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Method ID Input data Agg. Model level Ref.

edgeR.sum(counts) counts 3 cluster-sample PBs Robinson et al. 1

edgeR.sum(scalecpm) LS scaled pseudobulk CPM 3 cluster-sample PBs

limma-voom.sum(counts) counts 3 cluster-sample PBs Ritchie et al. 2

limma-trend.mean(logcounts) log2 LS normalized counts 3 cluster-sample PBs
limma-trend.mean(vstresiduals) VST residuals 3 cluster-sample PBs

MM-dream counts 7 SCs; cluster-level Hoffman and Schadt 3

MM-dream2 counts 7 SCs; cluster-level Hoffman and Roussos 4

MM-nbinom counts 7 SCs; cluster-level
MM-vst VST residuals 7 SCs; cluster-level

scDD.logcounts log2 LS normalized counts 7 SCs; cluster-level Korthauer et al. 5

scDD.vstresiduals VST residuals 7 SCs; cluster-level

MAST.logcounts log2 LS normalized counts 7 SCs; cluster-level Finak et al. 6

AD-gid.logcounts log2 LS normalized counts 7 SCs; cluster-group level Scholz and Stephens 7

AD-gid.vstresiduals VST residuals 7 SCs; cluster-group level
AD-sid.logcounts log2 LS normalized counts 7 SCs; cluster-sample level
AD-sid.vstresiduals VST residuals 7 SCs; cluster-sample level

Supplementary Table 1: Overview of compared DS analysis methods. From left to right: Method
identifier as depicted in all figures; input data; whether data is aggregated or not; the levels at which
differential testing is performed; reference. (Agg. = aggregation, CPM = counts per million, LS = library
size, VST = variance stabilizing transformation, PBs = pseudobulks, SCs = single cells)

cluster1 cluster2 cluster3 cluster4

0 6 12 18 0 6 12 18 0 6 12 18 0 6 12 18

0.01

0.03

0.10

0.30

mean logCPM

di
sp

er
si

on

a

cluster1 cluster2 cluster3 cluster4

0 6 12 18 0 6 12 18 0 6 12 18 0 6 12 18

0.01

0.03

0.10

0.30

mean logCPM

di
sp

er
si

on

b

reference simulation

Supplementary Figure 1: Comparison of pseudobulk-level mean-dispersion estimates for
reference vs. simulated data, separated by subpopulation. Lines correspond to trended
dispersion estimates; faded points represent tag-wise dispersion estimates. Lower (1%) and upper
(99%) dispersion quantiles were removed for visualization. Simulations are based on the Kang
et al. 8 (a) and LPS dataset (b) as reference, respectively.
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Supplementary Figure 2: Nominal p-value distributions (densities) obtained from three
null simulation replicates, stratified by method. Each simulation run includes 3 samples per
group, and 2000 genes tested across 2 clusters; 3 simulation runs are shown. Densities that are
near-uniform are consistent with data lacking differential signal. Simulations are based on the
Kang et al. 8 (a) and LPS dataset (b) as reference, respectively.
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Supplementary Figure 3: DS method performances across differential distribution and
simulation replicates. Points correspond to observed overall true positive rate (TPR) and false
discovery rate (FDR) values at FDR cutoffs of 1%, 5%, and 10%; dashed lines indicate desired
FDRs. Each group of inter-connected points corresponds to one simulation with 10% of DS genes
(of the type indicated by their color). Simulations are based on the Kang et al. 8 (a) and LPS
dataset (b) as reference, respectively.
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Supplementary Figure 4: DS method performances across expression-levels and differen-
tial distribution categories; Kang et al. 8 dataset reference. Points correspond to observed
overall true positive rate (TPR) and false discovery rate (FDR) values at FDR cutoffs of 1%, 5%,
and 10%; dashed lines indicate desired FDRs. Results were stratified into groups according to the
mean of simulated expression-means across groups. For each panel, performances were averaged
across 5 simulation replicates, each containing 10% of DS genes.
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Supplementary Figure 5: Simulated vs. estimated cross-group log-fold changes (logFC),
stratified by method and gene category. Each point corresponds to a gene-subpopulation
instance; coloring corresponds to non-differential (blue) or truly differential (red). Included are
only methods that return logFC estimates. For plotting, a random subset of 2’000 points was
sampled per method, simulation, and color. Simulations are based on the Kang et al. 8 (a) and
LPS dataset (b) as reference, respectively.
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Supplementary Figure 6: Effects of unbalanced sample sizes on DS method performances.
Points correspond to observed overall true positive rate (TPR) and false discovery rate (FDR) val-
ues at FDR cutoffs of 1%, 5%, and 10%; dashed lines indicate desired FDRs. Results were stratified
into groups according to the variance of simulated sample sizes. For each panel, performances
were averaged across 5 simulation replicates, each containing 10% of DS genes. Simulations are
based on the Kang et al. 8 (a) and LPS dataset (b) as reference, respectively.
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Supplementary Figure 7: Effects of unbalanced group sizes on DS method performances.
Points correspond to observed overall true positive rate (TPR) and false discovery rate (FDR) val-
ues at FDR cutoffs of 1%, 5%, and 10%; dashed lines indicate desired FDRs. Results were stratified
into groups according to the variance of simulated group sizes. For each panel, performances were
averaged across 5 simulation replicates, each containing 10% of DS genes. Simulations are based
on the Kang et al. 8 (a) and LPS dataset (b) as reference, respectively.
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Supplementary Figure 8: Effect of the number of replicates per group on DS method per-
formances; Kang et al. 8 dataset reference. Points correspond to observed overall true positive
rate (TPR) and false discovery rate (FDR) values at FDR cutoffs of 1%, 5%, and 10%; dashed
lines indicate desired FDRs. Results were stratified into groups according to the number replicates
in each group. For each panel, performances were averaged across 5 simulation replicates, each
containing 10% of DS genes.
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Supplementary Figure 9: DS method performances across expression levels and differential
distribution categories; LPS dataset reference. Points correspond to observed overall true
positive rate (TPR) and false discovery rate (FDR) values at FDR cutoffs of 1%, 5%, and 10%;
dashed lines indicate desired FDRs. Results were stratified into groups according to the mean of
simulated expression-means across groups. For each panel, performances were averaged across 5
simulation replicates, each containing 10% of DS genes (of the type specified in the right-hand
side panel labels).
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Supplementary Figure 10: Between-method concordance; LPS dataset refer-
ence. Upset plot obtained from intersecting the top-n ranked differential genes, where
n = min(n1,n2), where n1 = number of genes simulated to be differential, and n2 =
number of genes called differential at FDR < 0.05. Shown are the 40 most frequent interactions;
coloring corresponds to (true) simulated gene categories.
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Supplementary Figure 11: DS method runtimes vs. number of cells (a) and number of genes
(b). Included are runtimes from 5 simulation replicates per subset of cells and genes, respectively,
using the Kang et al. 8 dataset reference; single-core computing times were recorded.

10



0.0 0.2 0.4 0.6 0.8 1.0

LC016

LC019

LC022

LC025

LC017

LC020

LC023

LC026

frequency

sa
m

pl
e_

id

0.0 0.2 0.4 0.6 0.8 1.0

LC016

LC019

LC022

LC025

LC017

LC020

LC023

LC026

frequency
0 2500 5000

LC016

LC019

LC022

LC025

LC017

LC020

LC023

LC026

nb. of cells

cluster_id
Astrocytes
Endothelial
Microglia
Oligodendrocytes
OPC
CPE cells
Excit. Neuron
Inhib. Neuron

group_id
Vehicle
LPS
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Supplementary Figure 13: Upset plot of differentially expressed genes identified for the
LPS dataset, by detected subpopulation. Included are genes with FDR < 0.05 and |logFC| > 1;
shown are all subpopulations intersections with non-zero size.
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every gene, the displayed log-fold-change (logFC) is normalized to that gene’s average expression
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Supplementary Figure 15: Upset plot of differential state genes detected for the LPS
dataset, by method and across all subpopulations (excluding CPE cells). Included are
genes with FDR < 0.05; shown are the 40 most frequent intersections between all methods (a),
AD, MAST and scDD methods (b), and aggregation- and MM-based methods (c).
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