a continuous profile that is used 

to identify the valley that is shown in the following track. The gene and CpG island annotations 

are shown in the bottom two tracks. 
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Supplementary Figure 3: The sensitivity of EpiSAFARI with changing number of knots (x-axis, 

between 3 and 15) and spline degrees (y-axis, between 1 and 7) for 3 different knot placement 

approaches: uniform (a), derivative-based (b), and random (c). The colors indicate sensitivity. The 

exact sensitivity value is included in each cell for clarification. The blue lines indicate the accuracy 

at the default spline degree (5) and knot number (7). 
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Supplementary Figure 3d, e, f: Number of valleys detected by EpiSAFARI for different number 

of knots (x-axis), spline degrees (y-axis), and knot placements. The exact number of detected 

valleys is included in each cell. 
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Supplementary Figure 3g, h: Illustration of compute time in seconds (g) and average smoothing 

error (h) versus knot number and spline degree.  
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Supplementary Figure 3i, j, k: The distribution of relative position of valley dips within l_w=1000 

base pair windows for K562 H3K4me3 ChIP-Seq data with different breakpoint selection 

strategies. X-axis shows the relative position with respect to the start position of the window. Y-

axis shows the number of valley dips whose relative location is observed at the corresponding 

location on X-axis. The uniform breakpoint (left plot) selection shows periodic bias for the valley 

dip locations. For derivative and random breakpoint selections (middle and right plots, 

respectively), slight bias is observed at the ends of the windows. The top 5000 (blue), 10,000 

(light blue), 20,000 (cyan), 50,000 (green), and all valleys (yellow) are plotted in each plot. 
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Supplementary Figure 3l: The distribution of relative position of valley dips within l_w=1000 base 

pair windows for K562 H3K4me3 ChIP-Seq data when smoothing is performed with sliding 

window with 250 base pair steps. X-axis shows the relative position with respect to the start 

position of the window. Y-axis shows the number of valley dips whose relative location is observed 

at the corresponding location on X-axis. The top 5000 (blue), 10,000 (light blue), 20,000 (cyan), 

50,000 (green), and all valleys (yellow) are plotted in each plot. 

 

 

 

 

 

 

 

 

 

 



32 
 

 

Supplementary Figure 4a, b, c: Sensitivity of EpiSAFARI with changing window length 

parameter, 𝑙𝑤, for three different knot placement approaches (a) Uniform, (b) Derivative-based, 

(c) Random. X-axis shows the window length and y-axis shows the sensitivity. 

 

 

 

 

 

 

 

 



33 
 

 

 

Supplementary Figure 4d, e, f, g: Active promoter sensitivity of EpiSAFARI with changing 

window length parameter, 𝑙𝑚𝑖𝑛 (d), 𝑙𝑚𝑎𝑥 (e), 𝑓𝑚𝑖𝑛 (f), and 𝑙𝑝𝑜𝑠𝑡 (g). Each plot contains the fraction 

of active promoters that overlap with 200 base pair vicinity of the top 1000 (blue), 2000 (cyan), 

3000 (Green), 4000 (Yellow), and 5000 (Red) valleys. X-axis shows the changing parameters. 
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Supplementary Figure 4h: Active promoter sensitivity of EpiSAFARI with changing p-value 

signal estimation window length, 𝑙𝑝. Each plot contains the fraction of active promoters that 

overlap with 200 base pair vicinity of the top 1000 (blue), 2000 (cyan), 3000 (Green), 4000 

(Yellow), and 5000 (Red) valleys. X-axis shows the changing p-value signal estimation window 

length. 
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Supplementary Figure 4i, j: Increase in the detected number of valleys (i), and increase in the 

fraction of valleys that overlap with functional elements (j) as the number of reads are changed. 

X-axis shows the number of reads. 
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Supplementary Figure 4k, l: Impact of 𝑙𝑚𝑖𝑛 (k), 𝑙𝑚𝑎𝑥 (l) on the fraction of top methyl-valleys 

overlapping with transcription factor peaks. 

 

 

 

 

 

 

 

 

 

 

 

 



37 
 

 

Supplementary Figure 4m, n: Impact of CG nucleotide fraction (m), number of CpG 

dinucleotides in valleys (l) on the fraction of top methyl-valleys overlapping with transcription factor 

peaks. 
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Supplementary Figure 5a: Illustration of hill score. A valley is defined as a dip (𝑘) surrounded 

by two summits (𝑖 and 𝑗). The left (right) hill is the region between the left (right) summit and the 

dip. The left (right) hill score is counted as the number of genomic coordinates that go up while 

traveling from the dip to the left (right) summit. The coordinates that are “up-hill” and “down-hill” 

are indicated with green and red arrows, respectively. In this example, left hill score is 1 because 

there are no coordinates that are down-hill. Right hill score is smaller than 1 because the region 

between coordinates 𝑎 and 𝑏 are down-hill. 
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Supplementary Figure 5b: Illustration of valley merging with decreasing hill score threshold. The 

left and right valleys have good shapes and are assigned hill scores of 1.0. When we combine 

them and compute the hill score for the merged valley, the hill score of this valley is subpar, i.e., 

smaller than 1.0 because of the summit in the middle (See Supplementary Figure 4a). Thus, 

decreasing the hill score cutoff may create merged valleys that have lower topological quality. 
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Supplementary Figure 5c, d: Distribution of Pearson Correlation between left hill scores (a), and 

right hill scores (b) assigned by different parameter combinations, (knot number, spline degree). 

X-axis shows the correlation and y-axis shows the frequency that the correlation is observed 

among pairwise comparisons of the parameter sets. The correlations are clustered around 0.8. 
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Supplementary Figure 5e, f, g: Distribution of left hill scores (e), distribution of right hill scores 

(f), and the scatter plot showing the left (x-axis) and right hill scores (y-axis) where each point 

represents a valley and x and y coordinates are the left and right hill scores, respectively. Note 

the large amount of clustering of valleys with hill scores equal to 1. 
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Supplementary Figure 5h, i, j: The sensitivity of the valleys detected by EpiSAFARI with 

changing hill score cutoff (x-axis) for uniform knot selection (a), derivative-based knot selection 

(b), and random knot selection (c). X-axis shows the hill score cutoff and y-axis shows the 

sensitivity of detected valleys. 
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Supplementary Figure 5k, l, m: Illustration of valley redundancy (y-axis) with changing hill score 

cutoff (x-axis). The changing redundancy with uniform knot selection (a), derivative-based knot 

selection (b), and random knot selection (c) are plotted. 
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Supplementary Figure 6a, b: Effect of smoothing parameters on valley asymmetry. a) The 

distribution of Pearson Correlation of valley asymmetry values between different parameter 

combinations (knot number, spline degree). X-axis shows the correlation between the valley 

direction in comparisons. b) The distribution of fraction of valleys that change direction. X-axis 

shows the fraction of valleys that changed direction in pairwise comparisons. Y-axis shows the 

frequency of direction changing valleys. 
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Supplementary Figure 7a: Illustration of statistical significance estimation for a valley at (𝑖, 𝑗, 𝑘) 

using combination of binomial p-values of summit-to-dip enrichments for left and right summits. 

The total signal within 𝑙𝑝 base pair vicinity of the dip, 𝑘, and the summits, 𝑖 and 𝑗, are computed. 

These are denoted by 𝑆𝑖, 𝑆𝑗, and 𝑆𝑘. The statistical significance of enrichment of signal at summits 

(𝑆𝑖, 𝑆𝑗) compared to the dip (𝑆𝑘) is estimated using binomial test, which are denoted by 𝑏𝑖𝑛(𝑆𝑖,  𝑆𝑘) 

and 𝑏𝑖𝑛(𝑆𝑗,  𝑆𝑘). The p-values are combined using two methods. First is based on intersection of 

the null models. In this case, the combined p-value is computed by multiplication of the p-values 

for each hill, or by summing the logarithms of these binomial p-values. Second is based on taking 

the union of the null models, which corresponds to combining the p-values under the assumption 

that the p-values are not correlated with each other. 
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Supplementary Figure 7b: Illustration of the signal configurations in multinomial p-value 

computation. The signal levels in the vicinity of summits and the dip are computed. In order to 

compute the multinomial p-value, we enumerate all the signal configurations (illustrated at the 

bottom) that corresponding to valleys that are equal or more “extreme” than the observed 

configuration illustrated in the middle. We define more extreme valleys as valleys that have higher 

signal in either of the summits and lower signal at the dip. Thus, we enumerate all the ways that 

the signal at the dip, 𝑆𝑘, can be “partitioned” to the summits. In the figure, 𝑎 and 𝑏 represent the 

portions of signal from the dip that is partitioned to right and left summits, respectively. After 

partitioning, left summit has total signal of 𝑆𝑖 + 𝑏, right summit has 𝑆𝑗 + 𝑎, and the dip has 𝑆𝑘 −

𝑎 − 𝑏 signal. We next compute the probability of this configuration under null hypothesis that the 

signal is equally likely distributed to the summits and the dip. The p-value is computed by 

enumerating all 𝑎 and 𝑏 such that 𝑎 + 𝑏 = 𝑆𝑘. 
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Supplementary Figure 8a, b, c: Impact of p-value computation on accuracy. The scatter plot of 

left and right summit heights (a) shows a clear correlation between the summit heights. Each dot 

represents a valley and x and y axis coordinates are the left and right summit heights, respectively. 

The sensitivity of the detected valleys with different p-value computations is shown in (b). The 

intersection based binomial p-value combinations provide the most sensitive valley predictions. 

The fraction of top valleys (with respect to p-value) that overlap with transcription factor (TF) peaks 

is shown in (c). X-axis shows the number of top peaks and y-axis shows the fraction of valleys 

that overlap with TF peaks. 
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Supplementary Figure 9: Stratification of transcription factors overlapping with H3K4me3 

valleys. The number of overlaps between the top 1000 valleys and different transcription factors. 

X-axis shows the transcription factor and Y-axis shows the number of valleys that overlap with a 

peak of the corresponding transcription factor. The transcription factors are sorted with respect to 

decreasing number of valleys overlapping with them. 
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Supplementary Figure 10: Analysis of nascent transcription around the H3K4me3 valleys. a) 

The aggregation of GRO-Seq signal within 20,000 base pairs of the dips reported by EpiSAFARI. 

All valleys (Blue), Randomized regions (Green), and valleys that do not overlap with any 

H3K4me3 peaks (Red) are plotted. Random regions are generated by randomly shifting the 

valleys within 1 megabase vicinity of the valley’s starting position. Plus and minus strand signals 

are plotted with straight and dashed lines, respectively. The valley below the figure aims to 

illustrate the valley’s positioning within 20 kilobase region. Two humps represent the two summits 

of the valley.  Note that the summit locations in this illustration are not drawn to scale. The red 

dashed arrows indicate how the dip coordinates align with the x-axis of the aggregation plot. 
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Supplementary Figure 10: Analysis of nascent transcription around the H3K4me3 valleys. b) 

The aggregation of GRO-Seq signal for valleys that do not overlap with any peaks (Non-peak 

Valleys) and random regions are plotted to highlight the GRO-Seq signal on non-peak overlapping 

valleys.  
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Supplementary Figure 11: Stratification of transcription factor binding around methyl-valleys. a) 

Fraction of overlap between the top 1000 methyl-valleys and transcription factor peaks. The bars 

are sorted with respect to decreasing number of overlaps. The transcription factors are shown on 

x-axis and the number of overlapping methyl-valleys are shown on y-axis.  
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Supplementary Figure 11: Stratification of transcription factor binding around methyl-valleys. b) 

Overlap of top 1000 non-promoter associated methyl-valleys with transcription factors. The top 

transcription factors associated with chromatin structure are highlighted with a dashed red 

rectangle.  
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Supplementary Figure 12: a) The fraction of the top 2000 methyl-valleys in GM12878 that 

overlap with a transcription factor peak.  
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Supplementary Figure 12: b) The frequency of transcription factors that overlap within top 

GM12878 methyl-valleys.  
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Supplementary Figure 13: a) Detection of differential valleys from two samples. In the example 

above, the detection of differential valleys in Sample 1 is illustrated. The difference profile is 

computed by subtracting sample 2’s profile from sample 1’s profile. Note that the differences that 

would yield a negative value are set to 0, as shown on the right valley. The difference profile is 

used to assign differential valley p-value (by multinomial p-value estimation) to each valley in the 

total set of valleys detected in both samples. In the example above, left valley in sample 1 shows 

differential activity. However, the right valley detected in sample 2 does not show differential 

activity in sample 1, as expected. The same comparison is repeated by switching the order of 

profiles to identify the differential activity of valleys in sample 2. 

 

 

 

 

 

 

 

 

 



56 
 

 

Supplementary Figure 13b, c) Normalized DNase signal fold change (FC) distribution on cell 

line specific valleys in differential H3K4me3 valley analysis between GM12878 vs K562 and 

H1HESC vs K562 cell lines. b) Leftmost barplot shows the distribution of log(GM12878 DNase 

signal / K562 DNase signal) on all the valleys detected in GM12878 and K562 cell lines. Middle 

plot shows the distribution of FC for GM12878 specific valleys. Right plot shows the distribution 

on K562 specific cell line. Note that the distribution DNase FC on GM12878 specific valleys is are 

skewed towards positive values and towards negative values for K562 cell line. Comparison of 

DNase FC distributions on cell line specific valleys are significantly different from the FC 

distribution on all valleys (Wilcoxon rank sum test p-value < 2.2x10e-16 for all comparisons). c) 

DNase FC distribution on differential H3K4me3 valleys detected from comparison of K562 and 

H1HESC cell line. 
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Supplementary Figure 13d: Example of a region with two differential valleys identified by 

comparing GM12878 and K562 cell lines. Top 3 rows show the H3K4me3, DNase signals, and 

the GM12878 specific valley. Bottom 3 rows show the H3K4me3, DNase signals, and the K562 

specific valley. Although both cell lines have high H3K4me3 signal at this locus, the structure of 

the H3K4me3 signal (in terms of valleys) is quite different. The two differential valleys in GM12878 

and K562 shows differential DNase signal in corresponding cell lines. 
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