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Appendix Figures

. MSUS adults |MSUS offspring
Enrichment
- + - +
Alpha linolenic acid gnd linoleic acid / 5 2E-05|5.0E-03|2.1E-02
metabolism
Arachidonic acid metabolism / 3.5E-05 / /
Arginine and proline metabolism 2.9E-02 / / /
Bile acid biosynthesis 1.9E-09 / 1.4E-14 /
Galactose metabolism / / / 5.1E-05
Pentose phosphate pathway 2.1E-02 / / /
Retinol metabolism / / / /
Steroidogenesis 8.8E-02 / 1.2E-02 /

Appendix Figure S1

Table expanded from Fig. 1C to show all metabolomic enrichment pathways in MSUS males
with a false discovery rate (FDR) < 0.1 (to show all significant enrichments as well as trends)
after multiple testing corrections using the Benjamini-Hochberg (BH) test. (+) denotes a
positive enrichment, (-) denotes a negative enrichment. FDR reported with the scientific

numbering system. (/) symbolizes non-significance.



Plasma aldosterone
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Appendix Figure S2

Concentration of aldosterone in plasma from MSUS and control males measured by ELISA.
The dotted line at 78.2% indicates fold change observed by previous TOF-MS measurement
(FDR = 0.02). One-tailed Student’s t-test, n = 14 per group, t = 1.70, df = 26. FDR; false

discovery rate. Data reported as mean +s.e.m.



Adult weight
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Appendix Figure S3
Bodyweight in adult female offspring of MSUS males.
Mean weight was comparable between MSUS and control female offspring of MSUS males

(Control n =12, MSUS n =12), {(39) = 0.38, P > 0.05).
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Body mass
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Descriptive data for children in PLMS and control groups.

(A) Mean age was comparable between groups. PLMS n = 26, Control n = 16, two-tailed

Mann-Whitney U = 148, P = 0.12. n.s.; not significant. (B) Body mass in children was

classified as underweight, normal weight or overweight based on correspondence to

reference ranges defined for Pakistani children of same age and sex. In both groups, one

child was overweight while in the PLMS group, one child was underweight. All other children

were within the range of normal body mass. (C) Each group has an equal number of boys

and girls to balance gender-specific effects. PLMS boys n = 13, girls n = 13; Control boys n

= 8, girls n = 8. (D) Number of control and PLMS children with consanguinity in parents

defined by 2™ or 3™ cousins. PLMS n = 26, Control n = 16. Data reported as mean +s.e.m.,

n.s., not significant.



Enrichment in PLMS children Serum " Saliva +
Alanine Metabolism / 8.7E-04 / /
Alpha Linolenic Acid gnd Linoleic Acid / / / 6.1E-04
Metabolism
Amino Sugar Metabolism 8.0E-02 1.7E-04 / /
Ammonia Recycling / 2.5E-05 / /
Androgen and Estrogen Metabolism / 2.6E-02 / /
Arachidonic Acid Metabolism / 6.1E-28 / 6.3E-16
Arginine and Proline Metabolism / 4.6E-07 4.7E-04 /
Aspartate Metabolism / 6.9E-04 / /
Beta Oxidation of Very Long Chain Fatty Acids / 4.3E-02 / /
Beta-Alanine Metabolism / 6.3E-03 / /
Betaine Metabolism / 2.9E-02 / /
Butyrate Metabolism / / 2.6E-02 /
Carnitine Synthesis / 1.0E-03 / /
Catecholamine Biosynthesis / / 2.1E-02 /
Citric Acid Cycle / 3.6E-03 6.9E-06 /
Cysteine Metabolism / 8.7E-04 / /
Fatty Acid Biosynthesis / 9.4E-02 2.0E-02 /
Folate Metabolism / 8.0E-03 / /
Fructose and Mannose Degradation 2.4E-05 / 6.2E-03 /
Galactose Metabolism 2.8E-11 / 9.0E-13 /
Gluconeogenesis 5.7E-05 6.3E-03 1.8E-05 /
Glucose-Alanine Cycle 3.2E-02 4.8E-03 / /
Glutamate Metabolism / 3.3E-03 2.6E-02 /
Glutathione Metabolism / 3.8E-04 / /
Glycerol Phosphate Shuttle / 2.7E-02 / /
Glycerolipid Metabolism / 4.5E-03 2.8E-02 /
Glycine and Serine Metabolism 6.8E-02 1.1E-06 3.4E-02 /
Glycolysis 4.4E-05 8.5E-02 4.7E-04 /
Histidine Metabolism / 1.7E-02 / /
Homocysteine Degradation / / 4.4E-02 /
Inositol Metabolism 4.0E-02 4.6E-02 4.0E-02 /
Inositol Phosphate Metabolism 4.5E-02 6.9E-02 / /
Lactose Degradation 5.7E-05 / 6.7E-04 /
Lactose Synthesis 3.4E-02 / 1.2E-03 /
Malate-Aspartate Shuttle / 4.3E-04 / /
Methionine Metabolism / 3.6E-03 / /
Mitochondrial Electron Transport Chain / 4.8E-03 1.2E-02 /
Nucleotide Sugars Metabolism 7.1E-04 / 4.7E-04 /
Phenylalanine and Tyrosine Metabolism / 7.0E-02 5.8E-03 /
Phosphatidylinositol Phosphate Metabolism 3.2E-02 / / /
Phospholipid Biosynthesis / 8.0E-03 / /
Plasmalogen Synthesis / 4.5E-03 / /
Porphyrin Metabolism / 8.0E-03 / /
Propanoate Metabolism / 6.3E-03 4.7E-04 /
Pyrimidine Metabolism / 1.3E-05 / /
Pyruvaldehyde Degradation / 1.0E-02 8.0E-03 /
Pyruvate Metabolism / 6.0E-05 4.0E-04 /
Retinol Metabolism 4.0E-02 / / /
Sphingolipid Metabolism 4.9E-02 / / /
Starch and Sucrose Metabolism 1.9E-03 8.2E-02 4.7E-04 /
Steroidogenesis / / / 2.5E-03
Taurine and Hypotaurine Metabolism / 4.9E-04 / /
Transcription/Translation / 2.0E-05 / /
Transfer of Acetyl Groups into Mitochondria 3.2E-02 2.8E-02 2.8E-03 /
Trehalose Degradation 3.4E-02 / 2.0E-02 /
Tyrosine Metabolism / 9.1E-02 1.6E-05 /
Urea Cycle 5.2E-02 1.5E-03 / /
Valine, Leucine and Isoleucine Degradation / 2.0E-02 4.3E-04 /




Appendix Figure S5

Table expanded from Fig. 1C to show all metabolomic enrichment pathways in PLMS
samples with FDR < 0.1 (to show all significant enrichments as well as trends) after multiple
testing corrections using the Benjamini-Hochberg (BH) test. (+) denotes a positive
enrichment, (-) denotes a negative enrichment. FDR reported with the scientific numbering

system. (/) symbolizes non-significance.
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Appendix Figure S6

Individual metabolites annotated to each of the significant enrichments for MSUS adult
plasma and PLMS saliva and serum. Colour in circles represents fold change and size
represents -log10(adjusted p-value). The largest circle symbolizes adjusted P < 0.0001.
Metabolites are listed by ion mass followed by their official name. HPETE; 5-
hydroperoxyeicosatetraenoic acid. DHET; dihydroxyeicosatrienoic acid. PGF2a;
prostaglandin F2a. DiIHETETrE; dihydroxyeicosatrienoic acid. HETE; hydroxyeicosatetraenoic

acid.
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Appendix Figure S7

(A) PPARYy transcription factor binding on consensus sequence using nuclear extracts from
epididymal white adipose tissue (eWAT) collected from MSUS and control males. MSUS n =
7, Control n = 6, two-tailed Student’s t-test, P = 0.0003, t = 5.23, df = 11. (B) Gene
expression analysis of PPAR targets in F1 liver. Cpt1a MSUS n = 8, Control n =6, P = 0.04,
t =226, df = 12; Abcal n = 8 per group, P = 0.04, t = 2.16, df = 14; Ldhao MSUS n = 7,
Control n =8, P=0.33, t = 1.02, df = 13; Tnfa n = 7 per group, P = 0.03, t = 2.31, df = 12.

Data reported as mean £ s.e.m., for all analyses two-tailed Student’s t-test was used.
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Appendix Figure S8

(A) Weight of grand-offspring of tesaglitazar-injected (Tesa-inj, n = 28) and vehicle-injected
(Vehicle-inj, n = 28) males. Two-tailed Student’s t-test, P = 0.0017, t = 3.31, df = 54. Data
reported as mean +s.e.m. (B) Glucose level during a glucose tolerance test in the grand-
offspring of Tesa-inj compared to Vehicle-inj, n = 16 per group, repeat measures ANOVA,
treatment effect P = 0.106, F (1, 28) = 2.796, time effect P < 0.0001, F (4, 112) = 458.1,

interaction P = 0.009, F (4, 112) = 3.573. conc.; concentration. Data reported as mean

ts.e.m.
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Appendix Figure S9

Weight of offspring (pooled males and females) of tesaglitazar-injected (Tesa-inj, n = 34)

and vehicle-injected (Vehicle-inj, n = 78) males at PND8. Two-tailed Student’s t-test, P =

0.0058, t = 2.81, df = 110. Data reported as mean +s.e.m.
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Appendix Figure S$10

No change in weight was observed in males injected with tesaglitazar, compared to vehicle-
injected males. Measurements were taken before and after injections, then at the time of
breeding. For all measurements n = 11. Before injections, Student’s t-test, P = 0.219, t =

1.27, df = 22; After injections, Student’s t-test, P = 0.094, t = 1.75, df = 21; At breeding,
Student’s t-test, P = 0.339, t = 0.98, df = 21.
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Appendix Figure S11

(A) Glucose level during and after a 30-min restraint challenge in male offspring from
tesaglitazar-injected (Tesa-inj, n = 17) males compared to vehicle-injected (Vehicle-inj, n =
16) males. Repeated measures ANOVA, treatment effect P = 0.174, F (1, 30) = 1.94, time
effect P < 0.0001, F (3, 90) = 1.941, interaction P = 0.99, F (3, 90) = 0.024. (B) Glucose level
during a glucose tolerance test in the offspring of MSUS serum-injected males compared to
controls, n = 16 per group, repeat measures ANOVA, treatment effect P = 0.109, F (1, 150)
= 2.598, time effect P < 0.0001, F (4, 150) = 50.75, interaction P = 0.46, F (4, 150) = 0.914.

n.s.; not significant, conc.; concentration. Data reported as mean £ s.e.m.
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Appendix Figure S$12

(A) Adult weight in the offspring of males injected the PPAR antagonist T0O070907 (n = 22) or
saline (n = 10). Student’s t-test, P = 0.713, t =0.365, df = 30. (B) Blood glucose levels during
a glucose tolerance test in saline-injected control offspring (n = 8) and antagonist-injected
control offspring (n = 7). Repeated measures ANOVA, treatment effect P = 0.19, F (1, 13) =
1.93, time effect P < 0.0001, F (4, 52) = 158.3, interaction P = 0.96, F (4, 52) = 0.154. n.s;

not significant. Data reported as mean +s.e.m.



TEs in Tesa-inj sperm
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Appendix Figure S$13

(A) Most significant transposable elements in sperm from tesaglitazar-injected males (Tesa-
inj males, P < 0.05). For Tesa-inj n = 6 (duplicate measurements shown); for Vehicle control-
injected n = 7 (duplicate measurements shown). Overlap of differentially expressed (B)
transposable elements and (C) mMRNAs/lincRNAs in sperm from Tesa-inj and MSUS males.
A P-value cut-off of P < 0.05 for both data sets was used for the analysis. The P-value and
Pearson correlation (r) between data sets are indicated on the figure next to the graph. The
x-axis represents fold change in tesaglitazar-injected males (dea1), the y-axis represents
fold change in MSUS males (dea2). Color legend represents log10(P-value) for each

individual gene. TEs; transposable elements.



P-value distribution

]

P—value

o2}
o
o

N
o
‘.4?4.41

Frequency
N
o
D

—L

o

B
50M

Library sizes

Ll

40M

Reads
N w

o
g 2

10

<

o

ine.06
ine.07
08
09
10
13
14

Sa
Sal
Sa
Sali
Sa
Sal
Sa

Appendix Figure S14

.mt-Nd2

.mt-Nd4

..mt-Cytb

o mt-Nd1
.Lyz2

-

Log2(fold change)
o

"RP23-394K2.4

0

m assigned
m unassigned

5 10
Mean expression log(CPM+1)

1

[$)]

-log10(P-value)

6

Descriptive data of sperm RNA sequencing for tesaglitazar- and vehicle-injected males. (A)

P-value distribution and (B) proportion of assigned and unassigned reads from samples

used for analysis. (C) MA plot of differentially expressed mRNA/lincRNAs in sperm from

tesaglitazar-injected males. The genes shown have a significance level of FDR < 0.05.n=7

per group.
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Appendix Figure S15

Descriptive data of sperm RNA sequencing for tesaglitazar- and vehicle-injected males 1-
day after the last injection. (A) P-value distribution and (B) proportion of assigned and
unassigned reads from samples used for analysis. (C) Volcano plot and (D) MA plot (log
ratio and mean average) of differentially expressed (FDR < 0.05) mRNA/lincRNAs in sperm
from tesaglitazar-injected males (none significant). The genes shown have a significance

level of FDR < 0.05. n =7 per group.



Serum from Tesa-inj males
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Appendix Figure S16
Relative luciferase luminescence in GC-1 cells transfected with PPRE plasmid and exposed
to serum collected from males 24-hours after a single injection of tesaglitazar. Tesa-inj n =

11, Vehicle control n = 11, two-tailed Student’s t-test, P = 0.030, t = 2.336, df = 20.



Metabolite name log2(FC) p-value Adjusted p-value (BH)
PC(15:0/P-18:1(112)) -0.3229 0.000928 0.160999079
Bilirubin glucuronide 0.285193 0.001032 0.160999079
Cholesterol sulfate -0.32606 0.00231 0.240274042
PE(24:0/P-18:1(112)) -0.21815 0.004723 0.368431177
PE(18:4(6Z,9Z2,12Z,15Z)/P-16:0) 0.359331 0.006303 0.393329688
Aminoadipate -0.26152 0.007915 0.411587649
CE(20:5(52,8Z2,112,14Z2,172) 0.459773 0.014317 0.453611838
PE(18:1(112)/P-18:1(112)) -0.21179 0.01754 0.453611838
3-O-Sulfogalactosylceramide
(@18:1/24.0) -0.10851 0.017618 0.453611838
PE(22:0/P-18:0) -0.25795 0.017683 0.453611838
Hexonic acid -0.21292 0.018594 0.453611838
Oxidized glutathione -0.21925 0.018681 0.453611838
Leukotriene A4 0.217496 0.0189 0.453611838
PE(22:2(13Z,162)/22:6(42,7Z,10Z,13Z,
162,192)) -0.20292 0.021091 0.47002934
Vitamin A 0.375696 0.023447 0.487690975
3-O-Sulfogalactosylceramide
(d18:1/20:0) -0.14853 0.025282 0.493005589
Itaconate -0.1586 0.029515 0.513155302
PE(22:4(72,10Z,13Z,162)/P-18:1(112)) -0.16405 0.029605 0.513155302
SM(d18:0/16:1(92)) -0.18857 0.032129 0.527586127
Bilirubin 0.642463 0.034612 0.537670051
Stearidonic acid -0.28706 0.038088 0.537670051
PC(24:0/P-18:1(112)) -0.10549 0.038108 0.537670051
Hexuronate -0.17405 0.040281 0.537670051
PC(15:0/24:0) -0.07857 0.041359 0.537670051
beta-Alanyl-L-lysine -0.26194 0.049541 0.578169611

Appendix Figure S$17

Metabolites identified in plasma from tesaglitazar-injected (n = 5 ) and vehicle-injected (n =

5) males at breeding 46 days after the last injection. P-values were corrected using

Benjamini-Hochberg (BH) post-hoc test.
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Appendix Figure S18

(A) Heat map of differentially expressed proteins in plasma from F1 MSUS and control
males. All shown proteins have P < 0.05 after ANOVA but do not pass multiple testing
corrections (FDR > 0.05), n = 5 per group. CRP (underlined) is validated using independent
samples in panel b. (B) Serum CRP in MSUS (n = 5) and control (n = 6) males. One-tailed

Student’s t-test, P = 0.026, t = 2.23 df = 9. Data reported as mean +s.e.m.



name logCPM p-value FDR

mmu-mir-221-3p  7.78473061 0.00892147 0.84753953
mmu-mir-19a-3p 3.96192968 0.02416109 1
mmu-mir-19b-3p  4.92982496 0.11563418 1

Appendix Figure S$19

Differential expression analyses of small RNA sequencing in mouse serum. Table shows

RNAs with P < 1.
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Appendix Figure S20

Schematic illustration of workflow and summary of experiments.



Fathers Offspring
Experiment Vehicle-injected Te'sa.glitazar- Vehicle-in.jected . .Tesaglitazart
injected offspring injected offspring
Pup weight 11 5 78 (37 males) 34 (17 males)
Adult weight 9 5 24 17
GTT 10 5 26 16
Glucose Restraint 7 5 17 16
Fathers Offspring
Experiment Control MSUS Control offspring MSUS offspring
Adult weight 7 12 24 22
Glucose Restraint 6 9 15 16
Fathers Offspring
. Control serum- MSUS serum- Control serum- MSUS serum-
Experiment .. . . U P .
injected injected injected offspring injected offspring
Adult weight 7 8 32 32
GTT 4 5 8 8
Glucose Restraint 4 5 8 8

Appendix Figure S21
Number of fathers and offspring for each experiment. Numbers are reported after outlier

removal due to iliness, death or performance deviating from the norm (2StDev).
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Appendix Figure S22

No difference in sperm count in MSUS males or in males treated with tesaglitazar. Number
of sperm cells in (A) Control (n = 8) and MSUS (n = 8) males, 2-tailed Student’s t-test, P =
0.094, t = 1.797, df = 14, and in (B) males treated with tesaglitazar, 1 day or 46 days after
the final injection. Vehicle control-injected, n = 6, Tesaglitazar-injected, n = 6. 1 day after: 2-
tailed Mann-Whitney test, P = 0.31, Mann-Whitney U = 11. 46 days after: 2-tailed Student’s
t-test, P = 0.59, t = 0.555, df = 10.
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Appendix Figure S23

Baseline renilla and firefly luminescence signals after exposure to control serum in cells co-
transfected with both pRL-SV40P and PPRE X3-TK-luc or transfected with each construct
alone. pRL-SV40P expresses renilla luciferase used for normalization and PPRE X3-TK-luc
is a PPAR response element reporter expressing firefly luciferase upon PPAR binding. Co-
transfection (n = 19; Control serum), pRL-SV40P only (n = 8; Control serum), PPRE X3-TK-
luc only (n = 8; Control serum), or no plasmid (n = 8; Control serum). One-way ANOVA
(Tukey’s multiple comparison corrections), for Firefly P < 0.0001, F(3, 39) = 38.41, for

Renilla P < 0.0001, F(3, 39) = 83.5.



