Expanded View Figures

Figure EV1. Pedigrees, mtDNA haplotypes and variant counts in the 19 RIRCD families with homoplasmic m.14674T>C.

- A Pedigrees and genetic variants. The * symbol indicates the individuals where DNA analysis was performed while circles represent female, square represents male and the filled-in square or circle represent individuals expressing mutations while deceased individuals were marked with a diagonal line.
- B Exome mtDNA read depth and mtDNA haplogroups in the families homoplasmic for m.14674T>C.
- C Variant Scatter/boxplot shows the significant difference between mean per group damaging allele counts (RIRCD affected vs unaffected vs 1,044 × 1000 Genomes control exomes) in the genes *EARS2, TRMU, QRSL1, GOT2, GLS, MSS51* and m.14674T>C. The counts are from individual patients and controls thus one point on the boxplot represents damaging allele counts for 1 person. The central band represents the median, the lower and upper hinges correspond to the first and third quartiles (25 and 75%) while the whiskers extend to the highest and lowest points within the data (1.5× the inter-quartile range).

Figure EV2. Summary of variants in our cohort.

- A Mitochondrial haplogroups and digenic nuclear variants in affected RIRCD family members.
 B Number of exome variants at each stage of filtering in total and for affected and unaffected individuals in RIRCD families with homoplasmic m.14674T>C.

A

Family	Haplogroup	Relationship	Nuclear Risk Variants		
			Gene	Protein	Genotyp e
F1	n. d.	Proband	TRMU	p.Ala10Ser	0/1
F2	H36	Proband	EARS2	p.A88Glu	0/1
		Mother of F2/1	EARS2	p.Ala88Glu	0/1
F3	n. d.	Uncle of F3/2	<u>TRMU</u>	p.Tyr301Cy	0/1
F4	H7b2	Proband	TRMU	p.Ala10Ser	0/1
E5	\/7a1	Proband	EARS2	p.Gly110Ser*	0/1
15	Viai	FIODAIIU	TRMU	p.Ala10Ser	0/1
F7	H+152	Sibling of F7/2	EARS2	p.Arg516Gln*	0/1
		Sibling of F7/1	EARS2	p.Arg516Gln*	0/1
		Uncle of F7/1-2	GOT2	p.Gly188Ser	0/1
F8	U5b2a1a+163 11	Proband	TRMU	p.Ala10Ser	0/1
F9	U5b2a1a+163 11	Proband	TRMU	p.Ala10Ser	0/1
		Proband	TRMU	p.Ala10Ser	0/1
F10	11	Mother of F8/1	EARS2	p.Gln199Arg	0/1
F11	U4a1b	Proband	QRSL1	p.Val229Gly	0/1
F12	L3d1d	Proband	EARS2	p.Arg120Trp	0/1
		Proband	TRMU	p.Ala10Ser	0/1
F13	V3a1	Mother of F13/1	GOT2	p.Gly188Ser	0/1
F14	H2a1	Sister of F14/1	TRMU	p.Ala10Ser	0/1
F15	E2a	Sister of F15/1	GOT2	p.Lys364Glu	0/1
		Mother of F15/1	GOT2	p.Lys364Glu	0/1
F17	W1	Proband	GOT2	p.Gly188Ser	0/1
F18	V3a1	Proband	MSS51	p.Val393AspfsT er60	0/1
F19	K1a2	Proband	GLS	p.Ala432Ser	0/1

В

Type of Variant	Total Number of Variants	Affected Only* (n=18)	Unaffected Only* (n=12)
Total Variants	4,907,159	1,847,621	1,106,024
Total Protein Altering	42,473	14,885	5,725
Conserved (2+)	15,775	6,051	2,344
Predicted Damaging (5+)	13,816	5,458	2,163
Conserved (2+), Damaging (5+)	10,991	4,340	1,705
Conserved (2+), Damaging (5+), Known Domain	5,013	2,022	779
Conserved, Damaging, Known Domain, Splicing, Stop-Loss/Gain, Frameshift	6,998	2,698	1,067

Figure EV2.

Figure EV3. Functional characterisation of the p.Arg23Trp variant in PDE12.

- A Western blot of total cell lysate of *PDE12* knockout cells expressing WT *PDE12*, p.Glu351Ala (catalytic mutant), Δ16 (coding for *PDE12* lacking 16 first aa), Δ23 mutants (coding for *PDE12* lacking 23 first aa) and p.Arg23Trp *PDE12* cDNA. B-actin was used as loading control. Our previous study (Pearce *et al*, 2017) showed that the steady-state levels of OXPHOS complexes are affected in the PDE12 KO as compared to the WT control cells.
- B Radioactive MPAT assay for 16S mt-rRNA extracted from HEK293T (WT), *PDE12* knockout cells (KO) and for *PDE12* KO cells expressing WT *PDE12*, p.Glu351Ala, Δ16, Δ23 mutants and p.Arg23Trp *PDE12* cDNA for 24 hr. Experiments and cell lines as described in (Pearce *et al*, 2017).
- C Immunofluorescence to confirm mitochondrial localisation of the p.Arg23Trp PDE12 variant in human cells. TOM20, translocator of the outer mitochondrial membrane 20. Scale bar = 20 μ m.

Source data are available online for this figure.

Figure EV3.

Figure EV4. Heat map of the top 100 transcripts altered in RNA-seq data resulted from muscle biopsies of RIRCD compared to control muscle resulted from DESeq2 analysis.

Gene expression is showed in normalized log₂ counts. Differentially expressed genes were selected based on the log₂ counts and Padj < 0.05.

Figure EV4.

Figure EV5. Aminoacylation assay in fibroblasts.

Aminoacylation assay of mt-tRNA^{Glu} and mt-tRNA^{Gln} in fibroblasts carrying digenic mutations in mtDNA (m.14674T>C) and in *EARS2* (p.Arg516Gln; F7/1M, F7/2M), carrying only m.14674T>C (F7/5F, F7/7F) and healthy controls. The cells were cultures in low (low aa) and high amino acid (aa) concentrations. "dAc" indicated deacylated samples while "Ac" represents the aminoacylated tRNA. There is no relevant difference in the aminoacylation of fibroblasts of patients with digenic mutations, carriers of m.14674T>C and healthy controls.

mt-tRNA-Gln

Figure EV5.

9