Supplementary material:

muscat detects subpopulation-specific state transitions from multi-sample multi-condition single-cell transcriptomics data

Helena L. Crowell^{1,2}, Charlotte Soneson^{1,2,3,*}, Pierre-Luc Germain^{1,4,*}, Daniela Calini⁵, Ludovic Collin⁵, Catarina Raposo⁵, Dheeraj Malhotra⁵ & Mark D. Robinson^{1,2}

¹ Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland

²SIB Swiss Institute of Bioinformatics, Zurich, Switzerland

³Present address: Friedrich Miescher Institute for Biomedical Research and SIB Swiss Institute of Bioinformatics, Basel, Switzerland

⁴D-HEST Institute for Neuroscience, Swiss Federal Institute of Technology, Zurich, Switzerland

⁵F. Hoffmann-La Roche Ltd, Pharma Research and Early Development, Neuroscience, Ophthalmology and Rare Diseases, Roche Innovation Center Basel, Basel, Switzerland

*These authors contributed equally.

Supplementary Table 1: Overview of compared DS analysis methods. From left to right: Method identifier as depicted in all figures; input data; whether data is aggregated or not; the levels at which differential testing is performed; reference. (Agg. = aggregation, $CPM =$ counts per million, LS = library size, VST = variance stabilizing transformation, PBs = pseudobulks, SCs = single cells)

Supplementary Figure 1: Comparison of pseudobulk-level mean-dispersion estimates for reference vs. simulated data, separated by subpopulation. Lines correspond to trended dispersion estimates; faded points represent tag-wise dispersion estimates. Lower (1%) and upper (99%) dispersion quantiles were removed for visualization. Simulations are based on the Kang et al. 8 (a) and LPS dataset (b) as reference, respectively.

Supplementary Figure 2: Nominal p-value distributions (densities) obtained from three null simulation replicates, stratified by method. Each simulation run includes 3 samples per group, and 2000 genes tested across 2 clusters; 3 simulation runs are shown. Densities that are near-uniform are consistent with data lacking differential signal. Simulations are based on the Kang et al. 8 (a) and LPS dataset (b) as reference, respectively.

Supplementary Figure 3: DS method performances across differential distribution and simulation replicates. Points correspond to observed overall true positive rate (TPR) and false discovery rate (FDR) values at FDR cutoffs of 1%, 5%, and 10%; dashed lines indicate desired FDRs. Each group of inter-connected points corresponds to one simulation with 10% of DS genes (of the type indicated by their color). Simulations are based on the Kang et al. 8 (a) and LPS dataset (b) as reference, respectively.

Supplementary Figure 4: DS method performances across expression-levels and differen-tial distribution categories; Kang et al. ^{[8](#page-14-7)} dataset reference. Points correspond to observed overall true positive rate (TPR) and false discovery rate (FDR) values at FDR cutoffs of 1%, 5%, and 10%; dashed lines indicate desired FDRs. Results were stratified into groups according to the mean of simulated expression-means across groups. For each panel, performances were averaged across 5 simulation replicates, each containing 10% of DS genes.

Supplementary Figure 5: Simulated vs. estimated cross-group log-fold changes (logFC), stratified by method and gene category. Each point corresponds to a gene-subpopulation instance; coloring corresponds to non-differential (blue) or truly differential (red). Included are only methods that return logFC estimates. For plotting, a random subset of 2'000 points was sampled per method, simulation, and color. Simulations are based on the Kang et al. 8 8 (a) and LPS dataset (b) as reference, respectively.

Supplementary Figure 6: Effects of unbalanced sample sizes on DS method performances. Points correspond to observed overall true positive rate (TPR) and false discovery rate (FDR) values at FDR cutoffs of 1%, 5%, and 10%; dashed lines indicate desired FDRs. Results were stratified into groups according to the variance of simulated sample sizes. For each panel, performances were averaged across 5 simulation replicates, each containing 10% of DS genes. Simulations are based on the Kang et al. 8 (a) and LPS dataset (b) as reference, respectively.

Supplementary Figure 7: Effects of unbalanced group sizes on DS method performances. Points correspond to observed overall true positive rate (TPR) and false discovery rate (FDR) values at FDR cutoffs of 1%, 5%, and 10%; dashed lines indicate desired FDRs. Results were stratified into groups according to the variance of simulated group sizes. For each panel, performances were averaged across 5 simulation replicates, each containing 10% of DS genes. Simulations are based on the Kang et al. 8 8 (a) and LPS dataset (b) as reference, respectively.

Supplementary Figure 8: Effect of the number of replicates per group on DS method per-formances; Kang et al. ^{[8](#page-14-7)} dataset reference. Points correspond to observed overall true positive rate (TPR) and false discovery rate (FDR) values at FDR cutoffs of 1%, 5%, and 10%; dashed lines indicate desired FDRs. Results were stratified into groups according to the number replicates in each group. For each panel, performances were averaged across 5 simulation replicates, each containing 10% of DS genes.

Supplementary Figure 9: DS method performances across expression levels and differential distribution categories; LPS dataset reference. Points correspond to observed overall true positive rate (TPR) and false discovery rate (FDR) values at FDR cutoffs of 1%, 5%, and 10%; dashed lines indicate desired FDRs. Results were stratified into groups according to the mean of simulated expression-means across groups. For each panel, performances were averaged across 5 simulation replicates, each containing 10% of DS genes (of the type specified in the right-hand side panel labels).

Supplementary Figure 10: Between-method concordance; LPS dataset reference. Upset plot obtained from intersecting the top- n ranked differential genes, where $n = min(n_1, n_2)$, where $n_1 =$ number of genes simulated to be differential, and $n_2 =$ number of genes called differential at $FDR < 0.05$. Shown are the 40 most frequent interactions; coloring corresponds to (true) simulated gene categories.

Supplementary Figure 11: DS method runtimes vs. number of cells (a) and number of genes (b). Included are runtimes from 5 simulation replicates per subset of cells and genes, respectively, using the Kang et al.^{[8](#page-14-7)} dataset reference; single-core computing times were recorded.

Supplementary Figure 12: Relative and absolute subpopulation abundances for the LPS dataset. The left panel shows sample-wise frequencies of the annotated subpopulations; the middle panel shows relative frequencies after removal of all neuronal subpopulations; the right panel shows the number of cells per sample after filtering.

Supplementary Figure 13: Upset plot of differentially expressed genes identified for the **LPS dataset, by detected subpopulation.** Included are genes with FDR < 0.05 and $\log FC$ > 1 ; shown are all subpopulations intersections with non-zero size.

Supplementary Figure 14: Heatmap of cross-group logFCs of DE genes with consensus cluster ID 3 for the LPS dataset. Included are DE genes with FDR < 1e−4 and |logFC| > 1. For every gene, the displayed log-fold-change (logFC) is normalized to that gene's average expression in the vehicle group (in the corresponding subpopulation); top and bottom 1% logFC quantiles were truncated for visualization.

Supplementary Figure 15: Upset plot of differential state genes detected for the LPS dataset, by method and across all subpopulations (excluding CPE cells). Included are genes with FDR < 0.05 ; shown are the 40 most frequent intersections between all methods (a), AD, MAST and scDD methods (b), and aggregation- and MM-based methods (c).

References

- [1] Mark D Robinson, Davis J McCarthy, and Gordon K Smyth. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics, 26(1):139–140, 2010.
- [2] Matthew E Ritchie, Belinda Phipson, Di Wu, Yifang Hu, Charity W Law, Wei Shi, and Gordon K Smyth. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Research, 43(7):e47, 2015.
- [3] Gabriel E Hoffman and Eric E Schadt. variancePartition: interpreting drivers of variation in complex gene expression studies. BMC Bioinformatics, 17(1):483, 2016.
- [4] Gabriel E Hoffman and Panos Roussos. dream: Powerful differential expression analysis for repeated measures designs. Bioinformatics, 2020.
- [5] Keegan D Korthauer, Li-Fang Chu, Michael A Newton, Yuan Li, James Thomson, Ron Stewart, and Christina Kendziorski. A statistical approach for identifying differential distributions in single-cell RNA-seq experiments. Genome Biology, 17(1):222, 2016.
- [6] Greg Finak, Andrew McDavid, Masanao Yajima, Jingyuan Deng, Vivian Gersuk, Alex K Shalek, Chloe K Slichter, Hannah W Miller, M Juliana McElrath, Martin Prlic, Peter S Linsley, and Raphael Gottardo. MAST: a flexible statistical framework for assessing transcriptional changes and characterizing heterogeneity in single-cell RNA sequencing data. Genome Biology, 16:278, 2015.
- [7] F W Scholz and M A Stephens. K-Sample Anderson-Darling tests. Journal of the American Statistical Association, 82(399):918–924, 1987.
- [8] Hyun Min Kang, Meena Subramaniam, Sasha Targ, Michelle Nguyen, Lenka Maliskova, Elizabeth McCarthy, Eunice Wan, Simon Wong, Lauren Byrnes, Cristina M Lanata, Rachel E Gate, Sara Mostafavi, Alexander Marson, Noah Zaitlen, Lindsey A Criswell, and Chun Jimmie Ye. Multiplexed droplet single-cell RNA-sequencing using natural genetic variation. Nature Biotechnology, 36(1):89–94, 2018.