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Abstract 1 

There is increased awareness of the possibility of developmental memories resulting from 2 

evolutionary learning. Genetic regulatory and neural networks can be modelled by analogous 3 

formalism raising the important question of productive analogies in principles, processes and 4 

performance. We investigate the formation and persistence of various developmental memories of 5 

past phenotypes asking how the number of remembered past phenotypes scales with network size, 6 

to what extent memories stored form by Hebbian-like rules, and how robust these developmental 7 

“devo-engrams” are against networks perturbations (graceful degradation). The analogy between 8 

neural and genetic regulatory networks is not superficial in that it allows knowledge transfer 9 

between fields that used to be developed separately from each other. Known examples of 10 

spectacular phenotypic radiations could partly be accounted for in such terms.  11 
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Introduction 12 

Alan Turing, the father of machine learning, also formulated one of the most important 13 

mathematical models in developmental biology: the reaction-diffusion model for pattern 14 

generation [1]. This is striking because only recently a conceptual analogy between evolutionary 15 

developmental processes and artificial neural network-based learning models has been articulated 16 

[2]. Since development is the process whereby the phenotype is specified by the evolving genotype, 17 

late-evolved morphologies or functional capacities retain aspects of earlier stages (“memory”) that 18 

were likely shaped by natural selection. These earlier stages might become reactivated if they are 19 

again useful in a different or a changing environment [3]. In this formulation evolutionary changes 20 

provide no novelty, defined as a structure that is non-homologous to an ancestral or existing one 21 

[4, 5], but allow for recursion. For instance, mimetic color patterns of an extinct morph of the 22 

butterfly Heliconius cydno, presumably as a result of human disturbance, can be reconstructed from 23 

wild-caught butterflies [6], meaning that the morph could recur in nature if the former conditions 24 

reappear. Also surprising is the repeatability of evolution among closely related lineages [7, 8]. An 25 

iconic textbook example is the extraordinary morphological convergence associated with 26 

adaptation to distinct ecological niches in cichlid fishes [9], with a large taxonomic diversity in the 27 

African Great Lakes Tanganyika (the oldest radiation, around 9-12 Myr ago with about 250 28 

species), Malawi (less than 0.8 Myr ago and over 700 species) and Victoria (about 700 species 29 

evolved within the past 15,000 years) [10].  30 

The idea that developmental processes can retain a memory of past selected phenotypes 31 

[11], together with the eerie ability of genomes to find adaptive solutions that quickly converge 32 

upon remarkably similar states (“attractors” [12]) in closely related lineages, clearly suggests a 33 

non-linear genotype-phenotype mapping capable of producing multiple distinct phenotypes [11, 34 
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13]. Non-linearity is also the hallmark of reaction-diffusion (Turing) and signaling systems 35 

involved in patterning processes [14], and developmental evolutionary biology (evo-devo) views 36 

the genotype-phenotype mapping as highly non-linear [15, 16]. Furthermore, it might not be 37 

farfetched to think of some sort of developmental memory in the cichlid adaptive radiation. The 38 

explosive diversification in Lake Victoria was predated by an ancient admixture between two 39 

distantly related riverine lineages, one from the Upper Congo and one from the Upper Nile drainage 40 

[17]. Many phenotypic traits known to contribute to the adaptation of different ecological niches 41 

in the Lake Victoria radiation are also divergent between the riverine species [18, 19]. Thus, when 42 

referring to the anatomical and morphological variation of Haplochromine cichlids, which are at 43 

the origin of the Lake Victoria radiation [17], Greenwood writes [19, p. 266]: “It is amongst the 44 

species of these various lacustrine flocks that one encounters the great range of anatomical, dental 45 

and morphological differentiation usually associated with the genus. The fluviatile species appear 46 

to be less diversified, but even here there is more diversity than is realized at first.” If the high 47 

diversity in the Haplochromine cichlids of Lake Victoria is, to some extent, the result of re-evolved 48 

(similar) phenotypes in the ancestral fluviatile lineages, then the enduring question of why such an 49 

explosive diversification happened within a short time interval might have a simpler solution than 50 

previously thought. We aim here to sketch what the solution could be.  51 

The genomic program for development operates primarily by the regulatory inputs and 52 

functional outputs of control genes that constitute network-like architectures [20], which are 53 

mathematically equivalent to artificial neural networks [21, 22]. Although the insights of 54 

Vohradsky [21, 22] and Watson et al. [11] shed light on an important analogy between neural and 55 

genetic regulatory networks, the conclusion of the theory of autoassociative networks cannot yet 56 

be readily extended to developmental systems. This is because of the different state space 57 

representations, as well as the nature of the task to be solved. Models of autoassociative networks 58 

Sticky Note
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tend to work with positive/negative state variables (inherited from ferromagnetic systems). In 59 

contrast to this, in ontogenetic systems the relevant space is that of nonnegative real numbers, 60 

corresponding to concentrations of different molecules. Due to the nonlinear activation function 61 

features of models working with the above mentioned, alternative state representations can 62 

markedly differ. Another important consideration is that autoassociative networks (as their name 63 

indicates) solve the problem of the recovery of a particular state (attractor property). During 64 

ontogeny we require something more: not only should the adult stage be stable, but the system 65 

should reach this state from a particular embryo state (heteroassociative property). It can easily 66 

happen that one has to find a solution to a problem of the transition from multiple embryo states 67 

and the corresponding adult states. In short, we require networks that solve problems of 68 

auto/heteroassociativity in one, as we model here. 69 

 70 

Methods 71 

Developmental model 72 

Our model is a formal description of ontogenetic development operating primarily by the 73 

regulatory inputs and functional outputs of control genes. Consider an organism with N genes. Its 74 

developmental state at time t, expressed by its gene product composition (e.g., proteins), can be 75 

represented by the vector 𝐩(𝑡) = (𝑝1, 𝑝2, … , 𝑝𝑁)
T with each element being the quantity of the 76 

product of a gene. These quantities are assumed to change due to protein decay and gene expression 77 

processes. Following [11], the ontogenetic dynamics of the developmental state can be described 78 

by the difference equation 79 

 𝑝𝑖(𝑡 + 1) = (1 − 𝛿)𝑝𝑖(𝑡) + 𝜏𝑓([𝐌𝐩(𝑡)]𝑖), (1) 
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where 𝜏 denotes the decay rate, 𝜏 denotes the maximal gene expression rate, 𝑓(. ) is the activation 80 

function, and the matrix M stands for the regulatory network. An mij entry of the matrix gives the 81 

regulatory effect of the product of gene j on the expression level of gene i; positive and negative 82 

elements imply activation and inhibition, respectively. The cumulative regulatory effects on any 83 

single gene i, i.e. the ith element of the product Mp, determine the gene expressions via a sigmoid 84 

activation function modelled here as 𝑓(𝑥) = (1 + tanh⁡(𝜔𝑥))/2, where ω is the slope parameter.  85 

 From an ontogenetic viewpoint, the task of the gene regulatory network is to guide the 86 

individual along a developmental pathway from an initial embryonic state 𝐩(0) = 𝐞  to a specific 87 

adult state 𝐩(𝑇) → 𝐚.  In real systems, an ensemble of different developmental pathways is desired, 88 

each responsible for achieving some environment-specific adult state from a particular embryonic 89 

state. We used T = 150 iteration to reach the steady state. 90 

 91 

Evolutionary model 92 

In the evolutionary model we considered a population of K individuals, with each member 93 

of the population represented by its regulatory matrix. All the interaction matrix elements were 94 

zero initially, representing an undeveloped regulation. Every individual shared the same 95 

environment. We assumed 𝑄 = 3 number of different selective environments, each defining an 96 

embryonic state 𝐞(𝑞) and a corresponding adapted adult state 𝐚(𝑞). The selective environments 97 

alternated randomly; if the average fitness of the population approached the optimum (𝑤̅ > 0.95 98 

for at least 20 consecutive generations), or after 10000 generations, a new environment was chosen 99 

at random. In each generation the individuals underwent mutation, development and selection steps 100 

as follows.  101 
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Mutation: The mutation of the regulation network was implemented by adding a normally 102 

distributed random value, with zero mean and 𝜇𝑊 variance, to a randomly selected matrix element. 103 

Matrix elements were clipped into the range⁡[−1,1].  104 

Development: We got the equilibrium, adult state of each member of the population by 105 

iterating Eq. (1). 106 

Selection: The fitness of individual k was expressed by a similarity index derived from the 107 

Euclidean distance between the actual adult state 𝐩(𝑇) and the environment-specific optimal adult 108 

phenotype 𝐚(𝑞) as 109 

 

𝑤𝑘 = 1 − √∑[
𝑝𝑛(𝑇) − 𝑎𝑛

(𝑞)

𝜏 𝛿⁄
]

2𝑁

𝑛=1

. (2) 

Then the regulatory matrix of a randomly selected individual was replaced by that of the individual 110 

with the highest fitness (elitist selection). 111 

Embryonic and (optimally adapted) adult vectors: The number of genes was 𝑁 = 100 with 112 

a low average expression level of 𝜎 = 0.1, where 40% of the expressed genes were common, 20% 113 

were partially common, and 40% were unique in all the embryonic and all the adult vectors. 114 

Specifically, the expression sites of the employed state vectors were 115 

 𝐞𝟏 = {13, 19, 32, 36, 39,49,55, 72, 81, 87}, 𝐞𝟐 = {13, 19, 31, 32, 40, 60,62, 72, 87, 100},  116 

⁡𝐞𝟑 = {5, 13, 19, 32, 36, 40, 47,67, 72, 94}, 𝐚𝟏 = {6, 12, 20,24, 46, 65, 84, 86, 88, 92},  117 

⁡𝐚𝟐 = {6, 11,28, 46, 79, 84, 86, 91, 92, 96},  𝐚𝟑 = {6, 12, 46, 56,61,66,80, 84, 91, 92}; where 118 

underlines and overlines denote the common and partially common elements, respectively. The 119 

initial state was always a perturbed embryonic state. The perturbation was performed, similar to 120 

the mutations, by adding a normally distributed random value, with zero mean and 𝜇e variance, to 121 
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a randomly selected element of the environment-specific embryo vector. Vector elements were 122 

clipped into the range [0, 𝜏 𝛿⁄ ]. 123 

 124 

Perturbation analysis 125 

The embryo states were perturbed by flipping the vector elements from low to high, or vice 126 

versa, with the given probability. The interaction matrices were perturbed by either adding random 127 

values to all matrix elements, drawn from a normal distribution with the given standard deviation, 128 

or by nullifying a proportion of the elements. Matrix elements were clipped into the range [−1, 1]. 129 

Note that, in the evolutionary algorithm we perturbed only single elements of the embryonic states. 130 

In contrast, in the analytical matrix construction we perturbed all elements of the embryonic vectors 131 

to incorporate the accumulating effects of many consecutive perturbations on the interaction 132 

matrix. 133 

 134 

Results 135 

 To perform the developmental task, the network must guarantee that (i) each adult state is 136 

a stable equilibrium point of the dynamics (stability condition), and (ii) each embryonic state is 137 

within the basin of attraction of its corresponding adult state (attraction condition); these two 138 

conditions correspond to the auto- and heteroassociative properties in a neural network [23]. Note 139 

that this is a more difficult task than a simple pattern recovery problem, which is known to be 140 

achievable by a neural network with the standard Hebbian learning rule that fulfils only the stability 141 

condition [24]. Not only must all the adult states have a basin of attraction, but these basins must 142 

include the corresponding embryonic states. 143 
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Fig. 1. Illustration of the construction rules of interaction matrices based on theoretical 144 

considerations on the optimal pairwise interaction types between genes. 𝐞(1) and 𝐚(1) are the 145 

first embryo-adult pair, 𝐞(2) and 𝐚(2) the second pair. Depending on the combination of gene 146 

expressions e𝑖
(𝑛)

 and a𝑖
(𝑛)

  in an embryo-adult vector pair (𝑛 = 1,2), an mij element of the 147 

interaction matrix can be positive (′ + ′, activation), negative (′ − ′, inhibition), or undefined (′U′). 148 

To ensure correct development (𝐌𝐞
(𝑛)
𝐞(𝑛) → 𝐚(𝑛))  the 𝐌𝐞

(𝑛)
 matrices must have the structure 149 

indicated in the figure. (If 𝑒𝑗
(𝑛)

= 1 and 𝑎𝑖
(𝑛)

= 1, then 𝑚𝑖𝑗
(𝑛)

=′+ ′; if 𝑒𝑗
(𝑛)

= 1 and 𝑎𝑖
(𝑛)

= 0, then 150 

𝑚𝑖𝑗
(𝑛)

=′− ′; if 𝑒𝑗
(𝑛)

= 0, then 𝑚𝑖𝑗
(𝑛)

= ′U′; irrespective of the value of 𝑎𝑖
(𝑛)

.) A similar argument 151 

holds for the stability criteria (𝐌𝐚
(𝑛)
𝐚(𝑛) → 𝐚(𝑛))  and results in the 𝐌𝐚

(𝑛)
 matrices. By combining  152 

𝐌𝐞
(𝑛)

 and 𝐌𝐚
(𝑛)

 the resulting 𝐌(𝑛) fulfills both the attractivity and stability criteria. The combination 153 

rules are the following: (+,+) → +; (−,−) → −; (±, U) → ±; and (±,∓) → C, which can be done 154 

practically by taking the element-wise average of the two matrices. The ultimate combination of 155 

all 𝐌(𝑛)s results in a matrix that fulfills the attraction and stability criteria for all different embryo-156 

adult pairs. 157 

 

We found that the task-optimized structure of the regulatory network can be inferred from 158 

the embryo-adult state vector pairs in the form of an interaction matrix M (Fig 1). Consider the 159 

simplest case with one embryo-adult pair (i.e. one developmental pathway). Depending on whether 160 

Sticky Note
I get it 
mapping = env pattern goes to adult pattern
and 
stability = adult pattern goes to itself
 



10 

 

a gene is expressed in the adult state or not, all the other expressed gene products, in either the 161 

embryonic or the adult state, must enhance or block its expression, respectively. This would 162 

provide, on the one hand, stability for the adult state and, on the other hand, attraction from the 163 

embryonic state. Note, however, that if a gene is expressed in neither the embryonic nor the adult 164 

state, then its regulatory effect is irrelevant, therefore the corresponding matrix elements are 165 

undetermined. In summary, an mij element of the regulatory matrix M should be positive or 166 

negative, depending on whether the ith gene is expressed in the adult state or not, except when the 167 

jth gene is expressed in neither the embryonic nor the adult state. The above line of thought can be 168 

generalized for arbitrary Q number of embryo-adult state pairs. Denoting the zero-one normalized 169 

embryonic and adult state vectors by e and a, such a matrix can be obtained by averaging two 170 

dyadic products for all developmental pathways as 171 

 

𝐌 =
1

2𝑄
∑(2𝐚̂(𝑞) − 1) ∘ 𝐚̂(𝑞) + (2𝐚̂(𝑞) − 1) ∘ 𝐞̂(𝑞)
𝑄

𝑞=1

, (3) 

where Q stands for the number of embryo-adult state pairs and q denotes the different pairs. The 172 

first and second dyadic products are responsible for the stability and attraction conditions, 173 

respectively. Within each dyadic product the right argument determines whether an entry is 174 

relevant from the viewpoint of the state vector, whereas the left dyadic argument determines its 175 

sign. The resulting matrix contains positive values, negative values and zeros for activator, 176 

inhibitory and undetermined elements, respectively. Notice that the developmental pathways can 177 

be in conflict with each other as to whether a gene should be up- or downregulated by another gene. 178 

It is instructive to compare this formula with the standard Hebbian learning rule 𝐇 = 𝐚 ∘ 𝐚 for 𝑎𝑖 ∈179 

{−1,+1}. Its modification for 𝑎𝑖 ∈ {0, +1} vectors that preserves that stability condition is 𝐇 =180 

(2𝐚 − 1) ∘ 𝐚, which is identical to the first term in Eq. (3), c.f. Table 1.  181 
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Table 1. Comparison of the resulting interaction matrices for an autoassociative task with 182 

the two representations. 183 

 

 { 1, 1}   representation {0, 1}  representation 

learning rule ( ) ( ) (Hebb-rule)q q

ij i j

q

H a a   
( ) ( )(2 1)q q

ij i j

q

M a a    

symmetry 
ij jiH H   non-symmetric 

neutralities in 

weight matrix 

no neutral elements can be neutral elements 

(“opposite to” zero vector 

elements) 

main diagonal always positive (if allowed) can be negative or positive 

robustness against 

perturbation of 

matrix elements 

smaller, due to the absence of 

neutral elements 

larger, due to the presence of 

neutral elements 

structure has a unique structure many different realizations  

 

 

We investigated the parameter dependence of the analytic model. As for the regulatory 184 

matrix we used a slightly modified version of Eq. (3). Treves [25] claims that the interaction terms 185 

should be modified by the average expression σ, i.e. the proportion of expressed genes. This is 186 

because if a larger proportion of genes is expressed, then proportionally smaller interaction 187 

strengths are needed for the same regulatory effect on any single gene. Incorporating this 188 

consideration into Eq. (3) gives  189 

 

𝐌 =
1

2𝑄
∑(2𝐚̂(𝑞) − 1) ∘ (𝐚̂(𝑞) − 𝜎 + 𝐞̂(𝑞) − 𝜎)

𝑄

𝑞=1

. (4) 

 The performance of a regulatory network constructed by the above rule changes with the number 190 

of developmental pathways and gene expression levels (Fig 2). With increasing number of embryo-191 

adult pairs, the accumulating conflicts between them inevitably corrupt the regulatory ability of the 192 

network; some adult states will be unreachable from their embryonic states. Nevertheless, the 193 

network is able to tolerate a fair number of conflicts, related to its structural stability. Since conflicts 194 

can occur only between non-orthogonal state vectors, the performance of the network also depends 195 
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on the amount of overlap in the expression patterns of states belonging to different pairs. This 196 

highlights the importance of the proportion of expressed genes; i.e., the sparseness of the state 197 

vectors. If these vectors are very sparse, then they are unlikely to be non-orthogonal, therefore the 198 

number of learnable embryo-adult pairs is quite large. The number of learnable pairs is a decreasing 199 

function of sparseness, because the numerous non-orthogonal state vectors and the largely different 200 

gene expressions in the adult states lead to several conflicts among them. Regarding the effect of 201 

system size on functionality, the results are in line with the expectations; the higher the number of 202 

genes, the higher is the number of “error free” developmental pathways (Fig 3). 203 

 

 
 

Fig. 2. Performance of the analytic developmental networks. We assumed different sparseness 204 

(proportion on non-zero entries in the state vectors) values and different number of embryo-adult 205 

pairs. Embryo and desired adult vectors were generated by independently setting each vector 206 

element to high or low randomly according to the sparseness value.The performance was measured 207 

by the averaged (over 400 realizations) Pearson correlation(s) between the desired and the 208 

experienced adult state(s) for all developmental pathways (panel A). Panels B and C show a more 209 

detailed view for the two cross-sections of the parameter space (indicated by dashed lines in panel 210 

A). Orange horizontal lines show the maximum number of orthogonal state vectors for the given 211 

sparseness values. Parameters: 𝑁 = 100, 𝛿 = 0.2, 𝜏 = 1,𝜔 = 25).  212 
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Fig. 3. Performance of the analytic developmental networks with different number of genes 213 

and developmental pathways. Relevant parameters as in Fig. 2 and 𝜎 = 0.1. 214 

 

A key question is whether a functional network is attainable by Darwinian selection via a 215 

series of mutation-selection steps. In our evolutionary model we used a more realistic Darwinian 216 

dynamics than the solitary stochastic hill climbing [11]. From the viewpoint of the theory of 217 

artificial neural networks this process can be regarded as a Darwinian dynamics-driven learning 218 

process. The evolutionary algorithm yields interaction matrices that contain positive and negative 219 

values where the heuristic formulation predicts them (Fig 4).  While the individual interaction 220 

matrices vary, their average is in line with the heuristically derived matrix. The values are arranged 221 

into a characteristic structure; positive and negative entries form horizontal stripes, intermitted with 222 

vertical stripes of near-zero values (c.f. Fig 1). Those genes have the largest effect on the 223 

developmental process, which are expressed in any embryonic or adult states (c.f. marked columns 224 

in Fig 4). Depending on whether the affected gene is expressed in any of the adult states, they have 225 

a strong positive or negative effect (c.f. marked rows in Fig 4). The rest of the genes drift freely in 226 

individual realizations due to a lack of selective pressure. Consequently, the average values in these 227 

positions are approximately zero (c.f. grey columns in left panel of Fig 4). The corresponding 228 

values in the analytic treatment (undefined elements) are zero by definition. The only major 229 

difference from the heuristic matrix is that the main diagonal elements of the evolutionary matrix 230 
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are mainly negative, which means that the expression of every gene is under negative feedback by 231 

its own inhibitory product. A possible explanation is that without a strong negative feedback a gene 232 

could be easily overexpressed due to the perturbations of the interaction elements. This is more 233 

probable if the sparseness of the expression vectors is low, as it was in our case. This picture is 234 

likely to change with hierarchical developmental regulation, the evolution of which takes longer 235 

time and should be investigated in the future. 236 

 

  
 

Fig. 4. Structure of the interaction matrix obtained with the evolutionary algorithm as 237 

compared to the analytically derived one for three developmental pathways. (A) The 238 

evolutionary interaction matrix was obtained by averaging the output of 300 independent runs of 239 

the evolutionary algorithm. The three applied environment-specific embryonic and adult state 240 

vectors are shown along the sides. Orange guidelines highlight those rows where the corresponding 241 

genes are expressed in at least one adult state, whereas green guidelines highlight those columns 242 

where at least one gene is expressed in any of the embryonic or adult states. (B) The theoretically 243 

predicted interaction matrix was constructed from the embryonic and adult state vectors using Eq. 244 

(3). Parameters as in Fig. 2 and 𝑄 = 3,𝐾 = 100, 𝜇𝑊 = 0.05, 𝜇𝑒 = 0.1, 𝜎 = 0.1.  245 
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A detailed view of the evolutionary process is shown in Fig 5. During the early generations, 246 

where the gene regulation is undeveloped, it takes many generations (i.e., mutation-selection steps) 247 

to approach the environment-specific optimum. In addition, selection for one environment can have 248 

adverse effects on performance in another environment if the basin of attraction of the actually 249 

selected adult state engulfs the neighborhood of the embryonic states of other adult states. But those 250 

interactions which are not beneficial in all environments are eliminated. Detrimental mutations 251 

may arise any time also in a well-functioning system, but selection eliminates them over the 252 

timescale of a few environmental changes. 253 

 

 

 

 

Fig. 5. Learning of three different developmental pathways in the evolutionary model. (A) 254 

Average fitness and the mutation-selection steps needed to achieve a well-functioning 255 

developmental network during random environmental changes. The three environments are 256 

denoted by red, green and blue. Parameters as in Fig. 4. (B) Schematic illustration of the changes 257 

in the state-space dynamics during the evolutionary process with three developmental pathways 258 

(indicated by red, blue and green colors). The panels show the basins of attraction of an initial, 259 

random regulation system with two embryo-adult pairs (left), a well-functioning one (top right) 260 

and a bad one, where the basins of attraction of the adult states (filled dots encircled by dotted lines 261 

indicating variation around the target phenotypes) include not only their corresponding embryo 262 

states (bottom right).  263 
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A developmental process must be sufficiently robust against stochastic perturbations of 264 

both the embryonic state and the gene interaction matrix. It requires that the neighborhood 265 

(according to a given metric) of the embryonic states must also be in the basin of their 266 

corresponding adult states. Therefore, some inputs of variation should produce little or no 267 

phenotypic variation at all, a phenomenon that has received a lot of attention under the labels of 268 

canalization, robustness or buffering [26-28]. The recovery performance of the network changes 269 

with increasing amount of perturbations (Fig 6). The system is very robust against perturbations 270 

regarding the embryonic state, and it is moderately robust against both additive perturbations and 271 

eliminated interactions regarding the interaction network. This robustness is attributable to the high 272 

number of neutral elements (correspond to the zero values in state vectors) of the interaction matrix. 273 

This is in sharp contrast to the standard Hebbian set-up, where there are no neutralities, due to the 274 

{−1,+1} representation; see Table 1. Resilience understandably decreases with the number of 275 

developmental pathways in all cases, but conforming to “graceful degradation” in artificial neural 276 

networks; i.e., performance first decreases mildly and drops fast only beyond a critical strength of 277 

perturbation [24]. To sum up, variation is apportioned into discontinuous (basins of attraction) and 278 

continuous (small perturbations around the target) phenotypes (Fig 5B). Evo-devo mainly focus on 279 

the first kind of variation whereas standard evolutionary genetics focus on the second [15, 29].  280 
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Fig. 6. Robustness of the developmental dynamics against perturbations. The interaction 281 

matrices were constructed from the given number of embryo-adult vector pairs according to Eq. 282 

(4). The performance was expressed by the Pearson correlation(s) between the desired and the 283 

experienced adult state(s) for all developmental pathways after T=150 iterations averaged over 300 284 

matrices and 100 perturbations for each parameter combination. (A) Performance against the 285 

proportion of the flipped embryonic vector elements. (B). Performance against the standard 286 

deviation (SD) of the perturbation of the interaction matrix. All elements of the matrix were 287 

perturbed additively by an 𝑁(0, 𝑆𝐷) random number. (C) Performance against the proportion of 288 

nullified elements of the interaction matrix. Each element of the interaction matrix was set to zero 289 

with the given probability. Relevant parameters are as in Fig. 4.  290 
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Discussion 291 

 Treating gene regulatory networks as formally analogous to artificial neural networks [21, 292 

22] allows translating the well-known dynamics of the latter [30] to model genomic programs for 293 

development. There is widespread natural variation in morphogenic pathways [31], and the 294 

developmental memory of past selected phenotypes [11] is akin to the memory capacity of neural 295 

networks. This developmental memory allows populations to re-evolve phenotypes much faster 296 

than it would be possible if they had to evolve de novo. Previous speculation on the role of the 297 

heat-shock protein Hsp90 as a capacitor for releasing hidden morphogenetic variation that could 298 

allow fast morphological radiations [31] has been criticized on the grounds that the function of 299 

Hsp90 is to prevent morphological aberrations. Furthermore, some sense of purposive evolution, 300 

fully incompatible with the lack of foresight of natural selection, lays behind this sort of 301 

interpretations [32].  302 

These criticisms do not apply here because in our developmental model past selected states 303 

can recur in the population if they appear useful again in a different environment or body context. 304 

As any theoretical model, ours obviously has inherent limitations and highly simplifies the 305 

representation of biological systems. However, to the extent that it captures sufficient conditions 306 

to generate the phenomenon of morphological radiations, more complex explanations are not 307 

required. Thus, the assumption that structural novelties (or “key innovations”) are associated with 308 

adaptive radiations into new ecological niches (e.g. [33, p. 159]) might be unwarranted. There is a 309 

noteworthy implication in the foregoing consideration for the understanding of atavism. 310 

Crocodilian teeth can grow in mutant birds, which suggests the reactivation of the associated 311 

developmental machinery [34], that required the resurrection [35] of a key aspect of regulation. 312 

The same neurons participate in the storage of different engrams in neural networks. The same 313 
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holds for the storage of devo-engrams in genetic regulatory networks. Resurrection leading to 314 

atavism requires only limited reactivation of a few connections in a network that is maintained by 315 

the current selective forces. An exciting question is how evo-devo learning can generalize from the 316 

“training set” (previously selected target phenotypes) to novel ones [11, 36]. Prediction [36] is that 317 

generalization potential works within a set that can be characterized by the same formal grammar.  318 

While the theory of neural networks can (and does) infer the same conclusions based  on 319 

different representations, in the case of modelling real biological situations the adequacy of the 320 

representation can be crucial (the same holds for neuronal networks). Our results show that a linear 321 

change to the representation has profound impact on the essential features of the system. While in 322 

the customary (neural) {-1,+1} representation there are no neutral elements in the interaction 323 

matrix, the biologically adequate {0,+1} representation of genetic regulatory networks allows for 324 

the free choice of interaction elements being opposite to “0”. This feature turns out to increase the 325 

robustness of the system against the disturbance of interaction coefficients. Another feature of our 326 

representation is the large number of different interaction matrices entailing the same 327 

developmental process, thus evolution “from scratch” does not face so many constraints.   328 
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