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SUPPLEMENTARY MATERIAL

SUPPLEMENTARY SECTIONS

S1

Pre-processing and cutoffs for queries and databases

The quantitative gene expression profiling (GEP)
data used by this study were downloaded from

Bioconductor’s ExperimentHub with utilities provided
by the signatureSearchData package. The latter provides pre-
configured data sets for this project. At the time of writing, the
GEP databases (GEP-DBs) included in signatureSearchData
are LINCS and CMAP?2 (1, 2). Since the experiment section
of this article uses LINCS data, the following focuses on
the pre-processing and filtering routines of this dataset.
The non-quantitative gene sets (GSs) used as GS queries
(GS-Qs) and GS databases (GS-DBs) in the article were
also extracted from LINCS. The corresponding filtering
parameters for obtaining these GSs are given in the next
paragraph. Similar information, with additional details for
both LINCS and CMAP?2, is available in the vignette of the
signatureSearchData package. Although CMAP2 was not
used in the experiment section of this article, the following
does include an overview of the corresponding pre-processing
routines of this data set mainly to illustrate how to use
CMAP?2 instead of LINCS for similar analyses.

LINCS GEP data. The Broad Institute has generated the
LINCS GEP data with the bead-based L1000 assay for gene
expression profiling. Since this technology is not widely
used yet and pre-processing methodologies for its data are
limited in the public domain, we have chosen to use the
pre-generated data instances from the LINCS project directly
rather than attempting to regenerate them from raw data. The
GEP data from LINCS data can be downloaded from GEO in
5 different pre-processing levels (2). Level 1 data are the raw
mean fluorescent intensity values that come directly from the
Luminex scanner. Level 2 data are the expression intensities of
the 978 landmark genes. They have been normalized and used
to impute the expression of an additional set of 11,350 genes,
forming Level 3 data. A robust Z-scoring procedure was used
to generate differential expression values from the normalized
profiles (Level 4). Finally, a moderated Z-scoring procedure
was applied to the replicated samples of each experiment
(mostly 3 replicates) to compute a weighted average signature
(Level 5). For a more detailed description of LINCS’ pre-
processing methods, readers want to refer to the methods
section in the corresponding publication by Subramanian et
al., 2017 (2).

The differential expression data from LINCS used in this
article are level 5 Z-scores. Since some GESS methods such
as gCMAP and Fisher require gene sets in the reference
database, Z-score cutoffs can be used to filter for sets
of up- and down-regulated differentially expressed genes
(DEGs). In this article, the corresponding up or down DEG
sets were obtained with Z-score cutoffs of >1 or <-1,
respectively. In signatureSearch, these Z-score cutoffs can
be assigned to filtering arguments to generate either query

or database instances meeting the corresponding Z-score
constraints. Examples of GS-DBs where this is relevant are
those used by the gCMAP and Fisher GESS methods. In
addition to using Z-score cutoffs, GS-Qs can also be extracted
by specifying a fixed number of the most extremely up-
and down-regulated genes, such as the top 150 up- and
down-regulated DEGs, respectively. Whether GS-Qs or GS-
DBs instances were obtained by Z-score or number cutoffs
is specified in the corresponding sections of the article. If
the cutoff parameters deviate from the above default values
then they are given as well. Examples of GESS function
calls related to these routines are provided in the vignettes
of the software and data packages of the signatureSearch
environment. For instance, the subsection *DEG and Cutoff
Definitions’ in the signatureSearchData vignette provides
details on this topic.

CMAP2 GEP data This section provides a short overview of
the CMAP2 data pre-processing steps to illustrate how this
drug-perturbation GEP-DB could be used instead of LINCS
for the performance test and proof-of-concept experiments
included in this article. Both databases are supported by
signatureSearchData, but for consistency we only used
the LINCS database in the experimental sections. Since
the Affymetrix GeneChip® technology used by CMAP2
is supported by a rich ecosystem of widely used analysis
software, we generated the pre-processed and final data
tables for this data set from the corresponding raw files
(here CEL files), and deposited the results on Bioconductor’s
ExperimentHub for easy access with signatureSearchData.
To compare the search results generated with the CMAP2
online service and the GESS methods from signatureSearch,
we also included the CMAP2 rank matrix that is based
on rank transformed differential expression values for all
assayed genes. The latter can be downloaded from the CMAP2
project site. For the raw data processing from CEL files,
normalized gene expression data were generated with the
MASS algorithm (3). Next, the DEG analysis was performed
with the limma package (4) using the experimental design
table included in the CMAP2 data set to define replicates,
as well as control and treatment samples. The statistical
result tables generated by limma, including LFC values, p-
values and false discovery rates (FDR), were saved to the
HDFS5 files we are hosting on Bioconductor’s ExperimentHub.
These statistical values can be used by the query retrieval
and GESS methods in signatureSearch to define DEGs with
single or combinatorial cutoff parameters, such as DEGs that
have an LFC value of >1 or <-—1, and an FDR of <0.01.
Although the LINCS and CMAP2 result tables had to be
generated with different statistical methods, one can filter
in both cases for DEGs with cutoffs that can be applied to
statistical values with comparable meaning (e.g. LFCs can
be used instead of Z-scores). Detailed instructions along with
the corresponding R code for creating the corresponding gene
expression and statistical result tables are provided in the
CMAP?2 pre-processing sections of the signatureSearchData
vignette. For instance, instructions for defining DEG sets with
combinatorial filters of statistical parameters are given in the
Supplement section of the vignette under ’DEG and Cutoff
Definitions’.
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S2
Additional details about FEA algorithms

Duplication Adjusted Hypergeometric Test (dup_hyperG).
The classical hypergeometric test assumes uniqueness in its
gene/protein test sets. Its p-value is calculated according to

Ty @

In case of GO term enrichment analysis the individual
variables in equation (1) are assigned the following values.
N is the total number of genes/proteins contained in the entire
annotation universe, D is the number of genes annotated at a
specific GO node, n is the total number of genes in the test
set, and x is the number of genes in the test set annotated at
a specific GO node. To maintain the duplication information
in the test set used for TSEA, the values of n and x in the
above equation are the corresponding gene counts including
duplications.

Modified Gene Set Enrichment Analysis (mGSEA). The
original GSEA method (5) uses predefined gene sets Ss
defined by a chosen functional annotation system, such as GO
or KEGG categories. The goal is to determine whether the
genes in S are randomly distributed throughout a ranked test
gene list L (e.g. all genes ranked by LFC), or enriched at the
top or bottom of L. This is expressed by an Enrichment Score
(ES) reflecting the degree to which a set S is overrepresented
at the extremes of L. For TSEA, the test set L is a target
set T associated with the top ranking drugs in a GESS result
obtained from a drug-based GES database. Frequently, the
corresponding gene identifiers in 7' are not unique, because
several drugs in a GESS result may share the same targets. To
account for the characteristic nature of GESS results, it is of
utmost importance to maintain this duplication information as
much as possible. To perform GSEA with duplication support,
here referred to as mGSEA, the target set T is transformed
to a score ranked target list Ly, of all targets included in
the corresponding annotation system. For each target in T,
its frequency is divided by the number of all targets in T’
(including duplications), which is the weight of that target.
For targets present in the annotation system but absent in the
target set 7', their scores are set to 0. Thus, every target in
the annotation system will be assigned a score. Subsequently,
the target list will be sorted decreasingly to obtain Liq, .
Importantly, the original GSEA method cannot be used for
TSEA directly since zeros are very frequent in Lg,. As a
result, the sum Np can become zero too which cannot be
used as the denominator in equation (2) from Subramanian et
al. (2005). To avoid this problem, the affected £S values are
ignored by assigning -1 as a tag.

P
Pyit (5,1) = Z ’;;,J’7 where Np= Z 15 (2)
g;€S R g; €S
i<i

If only some genes in set S have scores of zeros then the value
of N is increased according to equation (3). The latter adds
to Ng the minimum value of the non-zero gene scores in S
multiplied by the number of genes in .S that have scores of
zero. Increasing N can in return decrease the weight of the
genes in S that have non-zero scores. To compensate for this,
the mGSEA algorithm computes N according to equation (3)
instead of equation (2). Py;;(.S,%) in equation (2) evaluates the
fraction of genes in .S ("hits") weighted by their scores present
up to a given position ¢ in Ly, where 75 is the score of gene j
in L¢q,. Typically, the exponent p is set to 1 in order to weight
the genes in S by their scores in Lygy.

Nr= Z |rj\p+min(rj|rj >O)>k Z Irj:O 3
g;€s g;€Ss

The motivation for the above modifications is that if only
a small number of genes in set .S has non-zero scores and
these genes rank high in L4, the weight of these genes will
be close to 1 resulting in an ES(S) of close to 1. Thus,
the original GSEA method would score the gene set .S of a
functional category as significantly enriched. However, this
is undesirable because in this example only a small number
of genes is shared among the test target set 7' and the gene
set S of a functional category. To avoid this, small weights
are assigned to genes in S that have scores of zero. The latter
decreases the weight of the genes in S that have scores other
than zero, thereby decreasing the false positive rate. Finally,
the functional categories (gene sets Ss) are ranked by E.S from
highest to lowest, where the top ranking ones are favored as
enriched GO terms and KEGG pathways.

MeanAbs (mabs). The input for the MeanAbs method is Liqy,
the same as for mGSEA. In this enrichment statistic, mabs(S),
of a gene set S is calculated as mean absolute scores of
the genes in S (6). In order to adjust for size variations
in gene set S, random permutations (e.g. m=1000) of Lyq,
are performed to determine mabs(S,7). Next, mabs(S) is
normalized by subtracting the median of the mabs(S,7) and
then dividing by the standard deviation of mabs(S, ) yielding
the normalized scores Nmabs(S). Subsequently, the portion
of mabs(S,n) that is greater than mabs(.S) is used as nominal
p-value. Finally, the resulting nominal p-values are adjusted
for multiple hypothesis testing using the Benjamini-Hochberg
method (7).

S3
Filtering of MOA and SSC Categories

The 276 MOA categories were downloaded from the
Touchstone database. They were associated with at total of
1,555 compounds. Since not all MOA categories are expected
to contain drugs that induce similar gene expression changes,
MOA categories predominantly associated with dissimilar
GESs were eliminated by a filtering process based on recall
rates that were averaged across all six GESS methods. For this,
the GESs associated with drugs belonging to a MOA category
were searched iteratively against the LINCS database. For
each query result, the rankings of the GESs belonging to
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the same MOA category as the query were recorded. The
joined ranking results for all queries of a MOA were then
summarized using the mean of the ranks, and the mean
rank percentile was set as the recall rate of a MOA for the
corresponding GESS method. To make sure none of the six
GESS methods had been given an unfair advantage in this
selection process, the MOA level recall rates were combined
by calculating the mean of the recall rates across all six
GESS methods. The latter was used for the final ranking
of the MOA categories. Subsequently, the top 25% ranking
MOA categories were used for the GESS performance tests
described in the main text of this article. The final set included
a total of 69 MOA categories associated with 309 compounds.
The filtering of the SSC categories was performed the same
way as the filtering of the MOA categories.
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SUPPLEMENTARY TABLES

Table S1: Top GO Terms with GES Query

Table S1. Top ranking GO MF and BP terms obtained from direct enrichment of the vorinostat GS-Q with hypergeometric test. The columns contain: GO
Ontology?; GO Term description/ID®; number of genes in GO term®, test setd and intersect®, respectively; as well as enrichment p-valuef and adjusted p-value2

using the Benjamini-Hochberg (BH) method. To save space, longer GO term descriptions have been shortened.

Ontology? GO Term NGO® NTest! NMatch® P-Value'! P-Adjust®
MF phospholipase activator activity (GO:0016004) 12 295 4 3.4e-05 0.013
MF kinase regulator activity (GO:0019207) 207 295 13 4.6e-05 0.013
MF lipase activator activity (GO:0060229) 14 295 4 6.6e-05 0.013
MF transcription coactivator activity (GO:0003713) 319 295 16 9.6e-05 0.014
MF RNA polymerase II TF binding (GO:0001085) 155 295 10 2.8e-04 0.024
BP cellular response to peptide (GO:1901653) 385 293 21 8.3e-07 0.003
BP regulation of apoptotic signaling pathway (GO:2001233) 406 293 20 7.1e-06 0.010
BP histone modification (GO:0016570) 454 293 21 1.1e-05 0.010
BP response to metal ion (GO:0010038) 364 293 18 1.9¢-05 0.010
BP covalent chromatin modification (GO:0016569) 474 293 21 2.1e-05 0.010

Table S2: Statistical Tests for Performance Differences Among GESS Methods Applied to MOA Categories

Table S2. GESS methods applied to MOA categories. To assess whether the observed performance differences are statistically significant for all pair-wise
comparisons, the bootstrap method was used for both the global AUC and pAUC metrics. The BH method was used for multiple testing correction (7). The
columns contain: GESS method 1*; GESS method 2°; P-value® and adjusted P-valued.

AUC pAUC (FPR 0.01) pAUC (FPR 0.05) pAUC (FPR 0.10)
GESS1® GESS2° | P-Value® P-Adjustd P-Value P-Adjust | P-Value P-Adjust | P-Value P-Adjust
gCMAP CMAP 6.2e-70 1.3e-69 2.7e-11 2.9e-11 4.7e-29 5.4e-29 1.3e-39 1.5e-39
gCMAP Fisher 1.4e-104  3.5e-104 1.3e-56 2.7e-56 1.6e-96 4.0e-96 | 1.1e-124 3.2e-124
gCMAP SPall 8.1e-217  6.1e-216 9.8e-44 1.6e-43 3.7e-72 6.2e-72 2.9e-89 5.4e-89
gCMAP LINCS 3.0e-182  1.5e-181 1.6e-97 4.9e-97 | 1.6e-193 2.4e-192 | 2.0e-211 1.5e-210
gCMAP SPsub 7.0e-236  1.0e-234 | 6.4e-145 9.6e-144 | 3.3e-181 2.5e-180 | 8.9e-218 1.3e-216
CMAP Fisher 1.7e-27 2.1e-27 1.1e-48 2.1e-48 1.0e-60 1.5e-60 3.2e-69 4.7e-69
CMAP SPall 5.3e-65 9.9e-65 5.4e-38 8.1e-38 2.0e-37 2.5e-37 7.3e-42 9.1e-42
CMAP LINCS 1.5e-132  5.8e-132 4.0e-86 1.0e-85 | 1.1e-151 5.3e-151 | 2.7e-159 1.3e-158
CMAP SPsub 2.0e-128  5.9e-128 | 2.2e-125 1.6e-124 | 1.7e-144 6.3e-144 | 2.4e-141 8.8e-141
Fisher SPall 1.2e-04 1.3e-04 1.5e-07 1.5e-07 9.1e-19 9.8e-19 1.4e-15 1.5e-15
Fisher LINCS 2.8e-28 3.8e-28 3.9¢e-13 4.5e-13 7.8e-60 1.1e-59 4.4e-62 6.1e-62
Fisher SPsub 2.3e-62 3.9e-62 2.3e-99 1.1e-98 1.2e-84 2.2e-84 7.6e-75 1.3e-74
SPall LINCS 1.4e-16 1.6e-16 2.8e-22 3.4e-22 1.1e-85 2.4e-85 1.1e-90 2.3e-90
SPall SPsub 1.1e-49 1.6e-49 9.1e-99 3.4e-98 | 1.1e-105 3.2e-105 | 1.3e-116 3.3e-116
LINCS SPsub 1.0e-01 1.0e-01 5.2e-33 7.1e-33 5.7e-02 5.7e-02 1.8e-01 1.8e-01
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Table S3: Statistical Tests for Performance Differences Among GESS Methods Applied to SSC Categories

Table S3. GESS methods applied to SSC categories. The column titles and content of this table are organized the same way as in Table S2.

AUC pAUC (FPR 0.01) pAUC (FPR 0.05) pAUC (FPR 0.10)

GESS1  GESS2 | P-Value P-Adjust | P-Value P-Adjust | P-Value P-Adjust | P-Value P-Adjust
gCMAP CMAP | 7.7e-183 1.9e-182 | 1.3e-10  1.4e-10 | 8.7e-28 1.0e-27 | 5.6e-34  6.0e-34

gCMAP Fisher | 2.0e-155 3.8e-155 | 8.le-64  1.3e-63 | 9.6e-147 1.6e-146 | 1.6e-197 3.0e-197
gCMAP SPall 0.0e+00  0.0e+00 | 1.6e-59  2.4e-59 | 3.0e-96  4.0e-96 | 2.2e-130 3.0e-130
gCMAP LINCS | 0.0e+00  0.0e+00 | 2.7e-173 8.0e-173 | 0.0e+00  0.0e+00 | 0.0e+00  0.0e+00
gCMAP SPsub | 0.0e+00  0.0e+00 | 4.5e-236 3.4e-235 | 0.0e+00  0.0e+00 | 0.0e+00  0.0e+00
CMAP  Fisher 3.7e-28  4.3e-28 | 3.2e-54 4.4e-54 | l.le-114 1.6e-114 | 2.2e-135 3.2e-135
CMAP  SPall 23e-84  3.2e-84 | 3.0e-52  3.8e-52 | 53e-64 6.7e-64 | 53e-78  6.6e-78

CMAP  LINCS | 59e-190 1.8e-189 | 7.2e-166 1.8e-165 | 0.0e+00  0.0e+00 | 0.0e+00  0.0e+00
CMAP  SPsub | 1.1e-275 4.0e-275 | 2.7e-251 4.1e-250 | 0.0e+00  0.0e+00 | 0.0e+00  0.0e+00
Fisher SPall 1.3e-03 1.3e-03 | 8.2e-02  8.2e-02 | 69e-26 7.4e-26 | 3.8¢-36  4.3e-36

Fisher LINCS | 4.6e-86  7.0e-86 8.0e-71 1.5e-70 | 7.2e-157 1.4e-156 | 1.0e-162 1.7e-162
Fisher SPsub | 7.7e-158 1.6e-157 | 7.3e-209 3.6e-208 | 1.1e-231 2.8e-231 | 1.1e-235 2.6e-235
SPall LINCS | 2.8e-53  3.5¢-53 | 4.3e-72  9.3e-72 | 1.7e-185 3.7e-185 | 1.8e-200  3.9e-200
SPall SPsub | 2.5e-153 4.2e-153 | S5.1e-189  1.9e-188 | 8.2e-253  2.5e-252 | 1.4e-300 4.3e-300
LINCS  SPsub 3.8e-15 4.1e-15 | 3.1e-32  3.6e-32 | 7.9e-11  7.9e-11 1.0e-04  1.0e-04
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