Graph Embedding on Biomedical Networks: Methods, Applications, and Evaluations Supplementary Materials

Xiang Yue^{1,*}, Zhen Wang¹, Jingong Huang², Srinivasan Parthasarathy¹, Soheil Moosavinasab³, Yungui Huang³, Simon M. Lin³, Wen Zhang⁴, PingZhang^{1,5}, and Huan Sun^{1,*}

¹Department of Computer Science and Engineering, The Ohio State University,

Columbus, OH, USA,

²Department of Electrical and Computer Engineering, The Ohio State University,

Columbus, OH, USA,

³Research Information Solutions and Innovation, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA,

⁴College of Informatics, Huazhong Agricultural University, Wuhan, Hubei, China,

⁵Department of Biomedical Informatics, The Ohio State University, Columbus, OH, USA

*To whom correspondence should be addressed.

(yue.149@osu.edu, sun.397@osu.edu)

Index

1	Hyper-parameters1
	Fig. S1: The influence of <i>dimensionality</i> on different embedding methods on NDFRT DDA, DrugBank DDI
	and STRING PPI datasets (the results of CTD DDA is included in the main manuscript)1
	Fig. S2: The influence of <i>dimensionality</i> on different embedding methods on Clini COOC, Node2vec PPI
	and MashUp PPI datasets
	Fig. S3: The influence of the main hyper-parameter: <i>Ksteps</i> on <i>GraRep</i>
	Fig. S4: The influence of the main hyper-parameters: <i>number of walks</i> and <i>walk length</i> on <i>DeepWalk</i> 4
	Fig. S5: The influence of the main hyper-parameters: <i>p</i> and <i>q</i> on <i>node2vec</i>
	Fig. S6: The influence of the main hyper-parameters: <i>number of walks</i> and <i>walk length</i> on <i>struc2vec</i>
	Fig. S7: The influence of the main hyper-parameter: <i>epochs</i> on <i>LINE</i> 7
	Fig. S8: The influence of the main hyper-parameters: α and β on <i>SDNE</i>
	Fig. S9: The influence of the main hyper-parameter: <i>hidden units</i> on <i>GAE</i>
	Table S1: Hyper-parameters set for different embedding methods in Table 3 and Table 4 of the main
	manuscript
	Table S2: Performance of different embedding methods on CTD DDA, NDFRT DDA, DrugBank DDI and
	STRING PPI datasets of Link Prediction
	Table S3: Performance of different embedding methods on Clini COOC, Node2vec PPI, MashUp PPI datasets
	of Node Classification
2	Datasets13
	Fig. S10: Node degree histograms of seven compiled datasets
3	Performance of "fine-tuning"14
	Table S4: Empirical results of "fine-tuning" on CTD DDA graph. 14
4	Implementation Details15
	4.1 Hardware and Software
	4.2 Experimental settings for comparison with state-of-the-arts in Section 4.3.4.4 of the main manuscript
	16

1 Hyper-parameters

From Page 1-9, we plot the performance of different embedding methods when these hyper-parameters are tuned.

Fig. S1: The influence of *dimensionality* on different embedding methods on three *link prediction* task datasets: NDFRT DDA, DrugBank DDI and STRING PPI (the results of CTD DDA is included in the main manuscript).

Fig. S4: The influence of the main hyper-parameters: *number of walks* and *walk length* on *DeepWalk*.

Fig. S6: The influence of the main hyper-parameters: *number of walks* and *walk length* on *struc2vec*.

Fig. S7: The influence of the main hyper-parameter: *epochs* on *LINE*.

		Link Pr	rediction	Node Classification				
Method name	CTD DDA	NDFRT DDA	DrugBank DDI	STRING PPI	Clin Term COOC	Node2vec PPI	MashUp PPI	
GraRep	k-step = 4	k-step = 6	k-step = 2	k-step = 2	k-step = 2	k-step = 1	k-step = 2	
DeepWalk	number-walks=8, walk-length=64	number-walks=8, walk-length=32	number- walks=128, walk-length=256	number- walks=256, walk- length=64	number-walks=64, walk-length=128	number-walks=64, walk-length=32	number-walks=8, walk-length=64	
node2vec	p=2, q=0.25	p=1, q=0.25	p=2, q=0.25	p=2, q=2	p=2, q=0.25	p=0.5, q=2	p=0.5, q=0.5	
struc2vec	number- walks=256, walk- length=32	number- walks=256, walk- length=64	number- walks=128, walk-length=64	number-walks=64, walk-length=16	number-walks=64, walk-length=256	number- walks=256, walk-length=128	number-walks=8, walk-length=256	
LINE	epochs=5	epochs=10	epochs=5	epochs=5	epochs=30	epochs=20	epochs=10	
SDNE	α=0.3, β=20	α=0.4, β=0	α=0.4, β=0	α=0.3, β=0	α=0.2, β=20	α=0.1, β=30	α=0.1, β=0	
GAE	hidden units=512	hidden units=128	hidden units=128	hidden units=256	-	hidden units=128	hidden units=256	

 Table S1: Hyper-parameters set for different embedding methods in Table 3 and Table 4 of the main manuscript.

Table S2: Performance of different embedding methods on CTD DDA, NDFRT DDA, DrugBank DDI and STRING PPIdatasets of Link Prediction

Mathod Catagory		Method	CTD DDA		NDFRT DDA			DrugBank DDI			STRING PPI			
Wiethou	Category	Name	AUC	ACC	F1	AUC	ACC	F1	AUC	ACC	F1	AUC	ACC	F1
		Laplician	0.856±0.004	0.793±0.003	0.802±0.003	0.930±0.003	0.917±0.004	0.921±0.004	0.796±0.002	0.720±0.002	0.729±0.002	0.639±0.021	0.596±0.016	0.586±0.017
Traditional		SVD	0.936±0.002	0.855±0.002	0.854±0.002	0.779±0.003	0.707±0.004	0.700±0.005	0.919±0.001	0.837±0.001	0.837±0.001	0.867±0.001	0.794±0.001	0.790±0.001
	Matrix Factorization Based	GF	0.884±0.004	0.808±0.004	0.805±0.004	0.720±0.006	0.660±0.006	0.655±0.007	0.882±0.003	0.802±0.003	0.81±0.003	0.817±0.005	0.746±0.005	0.747±0.005
	- Baseu	HOPE	0.951±0.001	0.886±0.002	0.887±0.002	0.949±0.001	0.928±0.002	0.931±0.002	0.923±0.001	0.844±0.002	0.846±0.002	0.839±0.001	0.764±0.001	0.764±0.001
		GraRep	0.960±0.001	0.899±0.002	0.900±0.002	0.963±0.001	0.931±0.002	0.934±0.002	0.925±0.001	0.845±0.001	0.846±0.001	0.894±0.001	0.823±0.001	0.822±0.001
	Random Walk Based	DeepWalk	0.929±0.002	0.866±0.002	0.864±0.002	0.783±0.004	0.710±0.004	0.709±0.005	0.921±0.001	0.840±0.002	0.842±0.002	0.884±0.001	0.813±0.002	0.814±0.002
Descrifter		node2vec	0.911±0.002	0.838±0.002	0.835±0.002	0.819±0.005	0.742±0.005	0.741±0.006	0.902±0.001	0.819±0.001	0.819±0.001	0.828±0.003	0.758±0.003	0.756±0.003
Proposed		struc2vec	0.965±0.001	0.903±0.002	0.903±0.002	0.958±0.001	0.913±0.002	0.912±0.002	0.904±0.001	0.826±0.002	0.83±0.002	0.909±0.001	0.838±0.001	0.841±0.001
	Deep Learning	LINE	0.965±0.001	0.904±0.001	0.904±0.001	0.962±0.002	0.934±0.002	0.935±0.001	0.905±0.002	0.825±0.002	0.829±0.002	0.859±0.003	0.788±0.003	0.795±0.003
		SDNE	0.935±0.010	0.863±0.012	0.861±0.013	0.944±0.004	0.896±0.007	0.897±0.007	0.911±0.006	0.833±0.007	0.838±0.006	0.884±0.008	0.813±0.009	0.814±0.009
	Based	GAE	0.937±0.001	0.857±0.002	0.856±0.002	0.813±0.007	0.735±0.006	0.730±0.007	0.917±0.001	0.836±0.001	0.840±0.001	0.900±0.001	0.827±0.001	0.829±0.002

Table S3: Performance of different embedding methods on Clini COOC, Node2vec PPI, MashUp PPI datasets of Node Classification

Method Catergory		Method Name	Clini COOC		Node2vec PPI			Mashup PPI			
			Accuracy	Micro-F1	Macro-F1	Accuracy	Micro-F1	Macro-F1	Accuracy	Micro-F1	Macro-F1
	ional Matrix Factorization Based	Laplician	0.277±0.007	0.313±0.005	0.073±0.002	0.039±0.007	0.101±0.008	0.070±0.007	0.058±0.007	0.132±0.009	0.107±0.008
Traditional		SVD	0.362±0.006	0.420±0.005	0.186±0.007	0.119±0.012	0.228±0.011	0.179±0.011	0.223±0.012	0.347±0.014	0.297±0.014
		GF	0.304±0.006	0.352±0.007	0.143±0.009	0.078±0.010	0.168±0.011	0.121±0.011	0.178±0.016	0.290±0.015	0.237±0.016
		НОРЕ	0.340±0.006	0.395±0.005	0.163±0.006	0.102±0.009	0.208±0.011	0.152±0.011	0.205±0.013	0.322±0.013	0.266±0.013
		GraRep	0.370±0.007	0.424±0.006	0.177±0.005	0.127±0.012	0.238±0.010	0.193±0.013	0.216±0.014	0.334±0.011	0.283±0.011
	Random ntly Walk Based osed	DeepWalk	0.414±0.006	0.472±0.005	0.227±0.007	0.129±0.012	0.243±0.011	0.194±0.011	0.231±0.012	0.357±0.011	0.311±0.012
Recently		node2vec	0.420±0.006	0.479±0.005	0.231±0.010	0.129±0.010	0.243±0.009	0.190±0.011	0.241±0.014	0.367±0.012	0.313±0.013
Proposed		struc2vec	0.220±0.005	0.253±0.006	0.038±0.001	0.038±0.006	0.094±0.006	0.061±0.004	0.042±0.007	0.120±0.010	0.087±0.008
	Deer	LINE	0.398±0.005	0.453±0.006	0.205±0.008	0.122±0.011	0.236±0.011	0.176±0.012	0.227±0.017	0.352±0.017	0.296±0.017
	Learning	SDNE	0.242±0.008	0.271±0.016	0.042±0.007	0.037±0.006	0.098±0.010	0.047±0.007	0.087±0.012	0.178±0.013	0.109±0.012
	Based	GAE	-	-	-	0.120±0.014	0.237±0.014	0.186±0.014	0.234±0.013	0.358±0.013	0.307±0.014

Datasets

Fig. S10: Node degree histograms of seven compiled datasets.

3 Performance of "fine-tuning"

		AUC	ACC	F1
DeenWalls	w/o pre-train	0.9311	0.8599	0.8606
Deepwark	w/ pretrain	0.9368	0.8668	0.8670
	w/o pre-train	0.9467	0.8768	0.8752
LINE	w/ pretrain	0.9518	0.8856	0.8844

Table S4: Empirical results of "fine-tuning" on CTD DDA graph.

4 Implementation Details

4.1 Hardware and Software

We train all embeddings using *Ohio Supercomputer Center (OSC)* Linux servers with 24 cores Dell Intel Xeon E5-2680 v4 machine, 128GB main memory. For algorithms which need GPUs (i.e., LINE, SDNE, GAE), we use NVIDIA Tesla P100 units with 16GB memory.

To make fairly comparison, all the algorithms are executed using Python 3.6. Towards that, we use a public graph embedding learning python package: <u>OpenNE</u> for Laplacian Eigenmaps, HOPE, GF, DeepWalk, LINE and SDNE. According to the instructions of OpenNE, for some embedding methods (e.g., LINE, node2vec), a little difference may exist between the original implementations and theirs.

And the required python packages are listed below (see details in our released package **<u>BioNEV</u>** on GitHub):

- numpy==1.14.0
- networkx==2.0
- scipy==0.19.1
- tensorflow==1.10.0
- gensim==3.0.1
- scikit-learn==0.19.0
- tqdm==4.28.1

4.2 Experimental settings for comparison with state-of-the-arts in Section 4.3, 4.4 of the main manuscript.

For the comparison with LRSSL, we build a single hidden layer (128 hidden units) Multi-layer Perceptron (MLP) for each embedding method. All the hyper-parameters for the MLP is set to default in *scikit-learn*.

For the comparison with DeepDDI, we try 4 different classifiers: Navie Bayes, Linear SVM, Logistic Regression and Deep Neural Network (DNN). For the Navie Bayes, Linear SVM, Logistic Regression, all the hyper-parameters are set to default in *scikit-learn*. For DNN, we implement it using Keras in tensorflow. The DNN architecture and its hyper-parameters are the same as the ones in the original paper. The details are listed below:

Architecture	8 hidden layers, 2048 hidden units for each layer					
	Activation function	Rectified linear unit				
	Batch normalization	Yes				
I I - m o momonto a form	Batch size	256				
Hyperparameters	Learning rate	0.0001				
	Optimizer	Adam				
	Weight initialization	Uniform				

For the comparison with Mashup, we run the original code provided by the authors to obtain embeddings for each protein. Then, we build the same classifier as other graph embedding methods to classify the protein functions.