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S1 Appendix: Mathematical model and parameters 
We used an individual-based model of malaria transmission. Full details of the model and interventions other than the 

vaccine are published elsewhere [1]. The key details are reproduced here for completeness. 

 
1.1 Transmission model 

Individuals begin life susceptible to infection (S) but with a degree of maternal immunity (see below) that decays over their 

first six months. Susceptible individuals (𝑖) experience a force of infection 𝛬𝑖 which depends on the vectorial capacity at a 

given time as well as their level of pre-erythrocytic immunity (see below). Following infection, individuals experience a 

delay of length 𝑑𝐸  representing the period from infection to appearance of blood-stage infection, following which they 

develop either symptomatic clinical disease or asymptomatic infection (A), with a probability dependent on their level of 

clinical immunity (see below). Symptomatic individuals receive appropriate treatment with probability 𝑓𝑇  following which 

they enter the treated disease state (T) and otherwise enter the untreated disease state D. Those in the latter state eventually 

resolve symptoms and move to the asymptomatic state (A). Those that are treated subsequently experience a period of 

drug-dependent partial protection from re-infection (modelled as a Weibull survivorship function) before returning to the 

fully susceptible state (S). From the asymptomatic state, as parasite density gradually reduces due to the immune response, 

asymptomatic individuals move to the sub-patent infection state (U) after which they clear infection and return to the 

susceptible state S. Individuals in states D, A and U can be re-infected (super-infection) and will move into infection states 

D, T or A following the same process as for primary infection. The flow between states is summarised in Fig A and the 

corresponding transitions in Table A. 
 

Deaths from non-malaria associated causes are modelled using national life-tables [2], with individuals removed from the 

population at age-specific rates to match the required age distribution. Malaria-associated deaths are tracked separately 

(see below). When an individual dies they are replaced with a newborn individual with the same characteristics 

(heterogeneity in biting rates – see below) so that the population size in the simulation remains constant. 

 

 
Fig A: Progression between human infection states. States are shown in boxes and state transitions by arrows with 

associated hazard rates. The circle represents the treatment node. Superinfection is indicated by dashed blue arrows. S = 

susceptible, D = clinical disease, T = successfully treated disease, A = asymptomatic patent infection, U = asymptomatic 

sub-patent infection. Malaria-associated deaths are tracked separately. Diagram is reproduced from S1 Appendix to 

Winskill et al. [1]. 
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Table A: Infection state transition rates for the human component of the transmission model. 
Process Transition Rate 

Infection 𝑆 → 𝐼  𝛬𝑖(𝑡 − 𝑑𝐸) 
Progression of untreated disease to 

asymptomatic infection 
𝐷 → 𝐴  𝑟𝐷 =

1

𝑑𝐷
 

Progression of asymptomatic to sub-

patent infection 
𝐴 → 𝑈  𝑟𝐴 =

1

𝑑𝐴
 

Progression of sub-patent infection to 

susceptible 
𝑈 → 𝑆  𝑟𝑈 =

1

𝑑𝑈
 

Progression of treated disease to 

susceptible* 
𝑇 → 𝑆  𝑟𝑇 =

1

𝑑𝑇
 

Super-infection from untreated clinical 

disease, asymptomatic or sub-patent 

infection 

𝐷 → 𝐼 
𝐴 → 𝐼 
𝑈 → 𝐼 

 𝛬𝑖(𝑡 − 𝑑𝐸) 

* Treated individuals experience a period of drug-dependent partial protection from reinfection. 

 

1.1.1 Heterogeneity in biting rates 

Each individual in the simulation experiences a biting rate that depends on the product of their age-dependent biting rate, 

𝜓(𝑎), and their relative biting rate 𝜁𝑖. For an individual of age a the former is defined as: 

 𝜓(𝑎) = 1 − 𝜌exp (−
𝑎

𝑎0
) (1) 

where 𝜌 and 𝑎0 are parameters that determine the relationship between age (i.e. body size) and biting rate and 𝜔 is a 

normalising constant for the biting rate with age 

 𝜔 = ∫ 𝜓(𝑎)𝑔(𝑎) 𝑑𝑎
∞

0
 (2) 

and 𝑔(𝑎) is the cross-sectional human population age distribution. The relative biting rate is drawn from a Log-normal 

distribution with a mean of 1:   

 𝑙𝑜𝑔(𝜁𝑖) ∼ 𝑁 (
−𝜎2

2
, 𝜎2). (3)  

The EIR 𝜀𝑖(𝑎, 𝑡) and force of infection 𝛬𝑖(𝑎, 𝑡) experienced by individual i with age a at time t are given by

𝜀𝑖(𝑎, 𝑡) = 𝜀0(𝑡)𝜁𝑖𝜓𝑖(𝑎)
𝛬𝑖(𝑎, 𝑡) = 𝑏𝑖(𝑡)𝜀𝑖(𝑎, 𝑡). (4) 

 
Here 𝜀0(𝑡) is the mean EIR experienced by adults at time t and 𝑏𝑖(𝑡) is the probability that an infectious bite leads to a 

patent infection. The latter is determined by the level of pre-erythrocytic immunity (see below).  

 

1.1.2 Naturally-acquired immunity 

We capture the natural acquisition and loss of immunity dynamically through its relationship with both age and exposure. 

Newborns acquire a level of maternal immunity to clinical disease and severe disease at birth, denoted 𝐼𝐶𝑀 and 𝐼𝑉𝑀 

respectively. The level at birth is set as a proportion, 𝑃𝑀 , of the acquired immunity to clinical and severe malaria 

respectively of a randomly chosen 15–35-year-old in the population with the same heterogeneity level. This decays 

exponentially at a constant rate 𝑟𝑀 = 1/𝑑𝑀. 

 
Acquired immunity to infection (pre-erythrocytic immunity) develops at older ages, is boosted by one level following each 

infected bite provided it is at least 𝑢𝐵 days since the last exposure, and decays exponentially in between exposures with 

rate 𝑟𝐵 =
1

𝑑𝐵
. Blood stage immunity is assumed to control parasite density and hence affect the probability of developing 

severe disease, clinical disease and ultimately the detectability of asymptomatic infection. Acquired immunity to each of 

severe disease, clinical disease and detectability of infection is tracked separately, is boosted by one level following each 

patent infection provided it is at least 𝑢𝑉 , 𝑢𝐶  or 𝑢𝐷days respectively since the last exposure, and decays exponentially 

between exposures with rate 
𝑟𝑉𝐴=1

𝑑𝑉𝐴
, 𝑟𝐶𝐴 =

1

𝑑𝐶𝐴
 and 𝑟𝐼𝐷 =

1

𝑑𝐼𝐷
 respectively.  

 

All immunity levels are converted to individual time-dependent probabilities using Hill functions. The probability that 

individual i who is exposed to an infectious bite at time t develops a patent infection is given by: 

 𝑏𝑖(𝑡) = 𝑏0(𝑏1 +
1−𝑏1

1+(
𝐼𝐵(𝑖,𝑡)

𝐼𝐵0
)

𝜅𝐵
)  (5) 

where 𝑏0 is the probability of infection with no immunity, 𝑏0𝑏1 is the minimum probability, 𝐼𝐵0 and 𝜅𝐵 are scale and shape 

parameters respectively and 𝐼𝐵(𝑖, 𝑡) is the level of pre-erythrocytic immunity of individual i at time t. 

 

The probability that individual i develops clinical disease at time t conditional on having been infected is given by: 
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 𝜙𝑖(𝑡) = 𝜙0 (𝜙1 +
1−𝜙1

1+(
(𝐼𝐶𝐴(𝑖,𝑡)+𝐼𝐶𝑀(𝑖,𝑡))

𝐼𝐶0
)

𝜅𝐶
)  (6) 

where 𝜙0 is the probability of disease with no immunity, 𝜙0𝜙1  is the minimum probability, 𝐼𝐶0 and 𝜅𝐶 are scale and shape 

parameters respectively, 𝐼𝐶𝐴(𝑖, 𝑡) is the level of acquired immunity to clinical disease and 𝐼𝐶𝑀(𝑖, 𝑡) is the level of maternally 

acquired immunity to clinical disease of individual i at time t. 
 

The probability that individual i develops severe disease at time t and age a conditional on being infected is defined as: 

 𝜃𝑖(𝑎, 𝑡) = 𝜃0(𝜃1 +
1−𝜃1

1+𝑓𝑉(𝑖,𝑎)(
(𝐼𝑉𝐴(𝑖,𝑡)+𝐼𝑉𝑀(𝑖,𝑡)

𝐼𝑉0
)
𝜅𝑉
)  (7) 

where 𝜃0 is the probability of disease with no immunity, 𝜃0𝜃1 is the minimum probability, 𝐼𝑉0 and 𝜅𝑉 are scale and shape 

parameters respectively, 𝐼𝑉𝐴(𝑖, 𝑡) is the level of acquired immunity to severe disease, 𝐼𝑉𝑀(𝑖, 𝑡) is the level of maternally 

acquired immunity to severe disease of individual i at time t and  

 𝑓𝑉(𝑖, 𝑎) = 1 −
(1−𝑓𝑉0)

(1+(
𝑎

𝑎𝑉
)
𝛾𝑉

)

  (8) 

is an age-dependent (physiological) modifier of the risk of severe disease, where 𝑓𝑉0 , 𝑎𝑉  and 𝛾𝑉 are parameters. 

 

The detectability by microscopy of an asymptomatic infection in individual i of age a at time t is given by: 

 𝑞𝑖(𝑎, 𝑡) = 𝑑1 +
(1−𝑑𝑚𝑖𝑛

((
1+𝐼𝐷(𝑖,𝑡)

𝐼𝐷0
)
𝜅𝐷

𝑓𝐷(𝑖,𝑎))

  (9) 

where 𝑑𝑚𝑖𝑛  is the minimum probability of detection, 𝐼𝐷0 and 𝜅𝐷 are scale and shape parameters respectively, 𝐼𝐷(𝑖, 𝑡) is the 

level of acquired immunity to the detectability of infection of individual i at time t and 

    𝑓𝐷(𝑖, 𝑎) = 1 −
(1−𝑓𝐷0)

(1+(
𝑎

𝑎𝐷
)
𝛾𝐷

)

      (10) 

is an age-dependent (physiological) modifier of the detectability of infection where 𝑓𝐷0, 𝑎𝐷 and 𝛾𝐷  are parameters. 

 

1.1.3 Onward infectivity to mosquitoes 

Each infection state is assumed to be onwardly infectious to mosquitoes who bite an individual, with the highest infectivity 

associated with the states in which parasite density is highest (i.e. disease). Onwards infectiousness is 𝑐𝐷and 𝑐𝑈 in states 

𝐷and 𝑈 respectively, and 𝑐𝑇  following treatment. In state 𝐴 infectiousness is modified by the detectability of individual 𝑖, 
𝑞𝑖, and is given by the function as 𝑐𝑈 + (𝑐𝐷 + 𝑐𝑈) 𝑞𝑖

𝛾𝐼.  

 

1.1.4 Severe disease and mortality 

We use the model estimates of clinical incidence to derive estimates of severe disease incidence and malaria-associated 

mortality. Following Griffin et al [3], incidence of severe malaria requiring hospitalisation in the age range 𝑎𝐿 to 𝑎𝑈 at 

time t is given by: 

 𝜆𝐻(𝑡, (𝑎𝐿 , 𝑎𝑈)) =
∑ ((1−𝑓𝑇)+𝑓𝑇𝑓𝑉𝑇)𝛬𝑖(𝑡)𝑖 : 𝑎𝐿< 𝑎𝑖(𝑡) <𝑎𝑈

 𝜃𝑖(𝑡)

#{𝑖 : 𝑎𝐿< 𝑎𝑖(𝑡) <𝑎𝑈}
  (11) 

where 𝛬𝑖(𝑡) is the force of infection experienced by individual i at time t and 𝜃𝑖(𝑡) the probability that individual i develops 

severe disease at time t upon being infected. Malaria-related mortality is assumed to be proportional to the incidence of 

severe disease due to malaria and is defined as: 

 𝜇(𝑡, (𝑎𝐿 , 𝑎𝑈)) = 𝑣𝜆𝐻(𝑡, (𝑎𝐿 , 𝑎𝑈)) (12) 

where parameter 𝑣 is a scaling factor. Individuals receiving treatment are assumed to experience a reduction, 𝑓𝑉𝑇 , in the 

probability of disease progression to severe disease and hence death. 

 

1.1.5  Vector model  

We model infection in the mosquito population using the deterministic model previously described by White et al but with 

an equivalent compartmental stochastic form for adult female mosquitoes [4]. Adult (female) mosquitoes are assumed to 

lay eggs at rate 𝛽. Upon hatching from eggs, larvae progress through early and late larvae stages (E and L compartments) 

before developing to the pupal stage (𝑃𝐿). The larval stages are regulated by density dependent mortality, with a time-

varying carrying-capacity, 𝐾, that represents the ability of the environment to sustain breeding sites through different 

periods of the year and with the density of larvae in relation to the carrying-capacity regulated by a parameter 𝛾. The 

carrying-capacity determines the mosquito density and hence the baseline transmission intensity in the absence of 

interventions. The differential equations for the larval stages are given by: 
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We assume that 50% of the emergent adult mosquitoes are female and all enter the susceptible state (𝑆𝑀). The rate at which 

adult female mosquitoes become infected is a function of the infectiousness of the human population including an 

appropriate time-lag (𝑡𝑙) to account for the period between humans becoming infected and becoming infectious. The force 

of infection experienced by mosquitoes (𝛬𝑀) is given by: 

𝛬𝑀(𝑡) =
𝛼

𝜔
∫ ∫ 𝜁𝜓(𝑎)(𝑐𝐷𝐷(𝜁, 𝑎, 𝑡 − 𝑡𝑙) + 𝑐𝑇𝑇

∞

0

∞

0
(𝜁, 𝑎, 𝑡 − 𝑡𝑙) + 𝑐𝐴𝐴(𝜁, 𝑎, 𝑡 − 𝑡𝑙) + 𝑐𝑈𝑈(𝜁, 𝑎, 𝑡 − 𝑡𝑙)𝑑𝑎𝑑𝜁  (14) 

where 𝛼 is the biting rate on humans, 

 𝛼 = 𝑄0/𝛿,  (15) 

𝑄0 quantifies the level of anthropophagy, and 𝛿 is the mean time between feeds. The parameter 𝜔 represents a normalising 

constant for the biting rate over all ages: 

 𝜔 = ∫ 𝜓(𝑎)𝑔( 𝑎)𝑑𝑎
∞∫

0
  (16) 

where 𝑔(𝑎) is the human age distribution. There is a fixed delay 𝜏𝑀 before female mosquitoes become infectious to humans 

(𝐼𝑀) and they are assumed to remain infectious after this. 

 

1.1.6 Seasonality 

Seasonality is incorporated through a time-varying carrying capacity  

 𝐾(𝑡) = 𝐾0
𝑅(𝑡)

𝑅
  (17) 

where 𝐾0 is the mean carrying capacity, 𝑅 the mean rainfall over the year and 𝑅(𝑡), the time varying seasonal curve. The 

latter is obtained from rainfall data using the first three frequencies of a Fourier transform of the daily rainfall data: 

 𝑅(𝑡) = 𝑔0 +∑ 𝑔𝑖 𝑐𝑜𝑠( 2𝜋𝑡𝑖) + ℎ𝑖 𝑠𝑖𝑛( 2𝜋𝑡𝑖)
3
𝑖=1 ,  (18) 

obtained from the US Climate Prediction Center for sub-Saharan Africa between 2002 and 2009 [5]. 

 

1.1.7 Vector bionomics 

Within Africa the relative abundance of the three dominant vector species in each administrative unit (An.gambiae s.s., An. 

Arabiensis and An.funestus) were based on spatial estimates made by the Malaria Atlas Project [6]. The characterising 

bionomics parameters for these African vector species are shown in Table B. 

 

Table B: Vector bionomics parameters. 
Bionomics trait An gambiae s.s* An arabiensis An funestus 

Anthropophagy 0.92 0.71 0.94 

Endophily 0.81 0.42 0.81 

% bites indoors 0.97 0.96 0.98 

% bites indoors and in bed 0.89 0.90 0.90 

Daily mortality of adults with no interventions 0.132 0.132 0.112 

*includes An.coluzzi 

 

1.2 Parameter values 
All baseline model parameter estimates are included in Table C. These are collated from previous publications. and are 

based on a number of model-fitting exercises and analyses of experimental data [4,7–9]. 

 

Table C: Model parameters. 
Parameter Symbol Estimate Reference 

Human infection duration (days)    

Latent period 𝑑𝐸 12 [10] 

Patent infection 𝑑𝐴  195 [10,11] 

Clinical disease (treated) 𝑑𝑇  5 [12] 

Clinical disease (untreated) 𝑑𝐷  5 [13] 

Sub-patent infection 𝑑𝑈 110 Fitted [9] 

Treatment    
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Probability of seeking treatment if clinically diseased 

𝑓𝑇  

Varies by admin-1 

unit 

Estimated from 

Demographic and 

Health Surveys [14] 

Age and heterogeneity    

Age-dependent biting parameter 𝜌 0.85 [15,16] 

Age-dependent biting parameter 𝑎0 8 years  [15,16] 

Variance of the log heterogeneity in biting rates 𝜎2 1.67 [17] 

Immunity reducing probability of infection    

Maximum probability due to no immunity 𝑏0  0.590076 Fitted [7] 

Maximum relative reduction due to immunity 𝑏1  0.5 [18] 

Inverse of decay rate 𝑑𝐵  10 years [18] 

Scale parameter 𝐼𝐵0 43.8787 Fitted [7] 

Shape parameter 𝜅𝐵 2.15506 Fitted [7] 

Duration in which immunity is not boosted 𝑢𝐵  7.19919 days Fitted [7] 

New-born immunity relative to mother’s 𝑃𝐶𝑀  0.774368 Fitted [7] 

Immunity reducing probability of clinical disease    

Maximum probability due to no immunity 𝜙0 0.791666 Fitted [7] 

Maximum relative reduction due to immunity 𝜙1  0.000737  Fitted [7] 

Inverse of decay rate 𝑑𝐶𝐴 30 years [19] 

Scale parameter 𝐼𝐶0 18.02366 Fitted [7] 

Shape parameter 𝜅𝐶 2.36949 Fitted [7] 

Duration in which immunity is not boosted 𝑢𝐶  6.06349 days Fitted [7] 

Inverse of decay rate of maternal immunity 𝑑𝑀  67.6952 days Fitted [7] 

Immunity reducing probability of detection    

Minimum probability due to maximum immunity 𝑑1 0.161527 Fitted [7] 

Inverse of decay rate 𝑑𝐼𝐷  10 years [18] 

Scale parameter 𝐼𝐷0  1.577533 Fitted [7] 

Shape parameter 𝜅𝐷 0.476614 Fitted [7] 

Duration in which immunity is not boosted 𝑢𝐷 9.44512 days Fitted [7] 

Scale parameter relating age to immunity 𝑎𝐷  21.9 years Fitted [7] 

Timescale with which immunity changes with age 𝑓𝐷0  0.007055 Fitted [7] 

Shape parameter relating age to immunity 𝛾𝐷  4.8183 Fitted [7] 

Immunity reducing probability of severe disease and mortality    

Maximum probability due to no immunity 𝜃0 0.0749886 Fitted [8] 

Maximum relative reduction due to immunity 𝜃1 0.0001191 Fitted [8] 

Scale parameter 𝐼𝑉0 1.09629 Fitted [8] 

Shape parameter 𝜅𝑉 2.00048 Fitted [8] 

Inverse of decay rate 𝑑𝑉𝐴 30 years [19] 

Duration in which immunity is not boosted 𝑢𝑉 11.4321 days Fitted [8] 

Inverse of decay rate of maternal immunity 𝑑𝑉𝑀 76.8365 days Fitted [8] 

New-born immunity relative to mother’s 𝑃𝑉𝑀  0.195768 Fitted [8] 

Reduced probability of death due to treatment 𝑓𝑉𝑇 0.5 [1] 

Age-dependent severe disease risk modifier parameter 𝑓𝑉0 0.141195 Fitted [8] 

Age-dependent severe disease risk modifier parameter 𝑎𝑉  2493.41 Fitted [8] 

Age-dependent severe disease risk modifier parameter 𝛾𝑉 2.91282 Fitted [8] 

Mortality scaling factor from severe disease 𝜈 0.215 [9] 

Infectiousness to mosquitoes    

Lag from parasites to infectious gametocytes 𝑑𝑔  12 days [20] 

Untreated disease 𝑐𝐷  0.068  [21] 

Treated disease 𝑐𝑇  0.021896  [22] 

Sub-patent infection 𝑐𝑈 0.0062  Fitted [9] 

Parameter for infectiousness of state A 𝛾1  1.82425 Fitted [9] 

Adult mosquito population model    

Daily mortality of adults with no interventions 
𝜇𝑀 

Varies by species – 

see above 

 

Mean time between feeds 𝛿 3 days [23,24] 

Extrinsic incubation period 𝑑𝐸𝑀  10 days [25] 

Larval model    

Average number of eggs laid per female mosquito per day 𝛽 21.2/day Fitted [4] 

Early instar larval developmental period 𝑑𝐸 6.64 days Fitted [4] 

Late instar developmental period 𝑑𝐿 3.72 days Fitted [4] 

Pupal developmental period 𝑑𝑃 0.643 days Fitted [4] 

Mortality rate of early-stage larvae (density dependent) 𝜇𝐸 0.0338/day Fitted [4] 

Mortality rate of late-stage larvae (density dependent) 𝜇𝐿 0.0348/day Fitted [4] 

Mortality rate of pupae (density independent) 𝜇𝑃 0.249/day Fitted [4] 

Effect of density dependence on late instars relative to early instars 𝛾 13.25 Fitted [4] 
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1.3 Malaria interventions 
The model incorporates four current interventions – long-lasting insecticide treated nets (LLINs), indoor residual spraying 

(IRS), seasonal malaria chemoprevention (SMC) and treatment of uncomplicated malaria – using models developed 

previously. A full description of these models is provided elsewhere [1]. The vaccine model builds on earlier work [26,27], 

and is described briefly below. 

 

1.3.1 Antibody model of vaccine efficacy  

Following the approach taken in White et al [27], we simulate the RTS,S-induced anti-CSP antibody titres following the 

third vaccine dose as a biphasic model where the antibody titre at time 𝑡 post-vaccination is given by: 

 

𝐶𝑆𝑃(𝑡) = 𝐶𝑆𝑃peak(𝜌peak𝑒
−𝑟𝑠𝑡 + (1 − 𝜌peak)𝑒

−𝑟𝑙𝑡)   (19) 

where 𝐶𝑆𝑃peakis the peak anti-CSP antibody titre, 𝜌peakis the proportion of antibody response that is short lived, and 𝑟𝑠and 

𝑟𝑙 are the rates of decay for the short lived and long lived components respectively. We use a similar process to model 
antibody levels following the fourth dose but allowing the peak titre to be lower. Therefore, for the fourth dose given at 

time 𝑡fourth anti-CSP antibody titre is given by: 

𝐶𝑆𝑃(𝑡) = 𝐶𝑆𝑃fourth(𝜌fourth𝑒
−𝑟𝑠(𝑡−𝑡fourth) + (1 − 𝜌fourth)𝑒

−𝑟𝑙(𝑡−𝑡fourth)) . (20) 

The vaccine efficacy over time is then obtained using a dose-response curve: 

𝑉(𝑡) = 𝑉max (1−
1

1+(
𝐶𝑆𝑃(𝑡)

𝛽
)
𝛼)    (21) 

where 𝑉𝑚𝑎𝑥 is the maximum efficacy against infection and 𝛼 and 𝛽 are the estimated shape and scale parameters 

respectively. The vaccine parameters are summarised in Table D. Variation between individuals is captured by drawing 
the parameters noted from a Normal distribution on the log-scale. 

 

Table D: RTS,S antibody model parameters, definitions and values. The model parameters are those reported in Table 

3 of White et al. [27]. The values for the peak anti-CSP following the third and fourth dose were each calculated as the 

median of the 11 site values in the phase 3 RTS,S/AS01 trial [27]. 
Parameter Description Value 

1/𝑟𝑠  Half-life of short-lived antibodies (mean in days) 45 

1/𝑟𝑙 Half-life of long-lived antibodies (days, sampled from log-normal distribution) 591 

𝐶𝑆𝑃peak  Peak anti-CSP following the third dose (geometric mean, EU/mL) 621 

𝜌peak Proportion of short-lived response following primary schedule 0.88 

𝐶𝑆𝑃𝑓𝑜𝑢𝑟𝑡ℎ  Peak anti-CSP following the fourth dose (mean on log-scale) 277 

𝜌𝑓𝑜𝑢𝑟𝑡ℎ Proportion of short-lived response following the fourth dose  0.70 

𝑉𝑚𝑎𝑥 Maximum efficacy against infection 0.93 

𝛼 Dose-response shape parameter 0.74 

𝛽 Dose-response scale parameter (EU/mL) 99.2  
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