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Supplementary Figure 1. SEM images of α-MoO3 designs. Side view of SEM images of a, α-MoO3 
edges; b, triangular α-MoO3 nanocavities; c, square α-MoO3 nanocavities; d, one sets of rectangle 
α-MoO3 nanocavities after FIB fabrication at 52° stage tilt. Scale bar, 5 μm. 
 

 
Supplementary Figure 2. Reflection of hyperbolic PhPs at the edge of α-MoO3 nanocavities. a, 
α-MoO3 PhPs isofrequency contour at ω = 889.8 cm-1. The green and black dotted arrows illustrate the 
non-collinearity of wavevector ki and Poynting vector Si. Due to the hyperbolic isofrequency contour, 
the reflected Poynting vector Se (black solid arrow) is not parallel to reflected wavevector ke but 
antiparallel to Si. b. Schematics of a wave back-reflection in square α-MoO3 nanocavities. 
 



 

 

Supplementary Figure 3. Isotropic PhPs in triangular hBN nanocavities and edge-tailored PhPs 
in triangular α-MoO3 nanocavities. a, The isotropic polariton distribution of triangular hBN 
nanocavities. The geometric dimensions in a are the same as the Fig. 1e in main text and 
Supplementary Figure 3b. b, Near-field amplitude s(ω) of PhPs on isosceles triangles α-MoO3 
nanocavities with bottom edge parallel to the [001] crystal direction (height length: 4.33 μm; thickness: 
d = 175 nm); The angles between adjacent sides of the series of triangles with respect to the [001] 
direction are approximately 82.5°, 75°, 60°, 45°, and 30°, respectively. Poynting vector Se and 
wavevector ke reflected from base edges, Poynting vector S’e and wavevector k’e reflected from 
adjacent edges of vertex angles.  
 

 

Supplementary Figure 4. The anisotropic polariton distribution of triangle α-MoO3 nanocavities. 
a-e and f-j calculated near-field amplitude images |Ez(x, y)| corresponding to triangular α-MoO3 in Fig. 
Supplementary Figure 3b and Fig. 1e at ω = 889.7 cm-1 (colour key at right). Panel a-e are obtained 
under the normal incidence, and f-j are under oblique incidence with incidence angle 30 degrees. 
 
 
 



 

 
Supplementary Figure 5. The anisotropic polariton distribution of rectangle α-MoO3 nanocavities. 
a-e, calculated near-field amplitude images |Ez(x,y)| corresponding to α-MoO3 rectangles in Figs. 3 k-o 
(colour key below) at ω = 896.9 cm-1. Near-field distributions are obtained via the electromagnetic 
wave excitation in α-MoO3 nanocavities with θ = 0, 22.5, 45, 67.5, and 90°, respectively.  
 

 
Supplementary Figure 6. The isotropic polariton distribution of square hBN nanocavities. The 
geometric dimensions in a-f are the same as the Fig. 2a in main text. 
 



 

 

Supplementary Figure 7. The isotropic polariton distribution of hBN nanocavity with different 
edge aspect ratios. The geometric dimensions are the same as the Fig. 3 in main text. The black dotted 
frame corresponds to the forbidden zone in Fig. 3s. 

 

Supplementary Figure 8. Iso-frequency contours of hyperbolic PhPs in large rectangle α-MoO3 
with different work frequencies. a-c, absolute value of the Fourier transform s(ω) of the near-field 
images with different work frequency in the Fig 4h, respectively. Dot lines are the theoretical 
iso-frequency contours. k0 is the free-space wavevector of light. 

 
 
 



 

Supplementary Note 1. Reflection of hyperbolic PhPs at the edge of α-MoO3 nanocavities  

As shown in Supplementary Figure 2a and b and for an example, θ = 30°, the green and black 

dotted arrows illustrate the non-collinearity of wavevector ki and Poynting vector Si for a plane 

hyperbolic wave to the edge 1 in square α-MoO3 nanocavity. The incident and reflected momenta ki 

and ke (green solid arrow) are antiparallel ke = −ki and perpendicular to the edge (considered as a 

mirror).1 However, due to the hyperbolic isofrequency contour (Supplementary Figure 2a), the incident 

Poynting vector Si (perpendicular to hyperbolic isofrequency contour) is not parallel to wavevector ki. 

For the same reason, the reflected Poynting vector Se (black solid arrow) is not parallel to ke but 

antiparallel to Si (see Supplementary Figure 2b). Consequently, both the wavefront and energy are 

reflected back to the source by the edge 1, although the energy flow is not perpendicular to the edge 1 

(see Supplementary Figure 2b). The edge can originate from a groove (Ed1-Ed4 in Fig. 1c) or from an 

edge of the pattern (Figs. 2-4). But for the edge 2, θ = 60°, due to the dispersion bound, as shown in 

Supplementary Figure 2a, the incident kip should be huge to intersect with the isofrequency contour, 

and the corresponding polariton wavelength λp = 2π/kip is too small to be observed. Therefore, the 

fringes cannot be observed when θ is 60° and more (60° ~ 90°, Ed5-Ed7 in Fig. 1c and Supplementary 

Figure 2b,). Here, we note, in s-SNOM, a metallic AFM tip is used to launch the polaritons when 

illuminated by a focused infrared light source; this tip then scatters and collects the polariton signal. In 

our measurement, the metallic tip, sweeping from one position to the other, can in principle launch all 

hyperbolic branches. However, the presence of the edge with an orientation angle limits that most 

power as reflected and returned to the tip, which we measured, is the polariton parallel to the edge. 

 
 
 
 
 



 

 
Supplementary Note 2. Isotropic PhPs in triangular hBN nanocavities and edge-tailored PhPs in 
triangular α-MoO3 nanocavities  

As shown in Supplementary Figure 3a, in comparison with Fig. 1e, fringes are different in 

graphene2 and hBN triangular nanocavities (Supplementary Figure 3a, named Tr1h-Tr5h ), as the 

coaxial triangle fringes (ke = k’e) of polaritons due to the indiscriminate propagation and reflection at 

all edges. Both the graphene and hBN are an in-plane isotropic polaritonic material with the same 

hexagonal crystal structure; indeed, the in-plane permittivity components have the same value and 

sign.3, 4 Furthermore, when the direction of the triangle bottom edge parallel to the [001] crystal 

direction in Supplementary Figure 3b (named as Tr’1-Tr’5 ), as the angles between adjacent sides of 

the series of triangles with respect to the [001] direction is less than 60°(Tr’1-Tr’3), the hyperbolic 

PhPs fringes are parallel to the bottom edge of the α-MoO3 triangle nanocavities. However, as the angle 

approaches 30° (Tr’5), the hyperbolic PhP fringes parallel to the edges of the adjacent sides appear 

while the reflected wavevector ke from bottom edge smaller than k’e (ke < k’e) from the edges of the 

adjacent sides, which further reveals the effect of edge tailoring and directional guiding.  

 

 

Supplementary Note 3. Calculated near-field amplitude images of triangular and rectangle 
α-MoO3 nanocavities 

The full-wave simulation with finite-difference time-domain method is performed by the 

commercial software Lumerical FDTD (2017b, http://www.lumerical.com/tcad-products/fdtd/). To 

obtain the polariton fringe, we use the plane-wave excitation, with the linear polarization angles 

dependent on the edge orientation to ensure all modes are launched, to excite the PhP nanocavity and 

the monitor at 20 nm top of the α-MoO3 sample is used to record the PhPs. For rectangular shape, we 

use two linearly polarized light with the polarization directions along the edges, with the same 

http://www.lumerical.com/tcad-products/fdtd/


 

amplitude and under the normal incidence. For triangle shape, we use two linearly polarized light along 

x and y directions. In this simulation, although no AFM tips launching and collecting the polaritons 

have been included into our simulations and we do note the relationships between experimentally 

measured fields and excited polaritons via the plane waves are nontrivial, the numerically simulated 

polariton fringe patterns (Supplementary Figure 4 and Supplementary Figure 5) could help to 

understand the formation of PhPs within α-MoO3 nanocavities in experiments. Indeed, the field 

distribution in Supplementary Figure 4 agrees with that in Fig. 1e and Supplementary Figure 3b, and 

the field distribution in Supplementary Figure 5 agrees with that in Fig. 3k-o in main text. The 

observations support the main discussion on the edge effect in main text, which shows the correlated 

number of fringes. 

 
Supplementary Note 4. Numerical distributions of in-plane isotropic PhPs in hBN nanocavities 
with similar shapes 

To compare our results of hyperbolic PhPs in the out-of-hyperbolic hyperbolic and in-plane 

isotropic polar van der Waals materials, we performed the numerical calculations in hBN nanocavity 

with the same geometric parameters. To model such nanocavity, the final polariton distribution results 

from the interference of the incident light that are focused on metallic AFM tips and the reflected 

polariton signals from all the edges, following the similar cases in plasmonics.2, 5 Thus, the final field 

distribution can be written as 𝐸𝐸(𝐫𝐫) = 𝐸𝐸inc(𝐫𝐫) + ∑ 𝐸𝐸r,i(𝐫𝐫)i . Here, 𝐸𝐸inc(𝐫𝐫) denotes the incident field at 

the position of 𝐫𝐫 , which in our model is assumed to be normalized as 1. Besides, 

𝐸𝐸r,i(𝐫𝐫) = Rie−i(ktr−ikti)ρi , where 𝑅𝑅i = 𝑅𝑅0eiϕ0  denotes the reflection coefficient from the i-th edges, 

𝑘𝑘tr − i𝑘𝑘ti is the in-plane wavevector of hyperbolic PhPs in hBN, and 𝜌𝜌i denotes the distance between 

the position 𝐫𝐫 and i-th edge. In our calculations, we simply assume that the thickness of hBN is 200 nm, 

the working frequency is 1420 cm-1, and the substrate is SiO2. Thus, 𝑘𝑘tr = 2π
950 

 rad nm−1 . The 



 

damping ratio 𝑘𝑘ti/𝑘𝑘tr is assumed 0.15. We also assume that 𝑅𝑅0 is 1 as the result of small scattering 

due to the large momentum mismatch of free-space photon and polaritons, and the phase shift at the 

reflection interface is 1.5π. We do note those approximate values depend on the materials properties 

such as the richness of isotope. But our calculations effectively provide the polariton distributions of 

in-plane isotropic polariton fringes as shown in Supplementary Figure 3a and Supplementary Figures 

6-7 below, which are largely different from our reported polaritonic distributions in nanocavities made 

of in-plane hyperbolic α-MoO3. One dramatic conclusion that can be easily drawn after the comparison 

of the α-MoO3 nanocavity is that the polariton fringes parallel to all edges exist regardless of the 

orientations in hBN nanocavity, which indicates the important role play of in-plane hyperbolicity of 

α-MoO3. 

 
Supplementary Note 5. Lifetimes of hyperbolic PhPs in large rectangle α-MoO3 with different 
edge aspect ratios 

The lifetimes of PhPs in different α-MoO3 nanocavities were calculated along the [100] crystal 

direction using τ = L/vg,6, 7 where the propagation length L was obtained by fitting a line scan of the 

near-field amplitude image and the group velocity vg was extracted by fitting the dispersion relation 

curve and taking its first derivative (vg = ∂ω/∂k). We first multiplied the experimental line profiles by a 

factor of x1/2 to compensate the circular-wave geometrical spreading of the PhPs. Assuming a damped 

sine decay, we then fitted the obtained profile according to the following Supplementary Equation 1. 

𝑦𝑦 = 𝑦𝑦0 + 𝐴𝐴e−
𝑥𝑥
𝑡𝑡0 sin �π 𝑥𝑥−𝑥𝑥c

𝑤𝑤
� ,𝐴𝐴 > 0,𝑤𝑤 > 0, 𝑡𝑡0 > 0                     (1) 

In the fitting process, a Levenberg-Marquardt iteration algorithm was applied until a full 

convergence (∆𝜒𝜒2 ≤ 10−9). Finally, we extracted the propagation length as L = t0. 



 

The figure of merit (FOM) of PhPs in α-MoO3 nanocavities with different edge aspect ratio were 

calculated along the [100] crystal direction using tunable frequency. The FOM defined in 

Supplementary Equation 2.  

Q = Re(ω)/Im(ω)                              (2) 

can be used to characterize the loss features of polariton, where Re(ω) is the center frequency and Im(ω) 

is proportional to the fitted half-width at half-maximum of the spectral line widths extracted from the 

FFT of the s-SNOM linescans.8  
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