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Supplementary Methods and Information

Valleys, Troughs, Canyons and Their Length Scales

For clear presentation, we discuss below the nomenclature and definitions of valley shaped signal
patterns, namely valleys, troughs, and canyons. We also discuss the length scales of valley

shaped signal patterns.

Valleys. Given a functional genomics signal profile (such as from a ChIP-Seq experiment) a valley
is basically a region in the genome that shows a “V” shaped signal pattern as shown in Figure 1.
At the ends of the valley are the summits (local maxima) of the signal profile. There is also one

dip within the valley which harbor the smallest signal within the valley. A “good” valley exhibits



monotonic decrease in the signal level when moving from either of the summit positions to the dip

position.

Troughs. We treat the “trough” and “valley” as identical. To the best of our knowledge, troughs

and valleys are used interchangeably in the literature (1).

Canyons. The canyons are similar to the valleys except that the basin of the valley is a broad
region with depletion of signal. The canyons are studied in the context of DNA methylation data
analysis. Unlike valleys, the canyons have much steeper hills compared to valleys when moving
from the edge of the canyon to the base of the canyon. Thus, the signal profile over canyons are
similar to a broad “U” shaped pattern with large basin (2, 3). A recent publication referred to these

broad canyon domains as “nadirs” (4).

Length scales of valleys. As functional genomics signals exhibit dynamic patterns along the
genome, almost all of the functional genomics signal profiles exhibit valley patterns. The important
guestion about these valleys is whether the valleys are biologically meaningful. EpiSAFARI
represents a general method for sensitive detection of the valleys. In the current manuscript, we
have focused on punctate valleys that are generally shorter than 5 kilobases. The main reason
for this is that the punctate valleys have been referenced in the literature and they potentially
correspond to functional cis-regulatory elements such as promoters, enhancers, and insulators.
We believe that the default parameters are sufficient to analyze the punctate cis-regulatory
elements and their properties with respect to the valleys. The valleys for other types of assays
can have different lengths depending on the assay type and biological context that is being
analyzed. For other types of data, it is therefore important to visually evaluate the signal using a
genome browser (such as IGV) and make sure that the parameter selection supports the valleys

in question.



An example of other type of valleys are the valleys manifesting in RepliSeq experiments (5) where
relative replication timing of each position in the genome are measured in a high-throughput
manner using a next-generation sequencing based assay. The locations in the genome that
replicate early show higher signal than those replicate later. Therefore, evaluation of a RepliSeq
signal profiles shows that large valleys correspond to regions in the genome replicate later than
the peak regions. These valleys manifest at much larger length scales and they may extend
several megabases. We currently did not address detection of the valleys at this length scale in

this manuscript.

Yet another example of biologically important valleys are observed in digital genomic foot-printing
experiments(6, 7). In these experiments, DNA that is open and accessible is sequenced. This
enables probing where the transcription factors can interact with DNA. The functionally important
valleys in the DNase signal are extremely narrow regions (5-20 base pairs long) and they are
hypothesized to correspond to transcription binding sites. The reason why we observe a valley in
the DNase signal is that the bound transcription factor causes a very narrow stretch of the DNA
(at the location of the binding motif) to be inaccessible to the assay. Indeed, these extremely
punctate valleys are shown to be associated with exact locations of transcription factor binding
and positions where proteins interact with DNA upon binding. Related to probing of the open
chromatin, the genomewide measurement of the nucleosome positioning, through assays such
as MNase-Seq(8, 9) have also been shown to produce valley shaped patterns(10, 11). In
essence, these assays measure where the nucleosomes are positioned on the genome. This is
an important task for mapping the active open chromatin domains in the genome and for
understanding the biological determinants of how nucleosomes are remodeled and managed by
the cells. The punctate valley patterns (100-200 base pairs) in these experiments are especially
well-studied with regard to their impact on gene regulation stemming from nucleosome positioning

at the transcription start sites and transcription end sites(10).



Signal Smoothing by EpiSAFARI by Overlapping Windows

While smoothing the signal, the starting position of the smoothing window is updated
using a stepping length that is smaller than the window length. This way, each position
on the genome is covered by multiple smoothing windows. For each position, the final
smoothed value is assigned as the maximum of the smoothed values assigned by all the
windows covering the position. By default, the stepping length is set to [, i.e., non-

overlapping windows.

Selection of the Spline Parameters

The spline parameters determine the location of the valleys and may impact the accuracy.
In addition, the hill scores and valley asymmetry may be affected by the spline smoothing
parameters. Thus, we studied the impact of knot numbers, knot positioning, and spline
degree on the accuracy of detecting valleys. To determine the effect of spline parameters
on the valley accuracy, we used the H3K4me3 data for the K562 cell line from the
ENCODE Project. To generate a ground truth set for the H3K4me3 valleys, we used the
active genes promoters that overlap with any transcription factor binding peak as detected
from ChlIP-Seq datasets. The basic motivation for using these regions as ground truth is
following: It is generally known that the promoters of active genes are enriched with
H3K4me3 histone modification. If we put the additional requirement that these promoters
overlap with transcription factor binding, these promoters most likely contain a valley

inside them.



To generate the ground truth regions, we first downloaded the gene expression levels for
K562 cell line from the ENCODE Project. We then identified the genes whose average
replicate expression level is greater than 0.05. We finally extracted the promoters of these
active genes and overlapped them with the ChIP-Seq transcription factor peak regions
for K562 cell line from the ENCODE project. The intersecting promoters are used as the
ground truth. We denote the genomic locations for the ground truth set of promoter
regions by P. It must be noted that these regions do not necessarily correspond to a
complete set of the H3K4me3 valleys for K562 since this mark can also manifest on the
enhancers in the intergenic domain. Thus, the valleys that EpiSAFARI detects will most
likely contain many valleys that do not overlap with this ground truth. For this reason, we
will evaluate the sensitivity of the valleys, i.e., the fraction of the set of ground truth regions

that overlap with the detected valleys while evaluating the parameter selection.

After building the ground truth set, we next ran EpiSAFARI to detect the valleys in the
H3K4me3 signal profile of K562 cell line with changing spline degree, knot number, and
knot placement. To decrease the computation time, we focused only on the chromosome

1 for these analyses.

Knot Locations. To evaluate the effects of knot locations, we evaluated 3 knot placement
strategies. First is derivative based knot selection. In this knot selection, we place the
knots where the read depth signal shows fast changes along the genome. In this knot
placement, EpiSAFARI places the knots at the locations for which the signal has the
largest absolute signal derivative. We next implemented the random knot placement

where the knots are randomly placed along the domain of the signal (Supplementary Fig.



1). We finally included the uniform knot placement where the knots are placed at equal

intervals within the domain of the signal.

Knot Numbers. In order to include a wide range of knots distributed along the domain of
the read depth signal, we used between 3 (minimum that we can use) and 15 knots. This
way we evaluate both the densely and sparsely positioned knot selections. We denote

the knot number with k.

Spline Degree. For each knot selection, we use spline degrees between 1 and 7. This
way, we assess wWhether the increasing degree of the splines increase the sensitivity of

the valley detection. We denote the spline degree with .

We ran EpiSAFARI with the all the knot selection, knot number, and spline degree
parameter combinations and computed the sensitivity of the identified valleys from each

parameter combination. We next computed the sensitivity of the valleys as:

[P N V|

Sensitivity(V | {ky, ky, ..., k, }, ) = P

(18)

where V denotes the set of valleys (i.e., the genomic coordinates of the valleys) that are
identified by EpiSAFARI with x knots positions denoted by {kq, ks, ...,k,} and spline
degree . P denotes the set of active promoters (the genomic coordinates) that are bound
by transcription factor peaks. |P nV| denotes the number of active and TF bound

promoters that overlap with the ¥V and |P| denotes the number of promoters in P.

We computed the sensitivity of the valleys detected using knot selection and spline
degrees. (Supplementary Figure 3a, b, ¢). When the knot number and spline degree are
both small, the sensitivity is smallest at around 0.2. As the number of knots or the spline

6



degree increases, the sensitivities increase reaches around 0.8. This indicates that the
overly simple smoothing is not powerful enough to detect the valleys. However, as we
increase the complexity of smoothing, the sensitivity saturates at around 0.80 and starts
decreasing as the smoothing is made more complex. This result highlights that increasing
complexity of smoothing splines may decrease the sensitivity of valley detection. When
different knot selection approaches are compared, the derivative based knot placement
does not show improved performance over the uniform and random knot placement
strategies. We also evaluated the number of valleys that are detected by EpiSAFARI
using different parameter combinations (Supplementary Fig. 3d, e, f). This is important
because we want to also compare the number of valleys identified using different
parameters. We observed that the number of valleys increases as the knot number and
spline degree increases. The number of valleys (and sensitivity) decreases when we use

parameter configurations with more than 7 knots and spline degree of 6 and higher.

In summary, we observed that extra complexity does not provide much improvement for
our sensitivity analysis and in fact increasing complexity too much may cause overfitting
of the data and may decrease the quality of selected valleys. Putting all these
considerations together, we decided to use uniform knot selection with number of knots
set to 7 and spline degree as 5. This selection is motivated to make balance between the
accuracy, the number of valleys, and also the computation time that is required to run the
algorithm (Supplementary Fig. 3g, h). The users can change the parameters to make

EpiSAFARI run more conservatively or in a relaxed fashion.

It is worth noting that there are knot placement strategies other than the ones that we

evaluated here(12). As we discussed before, the knot placement in spline smoothing is



an open problem that is currently not solved in general cases. However, our results show
that when we use a set of basis splines that are reasonably complex, i.e. not-very-low
spline degree and knot numbers, the placement strategy does not impact the sensitivity

considerably.

EpiSAFARI divides the genome into non-overlapping [, long windows and performs
smoothing for each window independently. Within each window, the knots are
independently added. We evaluated whether the knot selection impacts the valley
detection. For this we analyzed the relative distribution of the valley dips within their
corresponding [,, long windows. Supplementary Figure 3i, j, and k show the distribution
of the relative valley dip locations for uniform, derivative, and random knot selection
procedures. For uniform knot selection, there is a clear periodic pattern in the distribution
of the relative dip locations. This pattern stems from the fact that the knots are positioned
at the same positions in each window, i.e., uniformly distributed within [,, long window.
For derivative and random knot selections, the periodic pattern does not exist. However,
there is slight enrichment of dips close to the ends of the windows. These biases are

removed when we use overlapping window-based smoothing (Supplementary Figure 3l).

Window Length Selection. Window length parameter, [,,, directly relates to smoothing
as it determines the chunk of signals that will be smoothed at every step of smoothing.
We computed the sensitivity of the detected valleys with changing [, parameter
(Supplementary Fig. 4). As [,, < 1000, the sensitivity increases with increasing window
length, after [, > 1000, the sensitivity starts decreasing. The main reason for this is
possibly that the spline smoothing is underfit, i.e., the number of knots (and basis

functions) is not large enough to reliably smooth the signal. From this observation, we
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suggest usage of [,, = 1000 for punctate histone modifications. The selection of window
length for sparse signals should be increased to increase the number of points of interest
in each window so that the smoothing can be performed reliably. In addition, the expected
valley lengths must be taken into consideration. For DNA methylation signals, we
observed that for [, = 5000 is sufficient with the knot number of 7 and spline degrees of

5.

Impact of Smoothing Parameters on the Hill Score

The hill score is computed for each valley separately using the smoothed signal profiles
(Supplementary Figure 5a, b). Thus, the effect of the smoothing parameters on the
computed hill scores is important. To compare the hill score estimates from different
smoothing parameters, we computed the correlation between the hill scores assigned to
valleys detected with different parameters. For this, we ran EpiSAFARI to identify the
valleys in H3K4me3 data using the knot numbers, k, between 4 and 15, and spline
degrees, Y, between 4 and 7. Given two sets of valleys computed by different knot
numbers and spline degrees, we identified the valleys that share minima between these
valley sets. Next, we computed the correlation between the left hill scores and the
correlation between the right hill scores. This correlation computation is performed for all
pairwise comparisons of parameters. The distribution of the left and right hill score
correlations (Supplementary Fig. 5c, d) show that there is a substantial agreement
between the assigned scores such that the correlations are mostly clustered above 0.40

with the most frequent correlations around 0.80.

It should be noted that the maximum allowed error in smoothing was set to a very large

value while signal is smoothed in the above computations. This was performed to



compare the impact of the parameters on the hill score without any parameter updates.
When we decrease the maximum error in smoothing to the default values, we observed
that the correlations between the assigned hill scores increases much. For example, the
correlation of left and right hill scores for the most distant parameter sets (Y = 4, k = 4)
and (Y =7, k=15) is 0.59 and 0.66, respectively. Whereas, without the parameter
updates, the left and right hill score correlations between valleys detected from these
parameter sets is 0.49 and 0.44, respectively. This indicates that the hill scores of valleys

detected with the parameter updates will exhibit higher consistency.

Selection of hill score threshold with respect to sensitivity and valley redundancy.
One of the important parameters is the hill score threshold that is used to filter out
topologically low-quality valleys (Supplementary Fig. 5b). In principle, the higher hill
scores correspond to valleys that have very good topologies such that hills are
monotonically increasing as we move from the valley’s dip to the valley’s summits. Thus,
setting the hill score threshold high enables selecting good valleys. The distribution of left
and right hill scores (Supplementary Fig. 5e, f, g) show that there are substantial number

of valleys with hill scores very close to 1.

We next evaluated how the sensitivity of valleys changes with changing hill score
threshold. We detected valleys using hill score parameters between 0.1 and 0.99. It can
be seen that the sensitivity decreases as we increase the hill score. While the sensitivity
of the valleys is decreasing with increasing hill score, another competing factor is the
valley redundancy (Supplementary Figure 5k, I, m). The valley redundancy refers to how

many valleys overlap with each other. The valley redundancy will increase with
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decreasing hill score because valleys may start engulfing other valleys when the hill score
threshold is decreased. We computed the valley redundancy as:

|V(n)

merged

[V

(19)
Valley Redundancy =1 —

where 7 indicates the hill score, V™ denotes the valleys detected using n and Vggrged

denotes the set of valleys generated by merging the valleys in V@ where any two valleys
with at least 1 base pair overlap are merged into one valley. As expected, the valley
redundancy decreases with increasing n because valleys have distinctly uniform shapes.
For n = 0.1, the redundancy is around 40% and decreases to around 3% for n = 0.99.
This result indicates that hill score cutoff of 0.99 enables identification of distinct valleys
at a cost of sensitivity. We have decided this is a fair tradeoff to generate high quality

valleys and used n = 0.90.

Impact of Read Depth on Valley Detection

An important question about detection of valleys is to evaluate how many reads are necessary to
for robust detection of valleys. To evaluate the impact of sequencing depth, we downloaded a
high depth ChIP-Seq sequencing data from another study where 100 million reads are sequenced
from H3K4me3 ChIP sample of GM12878 cells(13). For this data, we subsampled reads starting
with 5 million reads up to 90 million reads with increments of 5 million reads. We next ran
EpiSAFARI using each the reads generated by each subsampling. We observed the number of
valleys increases with increasing read depth. Supplementary Figure 4i shows the additional

number of valleys detected by each read sampling. While increasing read depth increases the
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number of detected valleys, the increase in number of valleys is steady (At around 1000 valleys

per 5 million reads) beyond 20 million reads.

We next quantified the increase in the fraction of functional elements (active promoters,
transcription factor peaks, and DNase peaks) that overlap with the identified elements
(Supplementary Figure 4j) with increasing read depth. As expected, the overlap with functional
elements increases with higher read depth. However, the increase in the fraction of identified

functional elements is stabilized around 35-40 million reads.

Combining these two observations above, we believe that at least 35-40 million reads are
necessary to identify meaningful set of valleys. In comparison with literature, this result is higher
than the results of a previous study on the impact of sequencing depth on ChlP-Seq analysis (14).
In this study, the authors proposed that around 20-25 million reads are sufficient for detection of
the peaks for H3K4me3 marks. We believe this difference is expected since valley identification
requires more reads for detecting the detailed patterns associated with valleys. In addition, it
should be noted that this estimate will be impacted by the technical factors such as the signal-to-
noise ratio in the sample preparation and IP efficiency. In addition, the biological properties of the
tested samples (the species, tissue cultures-vs-immortalized cell lines, normal-vs-tumor samples)
will also have an impact on the required read depth. As such, these “saturation” analysis are fairly
hard to conduct for technical and biological reasons, as the authors of above referenced study

also conclude (14). Therefore our estimate should be taken with these factors in mind.

Impact of Smoothing Parameters on Valley Asymmetry

Similar to the hill scores, the smoothing parameters may impact the valley asymmetry,
i.e., the imbalance between the left and right summits of the valleys. We first performed
correlation of the valley asymmetry between every pairwise set of valleys within the sets

of valleys detected using the knot numbers between 3 and 15, and spline degrees
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between 3 and 7 (Supplementary Fig. 6a). Most of the correlations are clustered around
0.9, which indicates a high consistency between the asymmetry of valleys detected by
set of parameters. We also evaluated the fraction of valleys that “changed direction” when
pairwise sets of valleys are compared. To detect valleys that changed direction, we
compared pairs of valleys detected using different parameters, then we counted the
number of valleys which have turned from a left-to-right valley to a right-to-left valley. By
left-to-right (right-to-left) valley, we refer to the valleys whose left (right) summit has higher
signal than the right (left) summit. The distribution of the fraction of valleys that changed
direction (Supplementary Fig. 6b) shows that directionality changing valley fraction is
mostly clustered around less than 5%. These results indicate that the valley asymmetry

is affected only slightly by the changing smoothing parameters.

Impact of Search Space and Filtering Parameters on Valley Detection

lnin and 4, parameters describe the minimum distance and maximum distance between valley
dip and valley summits. This enables decreasing search space by evaluating only the summits
within certain vicinity of dips to identify valleys. f,,;n sets the minimum ratio between signal at the

maxima locations and the signal at the dip. This way the candidate valleys that do not show an

expected level of signal depletion at the dip compared to the summits.

In the original manuscript we did not provide a thorough examination of these parameters
because we have selected relaxed parameters to enable a sensitive valley detection. The users
can choose to change these parameters in case they believe there is a different type of
enrichment in the data. For example, the users can evaluate the signal profiles in IGV and get an

estimate of the valley sizes that they would like to focus on.
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In the revision, we evaluated changing the impact of l;in, Lnax, @nd fin parameters using

H3K4me3 ChiIP-Seq data from K562 cell line.

Impact of l,,;,: Supplementary Figure 4d shows the impact of changing L,,,;, on the fraction of
active promoters of top valleys. As expected, for low [,,;, values (upto 200 base pairs), the
accuracy stays constant for top valleys. As L,,,;», gets close to 500 base pairs, fraction of detected

active promoters decreases substantially close to 0. This provides evidence that the valleys

detected by changing l,,,;, are fairly robust in terms of detected active promoters. Thus, by default,
we suggest using [,,;,=0 for histone modification valleys. We also evaluated the impact of
changing L,,,;, parameter on DNA methylation valleys. For this, we changed [,,;,, parameter and

computed the methyl-valleys using the DNA methylation data for HIHESC cell line. We next
computed the fraction of the methyl-valleys that overlap with transcription factor peaks.

Supplementary Figure 4k shows the changing overlap fraction for [,,;,, starting from 0 to 1500
base pairs. It can be seen that lower L,,,;,, parameter enables highest overlap. When [,,,;,, is higher
than 1000 base pairs, we see a sudden decrease in the overlap. By default, we use L,,,;,=0 to

enable a sensitive detection of the methyl-valleys.

Impact of L,,,,,: Impact of changing l,,,,, parameter is shown in Supplementary Figure 4e, where
we plotted the impact of changing [,,,,, in terms of the fraction of active promoters of top valleys.
In principle, increase l,,,,, increases the search space and should make detected valleys more
accurate. For low L,,,, values (upto 1000 base pairs), the accuracy is low and as [,y IS
increased, the detected valleys overlap better with the active promoters. For ,,,,,>1000 base
pairs, accuracy reaches to a stable value. Thus, we conclude that for L,,,,,,>1000, valley detection

is fairly robust in terms of accuracy measure we use.
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We next studied how the changing [,,,, parameter changes the accuracy of DNA methylation
valleys. As before, we changed [,,,,, parameter and computed the methyl-valleys using the DNA

methylation data for HIHESC cell line. We computed the fraction of the methyl-valleys that
overlap with transcription factor peaks. Supplementary Figure 4l shows the changing overlap

fraction for [,,,, starting from O to 5000 base pairs. It can be seen that high [,,,, parameter
enables highest overlap. For [,,,, values smaller than 1000 base pairs, we see a sudden
decrease in the overlap. By default, we use ,,,,,=2000 to enable a sensitive detection of the

methyl-valleys.

Impact of fin: Supplementary Figure 4f shows how f,,;, impacts the fraction of active
promoters in top valleys. While for most f,,,;, selections, the accuracy is fairly stable. Using high
fmin Values (fmin>3) makes detected valleys less sensitive for detecting the active promoters.
Interestingly, for top 3000, 4000, and 5000 valleys, there is a “sweet spot” at around f,,,;=2.5.
Nevertheless, the accuracy for these cases is fairly stable for f,,,;,<2.5. These results provide

justification for usage of the default parameter that we proposed (f,,i,=1.2) in the comparisons

with GM12878 cell line.

Impact of l,,: The post filtering is performed to smooth the signal and to alleviate the
discontinuities. We evaluated the accuracy with respect to changing L,,,s: (Supplementary Figure
4g). The increasing [,,,s; smooths the signal after spline smoothing. Increasing [,,,s; beyond 100
base pairs slowly decreases the active promoter overlap fraction. We selected [,,,5,=50 to ensure

a relaxed and sensitive valley detection.

Impact of p-value estimation window length (l,): The p-value estimation window, which is 1,

base pair long, is used for estimating the signal around the maxima and minima while p-value is
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being assigned (Supplementary Figure 7a, 7b). EpiSAFARI uses the [, base pair long vicinity of

the summits and the dip and computes the average signal. Then uses these values to assign the
p-value. We use alternating values of the p-value window length and evaluate active promoter
detection accuracy in K562 cell line data. Supplementary Figure 4h shows the changing fraction

of valleys overlapping with active promoters with changing L,,. Increasing l,, decreases the active

promoter fraction of valleys. By default, we use [,,=50 base pairs.

Impact of Sequence Content (Minimum CG Content and Minimum CpG Content) on DNAmM
valleys: A parameter that we used to filter DNA methylation valleys is the minimum CG Content
in the methyl-valleys. Supplementary Figure 4m shows the fraction of methyl-valleys as maximum
CG nucleotide fraction is changed. For low CG nucleotide fraction, the overlap fraction is steady
above 95%. As the minimum CG content threshold is increased above 40%, the overlp fraction
starts dropping. We also tested the impact of minimum number of CpG’s in the methyl-valleys.
This is particularly important for methyl-valleys because the DNA methylation levels are quantified
mainly at the positions that have CpG nucleotides at the genome sequence. Supplementary
Figure 4n shows the impact of changing minimum CpG dinucleotide count within the valleys.
Below 20 CpG dinucleotides and above 60 CpG dinucleotides, the accuracy decreases. As the
default parameter, we the minimum CpG dinucleotide count as 20, which enables sensitive

detection of methyl-valleys with high overlap with the transcription factor peaks.

Detection of Differential Valleys and Differential Valley Analysis

Before we describe how we identify differential valleys, we would like to first briefly discuss how
we describe a differential valley. We describe a differential valley as a region where one sample
shows higher signal at one of the summits and/or shows lower signal at the dip. Thus, a differential

valley would have a more (or less) pronounced valley shape when two samples are compared.
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The details are now included in the Methods Section of the main manuscript and in the
Supplementary Information. In addition, Supplementary Figure 13a illustrates the differential

valley computation. We describe the differential valley analysis below:

1. Pool valleys: Differential valley calling starts after the valleys are called for the two
samples. We refer to these samples as Samplel and Sample2. EpiSAFARI pools the the
identified valleys from Samplel and Sample2 without merging.

2. Normalization of Profiles: Since the read depth of the samples may be different, it is
necessary to normalize the signal profiles. To do this, EpiSAFARI uses RPM normalization
where the total signal in Samplel and in Sample2 are computed. Next, the scaling factor
is computed by dividing the larger of the total signal values. Finally, the signal profile of
the sample with lower total signal is multiplied by this scaling factor. This way, both signal
profiles contain the same total signal.

3. Computation of Difference Profile: Next, for each valley in the pooled list, EpiSAFARI
computes the difference signal profile by subtracting the normalized signal profile of
Sample2 from the normalized signal profile of Samplel. At any position where the
difference is negative, we assign 0 value to the location. Thus, the difference profile
reflects the signal within the valleys that are specific to Samplel.

4. Significance Assignment to Pooled Valleys: Using the difference profile, EpiSAFARI
computes the multinomial p-value of all the pooled valleys. The logic of using the
difference profile to compute the p-values is that if there is a differential pattern at the
tested valley, the difference profile should also look like a valley. Thus, when p-value
should provide evidence for a significant differential valley. Note that the multinomial p-
value computation was presented in the original manuscript and in the Supplementary
Information. The differential p-value for each valley is also computed by using the

difference profile computed by subtracting Sample2 profile from the Samplel profile. After
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this, EpiISAFARI assigns two p-values to each of the pooled valleys where first p-value
represents the significance of a differential valley in Samplel compared to Sample2
(Samplel_vs_Sample2 p-value) and second p-value represents the significance of the
differential valley in Sample2 compared to Samplel (Sample2_vs_Samplel p-value).

5. Filtering of Differential Events: Since each valley is assigned two p-values, it is
necessary to filter out the valleys to identify the final differential values. We set a
significance cutoff, by default log(-10), and filter out the valleys for which the
Samplel vs Sample2 p-value is higher than the threshold. Finally, we ensure that there
is no evidence of a significant differential valley behavior in Sample2 by making sure that
the Sample2_vs_Samplel p-value is higher than a relaxed threshold (log(-2)) and that the
difference profile shows a valley pattern at the location by making sure the summits in

difference profile have higher signal than the dip location.

We applied differential valley analysis by comparing the H3K4me3 valleys detected in GM12878
(Samplel) and K562 (Sample2) cell lines. To evaluate whether the identified valleys are
meaningful, we hypothesized that the differential valleys must show differential DNase signal. To
test this, we computed the average DNase signal on each of the pooled valleys. For each valley,
we divided the DNase signal by the total number of million mapped nucleotides and then by the
total length of the valley in kilobases (similar to RPKM normalization). After the DNase signal is
computed for all valleys using GM12878 and K562 DNase data, we performed quantile
normalization of the signal. This is necessary to remove sample specific global and technical
effects and also normalize the distributions of the DNase signal on valleys. We finally computed
the difference (in terms of fold change) in the normalized DNase sighal on the K562 specific
valleys and GM12878 specific valleys, and all the valleys as comparison. Supplementary Figure
13b shows the distribution of the logarithm of the DNase signal ratio between GM12878 and K562

cell line, i.e. log(GM12878 DNase Signal / K562 DNase Signal), on the cell line specific valleys

18



for both cell lines. From the figure, the log fold change (FC) is almost symmetrically distributed
around O for all the valleys. On the other hand, FC distribution is significantly positively skewed
for GM12878 specific valleys and significantly negatively skewed for K562 specific valleys when
they are compared with the FC distribution of all valleys (Wilcoxon test p-value < 2.2x10e-16 for
both comparisons). In other words, the cell line specific valleys show concordant differential
enrichment of DNase signal in the respective cell line. This analysis presents supporting evidence
that the identified differential valleys are enriched in differential DNase signal. We performed the
differential valley analysis by comparing the valleys in HIHESC cell line and K562 cell line.
Supplementary Figure 13c shows the DNase FC distribution for the cell line specific and all
valleys. For the valleys specific to each cell line, we observe higher DNase FC for the

corresponding cell line.

In Supplementary Figure 13d, we include an example of a region on chromosome 14 where two
differential valleys, one in GM12878 and other in K562, are identified close to each other.
Interestingly, this region contains an H3K4me3 peak that manifests on both cell lines. The figure
shows the H3K4me3 and DNase signals. The visual examination of the signal profiles alone
shows that while there is high signal in both cell line, the valley structure shows considerable
changes among cell lines. In addition, the differential valleys (highlighted on the figure) show clear
increase in DNase signal for the corresponding cell line. We think that this is an example of how

that valley-based analysis can provide novel insight while analyzing functional genomics data.

It must be noted that the valley comparisons can be performed in different ways and we present
one way to compare the valleys. For example, another differential valley pattern is that while the
valley’s summit/dip signal ratio does not change, the signal at the summits may change direction,
i.e., the valleys directionality may change. These comparisons can be easily performed using

command line tools such as awk to filter out the valleys with respect to their directionality.
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Assignment of Statistical Significance

The next step is assignment of statistical significance to the detected valleys (Fig. 1). By
statistical significance, we refer to how significant the depletion of the signal at the dip is
compared to the signal levels at the summits. Thus, valleys with low p-value correspond
to deep valleys. The assigned p-values are used to sort the valleys while performing

enrichment analysis.

For a valley at (i, ], k), EpiSAFARI first computes the signal around the vicinity of the dip
and the summits using

= ), s ©

l l
i—-P. i+-2
I—><a<its

5= Z S (10)

l l
j—F<a<j+F

S - Z
Ip Ip
k—7<a<k+?
where S;, S;, Sy denote the average signal in the [,, base pair (100 base pairs by default)
vicinity of the summits i, j, and the dip k. Next, EpiSAFARI computes the binomial p-

value of enrichment of signal around summits compared to the dip:

. < Se + Sy (1)
bin(S;, Sy) = Z ( k 4 ‘) - <§> (12)

a=0

SktS;

bin(s;, Si) = i (Sk ;f SJ‘) - (%) (13)
a=0
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where (S" :1_ Si) number of combinations for selecting a items within S, + S; items:
. Sk + 5;)!
(Sk + Sl) I G ) (14)
a S +S;—a)-a

In order to assign the final p-value to the valley, we combine the p-values that are
assigned to enrichment of the signal at the two summits. This process corresponds to
combining the null models that are used to assign the two p-values for the observed
summit-to-dip signal enrichment. We first use intersection of the null models as the joint
null model (Supplementary Fig. 7a). Assuming that the left and right hills are

independent, this corresponds to the direct multiplication of the p-values:

log(p — values(i,j, k) = log (bin(Sj, Sk)) + log (bin(Sj, Sk)). (15)
p — value,, denotes the p-value computed by intersection-based combination of the p-
values assigned to observed summit-to-dip signal enrichment. In addition, we use the
union of the null models corresponding to null distribution of signal among summits and
the dip so as to assign the p-value of the valley. As before, we assume that the p-values
assigned to summits are independent from each other. Thus, the p-value estimated
from the union of the null models is:

log(p —valuey(i, j, k))
(16)
= log (bin(s;, Si) + bin(s), Si;) — bin(s;, Si) x bin(s), Si))

p — value, denotes the combined p-value (Supplementary Figure 7a). In (15) and (16),
we assumed that the p-values assigned to observed enrichment of the signal at the left
and right summits are independent from each other. This assumption may not hold as

we see a significant correlation of signals on the left and right summits (Supplementary
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Methods, Supplementary Figure 8a). As an alternative significance estimation method,
we computed a multinomial distribution-based p-values without the need for combining

p-values. The multinomial p-value is computed as:

log(p'—'Va[uenndﬁn(hj'k))
_ i i (Sl + S] + Sk)' (1)5i+5k+5j (17)
= Sk —a)! " (Sj+b)! - (S;+a—b)! \3

a=0 b=0

where the p-value is computed as the probability for different signal configurations at the
summits and the dip such that the configurations are more extreme than what we
observed. By more extreme, we mean the signal at one or both of the summits are
higher than the observed signals (Supplementary Fig. 7b). We compute the p-value as
the total probability of all the signal configurations that correspond to more extreme
valleys than the observed valley. In general, the union-based binomial p-value merging
is more conservative and exhibits lower sensitivity compared to the intersection-based
p-value merging and multinomial based p-values (Supplementary Methods,
Supplementary Figure 8b, c). We therefore use intersection-based binomial p-value
merging in the benchmarking. After the p-values are assigned, the false discovery rate
at which each valley would be deemed significant is estimated using Benjamini-

Hochberg procedure(Benjamini, 2010).

The valleys that EpiSAFARI detected may overlap with each other although we
generally observed that the overlap between detected valleys tends to be very small. To
ensure that a non-redundant set of minima are reported, EpiSAFARI filters out the
valleys whose dips are close to each other by selecting the most significant valley (i.e.,

lowest p-value) around local minima positions.
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An important factor about detecting valleys is the required sequencing depth. For
analyzing the required read depth, we used a high depth H3K4me3 ChIP-Sequencing
data from NA12878 sample (Kasowski et al., 2013) and identified valleys. We next
computed the increase in the number of valleys with increasing read depth and the
increase in the fraction of identified functional elements (Supplementary Information,
Supplementary Figure 4i and 4j). We found that beyond 35-40 million reads, the valley

detection does not provide substantial additional information.

Valley Annotation

EpiSAFARI can annotate valleys with respect to genes and transcription factor binding
peaks. This step compares the valleys with an annotation file in GFF format and assigns
the valley to the promoters, transcripts, and exons. We also created a GFF file from the
transcription factor binding peak regions from ENCODE project(Dunham et al., 2012).
This GFF file contains the peaks of the transcription factors that are identified by 690
ChIP-Seq experiments performed on cell lines and uniformly processed by the ENCODE
Project. EpiISAFARI can use these to annotate the valleys with respect to transcription
factor binding. EpiSAFARI generates an extended BED file which contains the valley
positions, signal levels, multi-mappability signal, significance, and annotations for each
the valley. The smoothed signal profiles can be used for visualizing the signal

(Supplementary Fig. 2).

Data Availability and Accession Numbers

The H3K4me3 histone modification ChIP-Seq and DNase data, and transcript expression
guantifications  for K562, GM12878, and H1hESC cell lines are downloaded from ENCODE

project website (http: //hgdownload.soe.ucsc.edu/goldenPath/hg19/encodeDCC). The
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transcription factor binding peaks for K562, GM12878 and H1hESC cell lines are downloaded
from the uniformly processed datasets of the ENCODE Project. The conservation scores are
downloaded from the 100-way PhyloP track of UCSC Genome Browser. Whole genome bisulfite
sequencing-based DNA methylation data for HLhESC data is downloaded from the Roadmap
Epigenome Project Data Browser. GRO-Seq data is downloaded from GEO website with
accession number GSM1480326. The GO enrichment analysis is performed using DAVID
website(15). The random valleys in aggregation analyses and plots are generated by randomly
shifting each valley within 1 megabase vicinity of itself. The H3K4me3 peaks are identified using
MUSIC(16) algorithm. The whole genome bisulfite sequencing-based DNA methylation data for

GM12878 cell line is downloaded from GEO web site with accession number GSM2772524.

The multi-mappability profile is obtained as described in a previous publication(16). In summary,
the genomes are fragmented into fragments of the desired read length (denote by [,..,4) and these
are mapped back to the reference genome by allowing multimapping reads. After the reads are
mapped, we count the number of reads that are mapping to every genomic position. For any
genomic position that is uniquely mappable, this computation yields exactly 2 x [,..,4 at that
position. For any genomic position that is multi-mapped, the number of overlapping reads at the
position will be higher than 2 x L,..,4, therefore we call this profile the multi-mappability profile.
This profile quantifies the multi-mappability of each position in the genome for the given read

length of l,.q4-
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Supplementary Figures

Supplementary Figure 1
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Supplementary Figure 1: lllustration of basis spline functions of different degrees with 7 knots.
The x-axis represents the signal domain (between 0 and 1000) and y-axis represents the signal
value. Each basis spline is shown with a red curve. The spline degree increases from 1 (leftmost)
to 5 (rightmost). For degree 1, smoothing is basically replacing data with its mean between
consecutive knots. For degree 2, the smoothing represents the piecewise linear smoothing of the
data. Above degree of 2, the splines show more complex patterns that can represent different
types of smooth transitions. The knot positions (excluding the first and last knots that are located
at the beginning and at the end, respectively) are indicated with light blue arrows on the x-axis.
The top row shows the basis splines with uniform knot selection. The bottom figure shows the
basis splines generated by the random knot selection.
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Supplementary Fig. 2a
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Supplementary Figure 2: a) Screenshot of valleys detected by EpiSAFARI as visualized using
IGV. a) The top panel shows the smoothed signal profile. The valleys are shown in the bottom
panel. The middle panel shows the gene annotations. The gene has a beginning where
EpiSAFARI detected a valley. Other valleys are identified neighboring this valley. b) Example
region containing a valley in DNA methylation signal profile. The top track, titled ‘Original Signal’
shows the original signal profile from the WGBS experiment. Note the sparseness of the signal
as it is measured only at the CpG dinucleotides. The second track shows the spline smoothed
signal profile generated by EpiSAFARI. The signal is turned into a continuous profile that is used
to identify the valley that is shown in the following track. The gene and CpG island annotations
are shown in the bottom two tracks.
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Supplementary Figure 3a
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Supplementary Figure 3: The sensitivity of EpiSAFARI with changing number of knots (x-axis,
between 3 and 15) and spline degrees (y-axis, between 1 and 7) for 3 different knot placement
approaches: uniform (a), derivative-based (b), and random (c). The colors indicate sensitivity. The
exact sensitivity value is included in each cell for clarification. The blue lines indicate the accuracy
at the default spline degree (5) and knot number (7).
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Supplementary Figure 3d
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Supplementary Figure 3d, e, f: Number of valleys detected by EpiSAFARI for different number
of knots (x-axis), spline degrees (y-axis), and knot placements. The exact number of detected

valleys is included in each cell.
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Supplementary Figure 3g, h: lllustration of compute time in seconds (g) and average smoothing
error (h) versus knot number and spline degree.
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Supplementary Figure 3i, j, k: The distribution of relative position of valley dips within |_w=1000
base pair windows for K562 H3K4me3 ChlIP-Seq data with different breakpoint selection
strategies. X-axis shows the relative position with respect to the start position of the window. Y-
axis shows the number of valley dips whose relative location is observed at the corresponding
location on X-axis. The uniform breakpoint (left plot) selection shows periodic bias for the valley
dip locations. For derivative and random breakpoint selections (middle and right plots,
respectively), slight bias is observed at the ends of the windows. The top 5000 (blue), 10,000
(light blue), 20,000 (cyan), 50,000 (green), and all valleys (yellow) are plotted in each plot.
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Supplementary Figure 3
Derivative Knots with 250 bp overlapping windows
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Supplementary Figure 3l: The distribution of relative position of valley dips within |_w=1000 base
pair windows for K562 H3K4me3 ChIP-Seq data when smoothing is performed with sliding
window with 250 base pair steps. X-axis shows the relative position with respect to the start
position of the window. Y-axis shows the number of valley dips whose relative location is observed
at the corresponding location on X-axis. The top 5000 (blue), 10,000 (light blue), 20,000 (cyan),
50,000 (green), and all valleys (yellow) are plotted in each plot.
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Supplementary Figure 4a
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Supplementary Figure 4a, b, c: Sensitivity of EpiSAFARI with changing window length
parameter, [, for three different knot placement approaches (a) Uniform, (b) Derivative-based,
(c) Random. X-axis shows the window length and y-axis shows the sensitivity.
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Supplementary Figure 4d, e, f, g: Active promoter sensitivity of EpiSAFARI with changing
window length parameter, Ly, (d), lnax (€), fmin (), and L,,s: (9). Each plot contains the fraction
of active promoters that overlap with 200 base pair vicinity of the top 1000 (blue), 2000 (cyan),
3000 (Green), 4000 (Yellow), and 5000 (Red) valleys. X-axis shows the changing parameters.
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Supplementary Figure 4h
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Supplementary Figure 4h: Active promoter sensitivity of EpiSAFARI with changing p-value
signal estimation window length, [,,. Each plot contains the fraction of active promoters that
overlap with 200 base pair vicinity of the top 1000 (blue), 2000 (cyan), 3000 (Green), 4000
(Yellow), and 5000 (Red) valleys. X-axis shows the changing p-value signal estimation window
length.
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Supplementary Figure 4i, j: Increase in the detected number of valleys (i), and increase in the
fraction of valleys that overlap with functional elements (j) as the number of reads are changed.

X-axis shows the number of reads.
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Supplementary Figure 4k Supplementary Figure 4|
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Supplementary Figure 4k, |: Impact of 1, (K), Lnax (I) On the fraction of top methyl-valleys
overlapping with transcription factor peaks.

36



Fraction of Top Valleys Overlapping with TF Peaks

0.95]

087

D.B5

n8F

Supplementary Figure 4m Supplementary Figure 4n

—Top 200 Top 600 Top 1000 —Top 1400 —Top 200 Top 600 Top 1000 —Top 1400

0.95

0851

i

0.8

Fraction of Top Valleys Overlapping with TF Peaks
=]
(=)

0.2 04 0.6 0.8 2-".]' 40 &0 &0
GG Mucleotide Fraction Mumber of CpG Dinuclectides in Valley

[

Impact of Sequence Content on methyl-valleys
Supplementary Figure 4m, n: Impact of CG nucleotide fraction (m), number of CpG

dinucleotides in valleys (I) on the fraction of top methyl-valleys overlapping with transcription factor
peaks.
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Supplementary Fig. 5a
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Supplementary Figure 5a: lllustration of hill score. A valley is defined as a dip (k) surrounded
by two summits (i and j). The left (right) hill is the region between the left (right) summit and the
dip. The left (right) hill score is counted as the number of genomic coordinates that go up while
traveling from the dip to the left (right) summit. The coordinates that are “up-hill” and “down-hill”
are indicated with green and red arrows, respectively. In this example, left hill score is 1 because
there are no coordinates that are down-hill. Right hill score is smaller than 1 because the region
between coordinates a and b are down-hill.
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Supplementary Figure Sb
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Supplementary Figure 5b: Illustration of valley merging with decreasing hill score threshold. The
left and right valleys have good shapes and are assigned hill scores of 1.0. When we combine
them and compute the hill score for the merged valley, the hill score of this valley is subpar, i.e.,
smaller than 1.0 because of the summit in the middle (See Supplementary Figure 4a). Thus,
decreasing the hill score cutoff may create merged valleys that have lower topological quality.
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Supplementary Figure 5c
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Supplementary Figure 5c, d: Distribution of Pearson Correlation between left hill scores (a), and
right hill scores (b) assigned by different parameter combinations, (knot number, spline degree).
X-axis shows the correlation and y-axis shows the frequency that the correlation is observed
among pairwise comparisons of the parameter sets. The correlations are clustered around 0.8.
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Supplementary Figure 5e Supplementary Figure 5f Supplementary Figure 5g
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Supplementary Figure 5e, f, g: Distribution of left hill scores (e), distribution of right hill scores
(f), and the scatter plot showing the left (x-axis) and right hill scores (y-axis) where each point
represents a valley and x and y coordinates are the left and right hill scores, respectively. Note

the large amount of clustering of valleys with hill scores equal to 1.
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The sensitivity of the valleys detected by EpiSAFARI with

changing hill score cutoff (x-axis) for uniform knot selection (a), derivative-based knot selection
(b), and random knot selection (c). X-axis shows the hill score cutoff and y-axis shows the
sensitivity of detected valleys.
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Supplementary Figure 5k, |, m: lllustration of valley redundancy (y-axis) with changing hill score
cutoff (x-axis). The changing redundancy with uniform knot selection (a), derivative-based knot
selection (b), and random knot selection (c) are plotted.

43

0026042 D 00D 6002

o2



1201

Frequency

901

601

301

Supplementary Figure 6a Supplementary Figure 6b

6001

400
oy
c
@
3J
o n —
2 H
L

2001

0 J—[
o G Q “
o 0P o? N N N o o

Correlation between direction of compared valleys Fraction of valleys that changed direction in a comparison
Supplementary Figure 6a, b: Effect of smoothing parameters on valley asymmetry. a) The
distribution of Pearson Correlation of valley asymmetry values between different parameter
combinations (knot number, spline degree). X-axis shows the correlation between the valley
direction in comparisons. b) The distribution of fraction of valleys that change direction. X-axis
shows the fraction of valleys that changed direction in pairwise comparisons. Y-axis shows the

frequency of direction changing valleys.
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Supplementary Fig. 7a
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Supplementary Figure 7a: lllustration of statistical significance estimation for a valley at (i, j, k)
using combination of binomial p-values of summit-to-dip enrichments for left and right summits.
The total signal within [,, base pair vicinity of the dip, k, and the summits, i and j, are computed.

These are denoted by S;, S;, and Si. The statistical significance of enrichment of signal at summits
(Si, S;) compared to the dip (Sk) is estimated using binomial test, which are denoted by bin(S;, Si)
and bin(S;, Sx). The p-values are combined using two methods. First is based on intersection of

the null models. In this case, the combined p-value is computed by multiplication of the p-values
for each hill, or by summing the logarithms of these binomial p-values. Second is based on taking
the union of the null models, which corresponds to combining the p-values under the assumption
that the p-values are not correlated with each other.
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Supplementary Fig. 7b

Observed signal configuration

S] +a
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' more “extreme” valleys
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Sk —a—>b

Supplementary Figure 7b: lllustration of the signal configurations in multinomial p-value
computation. The signal levels in the vicinity of summits and the dip are computed. In order to
compute the multinomial p-value, we enumerate all the signal configurations (illustrated at the
bottom) that corresponding to valleys that are equal or more “extreme” than the observed
configuration illustrated in the middle. We define more extreme valleys as valleys that have higher
signal in either of the summits and lower signal at the dip. Thus, we enumerate all the ways that
the signal at the dip, Si, can be “partitioned” to the summits. In the figure, a and b represent the
portions of signal from the dip that is partitioned to right and left summits, respectively. After
partitioning, left summit has total signal of S; + b, right summit has S; + a, and the dip has S —
a — b signal. We next compute the probability of this configuration under null hypothesis that the
signal is equally likely distributed to the summits and the dip. The p-value is computed by
enumerating all a and b such that a + b = S,.
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Supplementary Figure 8a
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Supplementary Figure 8a, b, c: Impact of p-value computation on accuracy. The scatter plot of
left and right summit heights (a) shows a clear correlation between the summit heights. Each dot
represents a valley and x and y axis coordinates are the left and right summit heights, respectively.
The sensitivity of the detected valleys with different p-value computations is shown in (b). The
intersection based binomial p-value combinations provide the most sensitive valley predictions.
The fraction of top valleys (with respect to p-value) that overlap with transcription factor (TF) peaks
is shown in (c). X-axis shows the number of top peaks and y-axis shows the fraction of valleys
that overlap with TF peaks.
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Supplementary Figure 9
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Supplementary Figure 10: Analysis of nascent transcription around the H3K4me3 valleys. a)
The aggregation of GRO-Se(q signal within 20,000 base pairs of the dips reported by EpiSAFARI.
All valleys (Blue), Randomized regions (Green), and valleys that do not overlap with any
H3K4me3 peaks (Red) are plotted. Random regions are generated by randomly shifting the
valleys within 1 megabase vicinity of the valley’s starting position. Plus and minus strand signals
are plotted with straight and dashed lines, respectively. The valley below the figure aims to
illustrate the valley’s positioning within 20 kilobase region. Two humps represent the two summits
of the valley. Note that the summit locations in this illustration are not drawn to scale. The red
dashed arrows indicate how the dip coordinates align with the x-axis of the aggregation plot.
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Supplementary Figure 10b
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Supplementary Figure 10: Analysis of nascent transcription around the H3K4me3 valleys. b)
The aggregation of GRO-Seq signal for valleys that do not overlap with any peaks (Non-peak
Valleys) and random regions are plotted to highlight the GRO-Seq signal on non-peak overlapping
valleys.
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Supplementary Figure 11: Stratification of transcription factor binding around methyl-valleys. a)
Fraction of overlap between the top 1000 methyl-valleys and transcription factor peaks. The bars
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are sorted with respect to decreasing number of overlaps. The transcription factors are shown on

x-axis and the number of overlapping methyl-valleys are shown on y-axis.
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Supplementary Figure 11b
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Supplementary Figure 11: Stratification of transcription factor binding around methyl-valleys. b)
Overlap of top 1000 non-promoter associated methyl-valleys with transcription factors. The top
transcription factors associated with chromatin structure are highlighted with a dashed red

rectangle.
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Supplementary Figure 12a
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Supplementary Figure 12: a) The fraction of the top 2000 methyl-valleys in GM12878 that
overlap with a transcription factor peak.
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Supplementary Figure 12b
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Supplementary Figure 12: b) The frequency of transcription factors that overlap within top

GM12878 methyl-valleys.
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Supplementary Figure 13: a) Detection of differential valleys from two samples. In the example
above, the detection of differential valleys in Sample 1 is illustrated. The difference profile is
computed by subtracting sample 2’s profile from sample 1’s profile. Note that the differences that
would yield a negative value are set to 0, as shown on the right valley. The difference profile is
used to assign differential valley p-value (by multinomial p-value estimation) to each valley in the
total set of valleys detected in both samples. In the example above, left valley in sample 1 shows
differential activity. However, the right valley detected in sample 2 does not show differential
activity in sample 1, as expected. The same comparison is repeated by switching the order of
profiles to identify the differential activity of valleys in sample 2.
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Supplementary Figure 13b, ¢) Normalized DNase signal fold change (FC) distribution on cell
line specific valleys in differential H3K4me3 valley analysis between GM12878 vs K562 and
H1HESC vs K562 cell lines. b) Leftmost barplot shows the distribution of log(GM12878 DNase
signal / K562 DNase signal) on all the valleys detected in GM12878 and K562 cell lines. Middle
plot shows the distribution of FC for GM12878 specific valleys. Right plot shows the distribution
on K562 specific cell line. Note that the distribution DNase FC on GM12878 specific valleys is are
skewed towards positive values and towards negative values for K562 cell line. Comparison of
DNase FC distributions on cell line specific valleys are significantly different from the FC
distribution on all valleys (Wilcoxon rank sum test p-value < 2.2x10e-16 for all comparisons). c)
DNase FC distribution on differential H3K4me3 valleys detected from comparison of K562 and
H1HESC cell line.

56



Supplementary Figure 13d

H3K4me3, DNase signals, and differential valleys within chr14:50,434,726-50,442,751 for GM12878 and K562
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Supplementary Figure 13d: Example of a region with two differential valleys identified by
comparing GM12878 and K562 cell lines. Top 3 rows show the H3K4me3, DNase signals, and
the GM12878 specific valley. Bottom 3 rows show the H3K4me3, DNase signals, and the K562
specific valley. Although both cell lines have high H3K4me3 signal at this locus, the structure of
the H3K4me3 signal (in terms of valleys) is quite different. The two differential valleys in GM12878
and K562 shows differential DNase signal in corresponding cell lines.
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