
Reviewers' comments: 

Reviewer #1 (Remarks to the Author): 

The authors present a very information dense, machine learning based approach to understand 

gene expression from DNA sequence ultimately achieving modest R2 values across a set of model 

organisms from bacteria to humans using a deep neural network. While the work is potentially of 

interest, the overall message and ultimate utility is lost in the delivery of the paper that was very 

dense to read and understand. Specifically: 

The use of R2 as a metric is not the best to define a model and it would be suggested to use 

alternative statistics approaches to show a goodness of fit such as an F-score as an example. In 

some cases, the goodness of fit does not seem very strong despite high R2 (take for example 

Figure 6B). 

A comparison of this machine learning approach to other approaches (including things like the RBS 

calculator and other predictive approaches) should be used to determine the appropriateness of 

this learning method and the resulting models. 

The predictive power of the approach to a de novo sequence would be suggested. 

The authors set boundaries for the various promoter, terminator etc elements that (in some 

organisms) would overlap with neighboring genes. Howe often was this the case? How much 

influence does this exact window have on the determination of function from sequence? How much 

would a promoter (as an example) taken out of context be influenced by the genomic context? Can 

this be predicted by the model? 

Extracted motifs such as those in Figure 3 should be head-to-head compared to other work in the 

literature that have extracted similar phenomena. 

The paper needs to be completely revised for clarity of reading. 

Reviewer #2 (Remarks to the Author): 

The authors propose a very interesting computational method to try and deduce the DNA 

regulatory code underlying gene expression changes in several organisms. They are able to 

explain a high percentage of the gene expression changes using a deep learning approach and look 

into the effect of (combinations of) different parts the regulatory elements on gene expression. 

While I think this is a very interesting paper with important findings of interest to a wide audience, 

I do think that the paper needs more attention, in particular with regard to overall readability and 

also addressing/mentioning the drawbacks. 

Major points: 

- I found the first part of the results (pg 6, 7 model definition) a bit hard to get the exact details of 

how the model was obtained. At various times, the authors refer to the methods, but was unable 

to unambiguously find the section in the methods section. It would be really helpful if the authors 

provide a more extensive methods (or maybe supplemental methods) section with regard to the 

data processing (maybe split it up by data type?) and parameters used for fitting. This was now an 

exercise in trying to match the main text with the methods and supplemental figures, without a 

clear guidance. 

- Throughout the text it remains a bit unclear when the authors switch from the analyses 



performed for all seven organisms to the indepth analyses performed using yeast data. It would 

help alot if the authors make much clearer that the majority of the results and conclusions are 

based on yeast. Only the global variance estimates where verified in other organisms, which also 

clearly showed that more complex organisms are harder to predict. 

- I am not convinced by the co-evolution analyses. While I'm not an evolutionary biologists, 

claiming that regulatory regions co-evolve with the corresponding coding regions based on just 

one correlation analysis seems a bit overenthusiastic. How does for instance the correlation look 

like with other parts of the genome that are not directly related, is that a much lower number? 

- The authors seem to ignore the fact that their model is much more capable of predicting 

downregulation compared to upregulation (pgs 7 and 18). This warrants some thoughts in the 

discussion about the implication of their model predictions for future experiments and a potential 

explanation why this might happen (can imagine that down more often equates to off and 

therefore is easier to predict than up). 

- I am intrigued by the difference they found between the shallow and deep modeling with regard 

to the contribution of the regulatory regions. While the shallow modeling is unable to explain a 

large part of the variance, the deep modeling is. When combined with the codon frequencies, the 

difference between the two approaches is much smaller. The authors also indicate that they can 

predict the codon usage using the regulatory code. How then can such a big difference between 

the two modeling approaches exist? The shallow modeling suggests that the codon frequency is 

much more important compared to the regulatory regions, while the deep modeling is assigning a 

much higher contribution to the regulatory regions. 

minor remarks: 

- pg 6, FigS1-2, in contrast to what they authors indicate, I only see metabolic processes, 

transport and stress response in the enrichment analysis. 

- Fig1G, Why use a pearson r here, while in all other subpanels an R2 is used. This is confusing. 

- pg 9, the authors claim that the combination is additive "Each DNA region thus additively 

contributed ..." This warrant some further explanation. Effects can also be non-additive 

(multiplicative for instance), why/how did the authors conclude this? 

- pg 22, discussion. There, the authors indicate that the biological variation due to different 

conditions is negligible compared to the gene expression difference encoded in the genome. I think 

the authors have to be a bit more careful here with their statement. I would disagree that 

biological variation is negligible. In essence, the parameters they choose to include in their model 

(motifs, regulatory sequence) are effectively ways for the system to encode responses to different 

environmental changes through transcription factor binding, chromatin rearrangements, etc and 

therefore should be considered an indirect way of environmental changes on gene expression 

levels.
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We would like to thank the reviewers for their thoughtful comments and efforts towards              

improving our manuscript. We address specific comments to each reviewer below. Reviewers            

had very different comments, but the general overall concern was about manuscript clarity.             

While we addressed the specific concerns and provided corresponding additional analyses, we            

also considerably rewritten the manuscript.  

 

Many of the additions aimed at addressing the manuscript clarity; we have added multiple              

paragraphs, expanded Methods section, shortened the sentences, introduced better transition          

sentences, and expanded the discussion section. The manuscript was also proofread by 2             

native English speakers.  

 

In the following pages, we respond to the comments that were more specific to each referee.  
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Referee 1 

Comment 1.1a 
Reviewers' comments: 
 
Reviewer #1 (Remarks to the Author): 
 
The authors present a very information dense, machine learning based approach to 
understand gene expression from DNA sequence ultimately achieving modest R2 
values across a set of model organisms from bacteria to humans using a deep 
neural network. While the work is potentially of interest, the overall message and 
ultimate utility is lost in the delivery of the paper that was very dense to read and 
understand. Specifically: 
 
The use of R2 as a metric is not the best to define a model  

Response 1.1a 

We thank the reviewer for the insightful and constructive comments. Indeed, as the             
reviewer states, the coefficient of determination R2 is not the metric to use for defining a                
model and we are not doing so. To clarify, when training our models we divided the data                 
into training, validation and test sets. Each model was trained on the training set using               
minimization of squared error criteria (mean squared error, MSE), which is a standard             
procedure for training regression models 1–5. Hyperparameter tuning was performed on           
the validation set and a model with minimal MSE on the validation set was chosen, thus                
the R2 was never used to choose or define the model. Then, for final testing evaluation,                
we again accessed the model with the same MSE criteria to ensure that it did not overfit                 
the data. We acknowledge that indeed it was not clear from the text and we clarified this                 
with additional paragraphs expanding the Methods M1 (page 25, lines 725-756) and M3             
sections (page 26, lines 776-783).  
In the present study, our models describe and map the relations of input variables to               
mRNA levels - which are a continuous target variable. Thus, to interpret model             
performance we measure R2 on the test data, which is an intuitive metric signifying the               
percentage of variance that can be predicted from the target variable (mRNA levels) using              
the information from DNA. This is standard practice for reporting the predictive            
performance of regression models 6,7. The coefficient of determination R2 has been            
time-tested and is generally agreed upon by the research and engineering community,            
especially in the biological sciences, as an intuitively interpretable metric to assess            
models. This is supported by its use in all of the major publications in the wider field of                  
gene expression research (ie. mapping to a continuous target variable) that also our study              
contributes to, where R2 is solely used to assess the performance of shallow (Sharon et               
al. 2012; Dvir et al. 2013; Cheng et al. 2017; de Boer et al. 2020) as well as deep models                    
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(Agarwal and Shendure 2018; Cuperus, Groves, and Kuchina 2017). The coefficient of            
determination is defined as [Eq. 1], where SSResidual is the sum of    S /SSR2 = 1 − S Residual Total         
residual squares of predictions and SSTotal is the total sum of squares (specified in              
manuscript Methods M4). Thus, R2 describes the proportion of the variance in the             
dependent variable (target mRNA levels) that is predictable from the independent           
variables (DNA sequence properties, as defined in Methods M1, Fig S1-1c). It gives the              
key information on model performance that we are interested in, namely, to what extent              
are the target mRNA levels encoded in the DNA sequence.  
The approach in the present study is in stark contrast to modelling using a discrete               
variable (termed classification), and for both approaches different methods for assessing           
the modeling performance are used. We have also considerably rewritten the manuscript            
to clarify the main message of the work (please see response 1.6) .  
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Comment 1.1b 
and it would be suggested to use alternative statistics approaches to show a 
goodness of fit such as an F-score as an example. 

Response 1.1b 
Perhaps the reviewer meant the F-score as a measure of goodness of fit. To clarify, the use of                  
alternative statistics approaches to show a goodness of fit, such as an F-score, is related not to                 
regression but to classification modeling problems, which were not used here. In the machine              
learning field, the compound metric F-score is the harmonic mean of Precision (positive             
predictive value, PPV = TP / (TP+FP), where TP is the number of true positive predictions and                 
FP is the number of false positive predictions) and Recall (true positive rate, TPR = TP /                 
(TP+FN), where TP is the number of true positive predictions and FN is the number of false                 
negative). These metrics are not suitable for assessing regression models with a continuous             
target variable, as one cannot directly measure the true and false positive and negative              
predictions. 
However, perhaps the reviewer meant the F-test as a measure of goodness of fit. The F-test is                 
widely used for statistical inference, e.g. to test the hypothesis whether the model of question               
fits data significantly better than null model based only on the intercept, i.e. taking the average                
over the data to make predictions. This is usually a standard practice for inference problems to                
test for a model's non-zero slope, though it is not widely used in predictive modeling since it is                  
not informative about a model's predictive performance. To make our manuscript accessible to             
both statistical and machine learning audiences, we have also included p-values from an F-test,              
where relevant, in the main text. Additionally, we have also expanded our assessment of              

performance measures to include the mean squared error MSE , which gives          (Y )=  n
1 ∑

n

i=1 
i − Y i

︿ 2    

the mean of squared differences between actual (measured) and predicted values        Y     Y i
︿

  
(Table S1-3 and Table S2-1). The MSE incorporates both the variance of the estimators across               
the different models, ie. how widely spread the estimates are from one dataset to another, as                
well as the overall bias - how far off the average estimated value is from the truth. By providing                   
these details, we also want to encourage the genomics and systems biology community to be               
open about the robustness of their predictive models which are unfortunately often missed in              
biological studies.  
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Comment 1.1c 
In some cases, the goodness of fit does not seem very strong despite high R2 (take 
for example Figure 6B). 

 

Response 1.1c 
Please also see the response in 1.1a above. Since we are not assessing the performance               
of models but relaying the correlation between the measured GFP fluorescence and            
predicted expression levels, we show Pearson's correlation coefficient r, which is also the             
standard metric to assess and report correlation between variables in the field 8,9. In              
general, since R2 can be derived as an approximation of the correlation coefficient r (then               
termed r2), also r is approximately the square root of R2 (in Fig 6B this would correspond                 
to ~0.42). However, one metric (R2) is defined and used for assessing the performance of               
a model based on variance analysis of the true versus predicted variables, and the other               
(r) is used to assess the strength of a (linear) relation between two independent variables.               
Therefore, we are trying to clearly differentiate between reporting model performance with            
R2 and reporting correlations between variables with r.  
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Comment 1.2 
A comparison of this machine learning approach to other approaches (including 
things like the RBS calculator and other predictive approaches) should be used to 
determine the appropriateness of this learning method and the resulting models. 

Response 1.2 
As the reviewer points out, we have systematically investigated the appropriateness of the             
proposed method. The main model organism that is used to build and interpret models in the                
study is Saccharomyces cerevisiae. For yeast, after a comprehensive literature search, we            
found that no complementary predictive approach exists that could be directly compared,            
especially based on DNA sequence and predictive of mRNA expression levels. This is also the               
case, since no study has until now attempted to merge such a large amount of mRNA                
sequencing experiments - thus uncovering the relatively stable conservation of mRNA levels            
across genes and conditions - and attempted to relate them to gene coding and regulatory               
sequences. However, scientific publications have reported different R2 values of models based            
on certain specific coding or non-coding regulatory regions, such as codon frequencies 10,11,             
promoters 12,13 and UTRs 14,15, the highest of which are specified in Fig S1-1B. These               
publications also served as the basis for our selection of the most informative properties to use                
in modeling (see Fig S1-1C). 
Our aim was though not a direct comparison with published performance metrics, since the              
scores obtained in our study are considerably higher than in any known published studies. This               
can be attributed to the generalization of our approach that uses both (i) all available RNA-Seq                
data and not just a single experiment, and (ii) improved modeling input variables, by taking the                
whole gene regulatory structure into account, something that has not been done until now.              
Thus, to justify appropriateness of our learning method and resulting models, we systematically             
compared the predictive performance for mRNA expression, resulting from every regulatory           
region studied so far (i.e. promoter, terminator, UTRs, CDS and their combinations) using both              
widely used classical machine learning approaches as well as state-of-the-art deep neural            
networks (Fig 2A, B), which demonstrated the validity and the power of the present approach.               
Analogously, we analysed 6 model organisms (Escherichia coli, Arabidopsis thaliana,          
Drosophila melanogaster, Danio rerio, Mus musculus and Homo sapiens) to verify and confirm             
that the observed phenomenon (the high predictive power of regulatory and coding DNA             
sequence for mRNA expression levels) was indeed detectable across the whole tree of life (Fig               
1H). 
Furthermore, since it would be unreasonable to establish the appropriateness of our learning             
method and the resulting models based only on comparison of model performance metrics, and              
to further justify the biological validity of the results, we (i) performed a comprehensive analysis               
of DNA sequence motif occurrences and co-occurrences across the regions to find the             
underlying principles that enable our models to perform so well (Fig 4F, Results chapter 4), and                
(ii) experimentally verified the predictive power of the approach and its usefulness for guiding              
experiment design (Fig 6B, Results chapter 6).  
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Also as the reviewer suggested using E.coli (RBS calculator implementation is limited to             
bacteria) we have tested and compared results with the specified RBS calculator 16,17 algorithm,              
which predicts mRNA translation levels based on input mRNA sequence (RBS calculator online             
prediction tool was used: https://www.denovodna.com/software/). However, our method and the          
RBS calculator aim to predict fundamentally different phenomena. Since the RBS calculator            
uses a different target variable (mRNA translation rate) than the one used in our study (mRNA                
expression level), we could not directly compare the predictions. Instead, we analysed the             
correlations between RBS calculator predictions to the data used in our study - average of               
experimentally observed mRNA levels from thousands of gene expression studies (Figure R1).            
Indeed, since here we are working with mRNA transcript levels as opposed to the mRNA               
translation rates with the RBS calculator, and due to the highly different nature of the data and                 
modeling (thousands of experiments and deep learning vs. thermodynamic models) neither the            
experimentally derived mRNA values used for modeling (Fig R1A), nor our deep            
learning-predicted mRNA values (Fig R1B) correlate well (Pearson's r = 0.128, p-value = 9.4e-2)              
with the RBS calculator predictions. The deep learning model however does well what it was               
trained for, namely, to predict median mRNA levels based on gene regulatory structure             
sequence and properties (Fig R1C, Methods M1 and M2). Since the aim of our study was not                 
directly related to protein translation rates, but instead mRNA levels, and in order to not confuse                
the reader, since we already describe complex modeling efforts, we deem that these analyses              
should not be included in the present manuscript. 
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A B 
 
 
 
 
 
 
 
 
 
 
 
 

C 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure R1-1. Correlation analysis of results with RBS calculator and the Escherichia coli model organism.               
Red lines denote least squares fits. (A) Comparison of median mRNA values used for modeling in our                 
study and RBS calculator-predicted translation rates. (B) Comparison of predicted mRNA values with our              
deep learning model and RBS calculator-predicted translation rates. (C) Actual vs deep learning-predicted             
mRNA levels. 
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Comment 1.3 

The predictive power of the approach to a de novo sequence would be suggested. 

Response 1.3 
Please see the Response 1.1a. In order to test the model’s predictive power on new sequences                
that it had not seen before, we used a held out test set (10% of protein coding genes, >400 data                    
points), which is a standard approach for testing the predictive performance of machine learning              
models 3,6,7. We have updated the manuscript text to make this more clear (page 5, lines                
139-156, Fig 1). 
We also showed that the model mRNA level predictions are in high agreement with GFP               
measurements in synthetic constructs (Figure 1G and S1-5B) with two independent datasets            
comprising thousands of data points, which were not used for training the model (data not seen                
by the model). Furthermore, we have now additionally reviewed the literature for verified             
synthetic yeast regulatory sequences that could be used for additional “de novo” testing.             
However, all of these sequences are 250 bp or shorter (e.g. synthetic promoters and              
corresponding scaffolds) and span merely one of the four regulatory regions 13,15,18–26, whereas             
our models were trained on larger sequences, spanning 1000 bp of promoters and altogether              
2150 bp (even the minimal model developed for experimental purposes in the final chapter of               
results was based on 1000 bp of sequence). Nevertheless, we were able to prepare de novo                
datasets by randomly shuffling the sequences and preserving their dinucleotide content, in order             
to verify that DNA sequences contain specific expression grammar that is not merely a function               
of the GC content. As expected, we observed that the model predictive capacity breaks down               
with the non-informative random sequences that carry no regulatory information (Fig R2A,B:            
over 2.2-fold decrease in median predicted expression levels compared to experimentally           
measured or non-random predicted ones). 
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A B 
 
 
 
 
 
 
 
 
 
 
 

 
Figure R1-2. De novo testing of the yeast model with randomly shuffled and cross-organism sequences.               
(A) Predicted expression levels and (B) coefficient of variation R2 with randomly shuffled sequence data               
conserving dinucleotide content, compared to non-randomized sequences and the experimentally          
measured expression levels. 
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Comment 1.4a 
The authors set boundaries for the various promoter, terminator etc elements that 
(in some organisms) would overlap with neighboring genes. How often was this the 
case?  

Response 1.4a 
Since Saccharomyces cerevisiae was the central model organism of our study, while the other              
model organisms used to support the main finding, the boundaries of the regulatory regions              
were selected based on an overview of current published yeast studies (Figs 1D and S1-1C:               
1000 bp, 300 bp, 350 bp and 500 bp for promoters, 5'UTRs, 3'UTRs and terminators,               
respectively).  
As suggested by the reviewer, we have analysed the overlap between the promoter and              
terminator regions of genes sorted according to the order of CDS occurrence in the yeast               
genome (across the 16 chromosomes). By testing which intervals of the regulatory regions             
overlap, we observed that 55% of genes have an overlap between promoter and terminator              
regions with their neighbors (Figs R3A, B: ratio of genes with overlaps out of all genes was                 
0.55). Besides 44% of genes that overlap with the nearest neighbor gene (ie. distance is one                
gene away), due to laying on opposing DNA strands, 11% of genes overlap with their second or                 
third nearest neighbor (ie. distance is 2 to 3 genes away, Fig R3B: mean gene overlap distance                 
is 1.21, median is 1). Next, we analysed also the other model organisms using the same                
boundaries (Fig 1D) and metrics (ratio of overlapping genes, ratio of genes overlapping with 1               
gene away or more than 1 gene away, avg. distance, Fig R3B). As expected according to                
current knowledge 27–29, with increasing organism complexity, thus increasing genome size and            
decreasing genomic complexity (as measured by the number of genes per Mbp), the ratio of               
overlapping genes decreased (Fig R3B), which was also the case with the other metrics.              
Indeed, a very high correlation was observed between the ratio of overlapping genes and              
genomic complexity (Pearson's r = 0.989, p-value < 2.3e-5, Fig 3C). The number of overlapping               
genes rose to 80.7% for E. coli and fell to 2.2% with H. sapiens, with the mean distance of                   
overlapping genes rising to 3.90 and falling to 1.01, respectively. Organisms of lower genome              
complexity, such as bacteria and yeast, have more compact genomes with less non-protein             
coding regions, and thus more overlap between regulatory elements 28,30 with less space for the               
more complex and distant regulation (e.g. enhancers that regulate gene expression from            
thousands of bps away) found in more complex organisms from plants to human 31–34. However,               
despite these overlaps in the regulatory regions and consequently a sharing of regulatory             
signals between some of the genes, expression levels between sets of overlapping genes can              
be highly variable, as with yeast we measured a median standard deviation of 40.3 TPM that                
reached a maximum of 12479 TPM (Fig 4D). This supports the appropriateness of our modelling               
approach and the selected gene sequence bounds.  
We thank the reviewer for this suggestion and we have included these new results in the                
manuscript as a supplementary figure (Fig S1-9). 
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A B 

 
 

C D 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure R1-3. Analysis of gene overlap. (A) Dot-plot of overlapping genes on chromosome 16 in yeast                
showing approximately half of genes promoters and terminators overlap with, on average, their first              
neighbor gene (80%), and up to 3 neighboring genes (20%). (B) Gene overlap measures across the                
model organisms including the ratio of genes with overlaps out of all genes (ratio_overlap), mean distance                
between overlapping genes (mean_distance), ratio of genes overlapping with their nearest neighbor gene             
(ratio_dist=1) and ratio of genes overlapping with genes farther than their first nearest neighbor              
(ratio_dist>1). (C) Correlation analysis between ratio of overlapping genes and genomic complexity. (D)             
Variation of gene expression (median TPM) observed across the overlapping sets of genes in yeast. 
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Comment 1.4b 
How much influence does this exact window have on the determination of function 
from sequence? 

Response 1.4b 
This is indeed an interesting question and was explored in our analysis, where we used sizes of                 
regulatory regions giving optimal model performance. This was however not initially reported, as             
the region size was not the most crucial factor determining model performance (Fig R1-4A).              
When testing the effect of the region size on model predictive performance, we found that a                
50% decrease in the size of the regions led to a 7% decrease in model performance, with the                  
consecutive decreases having a larger effect due to the depleting amount of information left in               
the regions. Thus, despite the overlaps found in certain regulatory regions (Fig R1-3, see above               
response 1.4a), regulatory signals important for expression of their specific gene are still             
interspersed across the whole regions (Fig 3A: relevance z-scores of all parts of the regulatory               
sequences surpassed 2 standard deviations). All regions carry information important for           
accurate predictive modelling (Fig 2B: model performance consistently increases with additional           
regions), especially in the form of co-occurring sets of DNA regulatory motifs uncovered across              
all the regions (Fig 4F).  
Our selection of the most informative properties and sequence regions to use in modeling (see               
Fig 1D, Fig S1-1C) was based on a comprehensive overview of the published literature              
including experimental and modeling studies. This included the studies reporting the different R2             
values of models based on certain specific coding or non-coding regulatory regions, such as              
codon frequencies 10,11, promoters 12,13 and UTRs 14,15, as mentioned in response 1-2 above (see               
Fig S1-1c for additional references). The rational selection of region sizes, sufficiently large to              
cover the most important regulatory signals (Fig 1D: spanning altogether 2150 bp of regulatory              
sequence per gene), was also here possible due to using deep learning methods. Apart from               
enabling the use of DNA sequence as input, due to their capability to learn optimal data                
representations themselves (and thus interpret DNA regulatory motifs) 35 the performance of            
deep methods does not suffer with increased amounts of input data as with classical shallow               
machine learning.  
An additional confirmation that the selected region sizes were sufficient was obtained with             
another approach. The knowledge obtained with further analysis of the models and input data,              
namely, uncovering that all regions interact and measuring the relevance of each position in the               
regulatory regions, enabled us to test a more rational approach of constraining the regulatory              
regions by selecting only the parts of the regions with the most pronounced relevance scores               
(Fig 3A: selection of 400 bp, 100 bp, 250 bp and 250 bp of promoters, 5'UTRs, 3'UTRs and                  
terminators, respectively). This indeed led to models that achieved almost the same            
performance as the original ones (Fig R4B) based on approximately half shorter regulatory             
regions (altogether 1000 bp compared to 2150 bp of the full models). The improvement of this                
model over the one with exactly 50% shorter regions described above (Fig R1-4A) however,              
was likely due to the remaining longer part of the 3'UTR region (250 bp of 350 bp), which had a                    
joint effect with the other regions leading to the slightly improved performance.  
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We have included these results in the manuscript as a supplementary figure (Fig S1-10) and               
added appropriate descriptions in the main text (page 8, lines 216-222 and page 26, lines               
776-783). 
 
 
A B 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
Figure R1-4. Analysis of the effect of regulatory region window size on the determination of function from                 
sequence. (A) Effect of decreasing the sizes of the input regulatory sequences on model performance. (B)                
Rational design of a smaller 1000 bp model according to the analysis of position-specific relevance of the                 
input sequence in the full 2150 bp model (see Fig 3A in the manuscript), where only the combination of                   
the most relevant region sizes were used, namely 400 bp, 100 bp, 250 bp and 250 bp of promoters,                   
5'UTRs, 3'UTRs and terminators, respectively.  
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Comment 1.4c 

How much would a promoter (as an example) taken out of context be influenced by 
the genomic context? Can this be predicted by the model? 

Response 1.4c 
This is an interesting question and it was indeed addressed in the paper. Please refer to Results                 
chapter 2 (Fig 2) in the main text (pages 8-9, lines 208-273), where we compared the context of                  
regulatory regions on model predictive performance. To assess the effect of the genomic             
context on regions taken out of context, meaning that we swap a certain promoter or terminator                
region with another variant from a different gene, we performed a large systematic analysis in               
Results chapter 5 in the main text (pages 17-21, lines 455-610). Here, both predictions (Fig 5)                
and experimental validations (Fig 6) demonstrated that the model is indeed sensitive to region              
perturbations, and that the genomic context has a large and differing effect on regions taken               
from alternate contexts (ie. different genes). In addition, we have strived to improve the main               
text in Results chapter 5 (pages 17-21, lines 455-610) and accompanying Figures 5 and 6 to                
further clarify the points raised by the reviewer.  
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Comment 1.5 

Extracted motifs such as those in Figure 3 should be head-to-head compared to 
other work in the literature that have extracted similar phenomena. 

Response 1.5 
We agree with the reviewer and we have tried applying other methods that have extracted               
similar phenomena to extract DNA regulatory motifs with our models, even before using the              
present approach. Indeed, we presumed that existing methods, such as DeepLift 36, TF-Modisco             
37 and DeepExplain 38 would enable comparisons between motifs extracted from different            
models. However, despite our efforts to apply these methods to our models as well through the                
help of the method's authors (A. Shrikumar from Kundaje lab, Stanford), we were unable to               
obtain motifs due to the underlying differences between our models and the models that those               
methods are developed for. Specifically, the existing methods for extracting sequence motifs            
from convolutional neural networks (CNN) are only developed for classification methods with            
discrete target variables, as far as we are aware. This includes, for instance, transcription factor               
binding models with general 'binding' or 'no-binding' events (or some discrete states within) 37,39.              
On the other hand, our regression models predict a continuous variable based on which the               
existing methods cannot extract appropriate information to reconstruct motifs. Consequently,          
according to our understanding and survey of the field, we choose a well established method               
that predicts the relevance of an input for the target variable based on input occlusions 38,40,41.                
The method had already been successfully used in genomics in the classification setting 41, and               
we implemented it here to enable extracting motifs from the regression models trained in our               
setting. To our knowledge, this is the first implementation that indirectly infers motifs and is                             
related to a phenotypic outcome (gene expression), whilst it is not dependent on direct                           
modeling of binding events that would be biased to the provided data (such as e.g. ChiP-Seq                               
data), which would frequently result in alike motives related to TF binding regions.  
We therefore compared our motifs to the actual TF-binding motifs from the Jaspar and                           
Yeastract databases that represent standard motif references and found hundreds of                     
significant hits to actual known TF binding sites (BH adj. p-value < 0.05). Additionally, we                         
verified that our motifs comprised also additional known DNA motif grammar (Fig S1-1), which                           
comprises, besides the classic TF binding sites, also (i) additional regions and binding sites that                             
include multiple well-known sequences, such as TATA boxes 8, Kozak sequences 26, A and T-rich                             
sites, positioning and efficiency elements 20, spread out across the different regulatory regions,                         
respectively (Fig 3F), (ii) elements related to nucleosome positioning 22,23 (Fig S3-3), as well as                             
(iii) regions adjacent to the binding sites that create a larger protein recognition and binding                             
template and potentially contained conserved DNA physicochemical properties 42–44, though are                     
predictable from sequence 43,45 and thus learnable by the deep models.  

17 

https://paperpile.com/c/CQYcXI/O0bV7
https://paperpile.com/c/CQYcXI/tpysV
https://paperpile.com/c/CQYcXI/yKWFe
https://paperpile.com/c/CQYcXI/tpysV+5h3pm
https://paperpile.com/c/CQYcXI/yKWFe+d14SG+rFaMi
https://paperpile.com/c/CQYcXI/rFaMi
https://paperpile.com/c/CQYcXI/Nu1Wg
https://paperpile.com/c/CQYcXI/Xdi5N
https://paperpile.com/c/CQYcXI/OhNFK
https://paperpile.com/c/CQYcXI/tqI8w+YAX2Y
https://paperpile.com/c/CQYcXI/G4hF2+fH4ZL+HzA5Q
https://paperpile.com/c/CQYcXI/fH4ZL+lrvgb


Zrimec et al. 2019 - Responses to reviewers comments 

Comment 1.6 

The paper needs to be completely revised for clarity of reading. 

Response 1.6 
We have strived to improve the overall clarity and readability of the manuscript. Changes              
in the text are highlighted as per the editors instructions.  
Points that were addressed include: 

1. Improvement of overall readability of all sections: 
a. avoiding long and intricate phrases (with many appositions), 
b. preference to be overly explicit, 
c. less dense sections of the results. 

2. Clarification of the objectives of the paper: 
a. which organisms and data used and where, 
b. clear aims of each analysis, 
c. overall conclusions and applicability (ie. not a methods or 'utility' paper but            

theoretical study showing interesting biological findings). 
3. Reference to methods section was expanded to methods subchapters and 

methods were revised as per the reviewers instructions (pages 25-29, lines 
726-870). 

4. Further testing and explanation of chosen region boundaries: 
a. amount of effect of window have on the determination of function from 

sequence (Fig S1-10), 
b. overlap of regions (Fig S1-9). 

5. Clarification of the effect of the contribution of each DNA region to the model 
predictive power (page 8, lines 216-222 and page 26, lines 776-783,, Fig S1-10). 

6. Revision of results and discussion related to the regulatory and coding region            
coevolution findings and their indications (pages 8-9, lines 239-273 and page 23,            
lines 654-665, Fig S2-3). 

7. Discussion on the models being more capable of predicting downregulation 
compared to upregulation (page 24, lines 704-717, Fig S6-6). 

8. Revision of the experimental results section (pages 20-21, lines 578-615, Fig 
6C,D). 

9. Multiple additional corrections and improvements (see all Responses). 
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Referee 2 

Comment 2.1 
Reviewer #2 (Remarks to the Author): 
 
The authors propose a very interesting computational method to try and deduce the 
DNA regulatory code underlying gene expression changes in several organisms. 
They are able to explain a high percentage of the gene expression changes using a 
deep learning approach and look into the effect of (combinations of) different parts 
of the regulatory elements on gene expression. 
 
While I think this is a very interesting paper with important findings of interest to a 
wide audience, I do think that the paper needs more attention, in particular with 
regard to overall readability and also addressing/mentioning the drawbacks. 

Response 2.1 
We are glad the reviewer finds our study interesting and important and we thank the               
reviewer for insightful and constructive comments. We have strived to improve the overall             
clarity and readability of the manuscript. Changes in the text are highlighted as per the               
editors instructions. Points that were addressed include: 

1. Improvement of overall readability of all sections: 
a. avoiding long and intricate phrases (with many appositions), 
b. preference to be overly explicit, 
c. less dense sections of the results. 

2. Clarification of the objectives of the paper: 
a. which organisms and data used and where, 
b. clear aims of each analysis, 
c. overall conclusions and applicability (ie. not a methods or 'utility' paper but 

theoretical study showing interesting biological findings). 
3. Reference to methods section was expanded to methods subchapters and methods 

were revised as per the reviewers instructions (pages 25-29, lines 726-870). 
4. Further testing and explanation of chosen region boundaries: 

a. amount of effect of window have on the determination of function from sequence 
(Fig S1-10), 

b. overlap of regions (Fig S1-9). 
5. Clarification of the effect of the contribution of each DNA region to the model predictive 

power (page 8, lines 216-222 and page 26, lines 776-783,, Fig S1-10). 
6. Revision of results and discussion related to the regulatory and coding region 

coevolution findings and their indications (pages 8-9, lines 239-273 and page 23, lines 
654-665, Fig S2-3). 
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7. Discussion on the models being more capable of predicting downregulation compared to 
upregulation (page 24, lines 704-717, Fig S6-6). 

8. Revision of the experimental results section (pages 20-21, lines 578-615, Fig 6C,D). 
9. Multiple additional corrections and improvements (see all Responses). 
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Comment 2.2 

Major points: 
- I found the first part of the results (pg 6, 7 model definition) a bit hard to get the 
exact details of how the model was obtained. At various times, the authors refer to 
the methods, but was unable to unambiguously find the section in the methods 
section. It would be really helpful if the authors provide a more extensive methods 
(or maybe supplemental methods) section with regard to the data processing 
(maybe split it up by data type?) and parameters used for fitting. This was now an 
exercise in trying to match the main text with the methods and supplemental 
figures, without a clear guidance. 

Response 2.2 
We thank the reviewer for raising this point. We have updated the methods section naming each                
section with corresponding M1, 2, ..., 10 to clearly point to each section from within results.                
Section Methods M1 (page 25, lines 725-756) was improved by separating the text according to               
different data types and clarification of the data processing descriptions. 
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Comment 2.3 

- Throughout the text it remains a bit unclear when the authors switch from the 
analyses performed for all seven organisms to the indepth analyses performed 
using yeast data. It would help alot if the authors make much clearer that the 
majority of the results and conclusions are based on yeast. Only the global variance 
estimates where verified in other organisms, which also clearly showed that more 
complex organisms are harder to predict. 

Response 2.3 
We see that this was not clearly explained in the initial version of the manuscript. The different                 
model organisms are summarized in the abstract and introduction sections. The main model             
organism that is used to build and interpret models in the study is Saccharomyces cerevisiae,               
whereas the additional 6 model organisms (Escherichia coli, Arabidopsis thaliana, Drosophila           
melanogaster, Danio rerio, Mus musculus and Homo sapiens) were used to verify that the              
observed phenomenon (the high predictive power of regulatory and coding DNA sequence for             
expression levels) was indeed detectable across the whole tree of life. We have clarified the text                
in the introduction, results and discussion sections, to specify that the analysis is performed with               
yeast and specifically define where the additional model organisms are used, which was only in               
the final paragraph of first section of results (pages 6-7, lines 177-192). 
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Comment 2.4 

- I am not convinced by the co-evolution analyses. While I'm not an evolutionary 
biologists, claiming that regulatory regions co-evolve with the corresponding coding 
regions based on just one correlation analysis seems a bit overenthusiastic. How 
does for instance the correlation look like with other parts of the genome that are 
not directly related, is that a much lower number? 

Response 2.4 
In the coevolutionary analysis, we measure the correlation between the mutation rates in             
regulatory regions (promoters and terminators) and the corresponding coding regions.          
Indeed, not including any negative controls in the analysis was an oversight on our part               
and we think this is a very good suggestion. We tested both the effects of method                
sensitivity as well as the potential for the coevolution across larger parts of the genome.               
Therefore, considering that yeast has a very compact genome with over half of the gene's               
regulatory regions overlapping (Fig S1-9), a rational test to use as control was to analyse               
if there is any correlation between the regulatory and coding regions of non-related genes              
(achieved by random shuffling of the regulatory regions). The negative control shows that             
no correlation is observable across the non-related regions (Pearson’s r ~ 0, p-value >              
0.05).  
Additionally, we expanded our overview of published studies and findings. In higher            
eukaryotes, multiple lines of evidence show contributions of positive selection in           
cis-regulatory regions including promoters 46, transcription factor binding sites 47,48 and           
enhancers 49,50, besides purifying selection in their maintenance 47. In fact, approximately            
half of all functional variation was found in non-coding regions 51. Orthologous genes thus              
display a coupling of protein and regulatory evolution 52, suggesting that selective            
pressure on gene expression and protein evolution is quite similar and persists for a              
significant amount of time following speciation 52 and that even regulatory sequence can             
evolve to fine-tune expression levels 53. In yeast, due to the hypervariable non-coding             
sites that could result from selection on regulatory mutations 54, a similar coupling of gene               
mutation rates with the gene's expression levels was found 55 as well as evidence to               
causally link differences in gene expression to variation at individual regulatory nucleotide            
positions 56. Indeed, expression levels deviating from the parental range in a yeast strain              
were found to occur through novel regulatory-gene mutational interactions 57.  
Considering these publications and based on the strength and significance of the            
measured correlation in our study (Fig 2E, F), we assume that our results give evidence               
for the coevolution hypothesis. However, we fully agree that the way these results were              
presented previously without controls was not appropriate, and we have now included the             
new results as a supplementary figure S2-3, made a more appropriate presentation of the              
findings and their indications in the manuscript (pages 8-9, lines 239-273) as well as              
expanded the discussion section to include the presently published findings and their            
references (page 23, lines 654-665). 
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A B 
 
 
 
 
 
 
 
 
 
 
 
 
 

C D 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure R2-1. Analysis of coevolution of regulatory and coding regions in orthologous genes of 14 yeast                
species. Red lines denote least squares fits. (A) Control analysis of evolutionary substitution rates in               
promoter vs. coding regions, where the regions were randomly mismatched. (B) Control analysis of              
evolutionary substitution rates in terminators vs. coding regions, where the regions were randomly             
mismatched. (C) Evolutionary substitution rates in terminators vs. promoter regions. (D) Control analysis             
of evolutionary substitution rates in terminators vs. promoter regions, where the regions were randomly              
mismatched. 
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Comment 2.5 

- The authors seem to ignore the fact that their model is much more capable of 
predicting downregulation compared to upregulation (pgs 7 and 18). This warrants 
some thoughts in the discussion about the implication of their model predictions for 
future experiments and a potential explanation why this might happen (can imagine 
that down more often equates to off and therefore is easier to predict than up). 

Response 2.5 
As the reviewer pointed out, with the experimental testing (Fig 6B) the model was on average                
1.6-fold more capable of predicting downregulation than upregulation (based on comparing           
fluorescence intensity medians). A note, we have recomputed and replotted Figures 6C and D,              
due to a computation error in the previous article version, though the overall results and               
conclusions remain similar, and on average a 24% decrease in gene expression is observed              
with weak promoters compared to a 15% increase with strong ones (Fig 6C, D). An explanation                
for the higher predictive power for downregulation compared to upregulation could indeed be             
related to the selection pressure of highly expressed genes. For multiple organisms, including             
viruses, it has been shown that very highly expressed genes have lower sequence divergence              
58,59 and thus altering highly optimized sequences would likely result in downregulation. Along             
these lines we hypothesize the existence of a regulatory grammar 'fitness landscape', similar as              
with other molecular, e.g. protein, fitness landscapes 60. Grammar optimized for increased            
expression represents peaks in the landscape (is potentially more 'focused' and rare), whereas             
some basal lower level expression is represented by the valleys with many more variations of               
the grammar. The exception is possibly with very low expression, which again is more defined,               
so represented by an inverted valley-to-peak landscape. Accordingly, when altering the           
regulatory information in the sequences, by shuffling the input sequences preserving their            
dinucleotide content, we observe that average model predictions on shuffled sequences are            
over 2-fold lower than with original non-shuffled ones (Fig R2-2A, B). This suggests that a               
certain basal level of expression exists, lower than the organism average but still above zero               
(Fig R2-2A: predicted at ~2-fold lower than the median expression level, 64.5 TPM). This makes               
sense also from an evolutionary perspective, as for both very low and high expression the               
regulatory grammar must specially evolve to define these levels (Fig R2-2C). On the other hand,               
it can be expected that for the basal expression level regulation is less specific, possibly either                
'turned off' or comprising a more diverse grammar. This gives some explanation why it might be                
easier for the model to predict downregulation than upregulation. The implications of these             
findings for future experiments are that (i) possibly separate models for different classes of              
expression as well as accounting for different conditions might give better results for specific              
predictions, as well as (ii) more computational and experimental work is required to decipher the               
evolutionary strategies of regulatory grammars and define the properties of underlying basal            
and targeted-evolved regulation. We have thus included these results in the manuscript            
(Supplementary figure S6-6) and expanded the discussion section as suggested (page 24, lines             
704-717). 
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A B 
 
 
 
 
 
 
 
 
 
 
 

 
Figure R2-2. Prediction of a basal level of S. cerevisiae gene expression and a hypothesized regulatory                
grammar fitness landscape. (A) Predicted expression levels with randomly shuffled sequences with            
conserved dinucleotide content, compared to non-randomized sequences and the experimentally          
measured expression levels. Median predicted expression level with shuffled sequences was over 2-fold             
lower than with original ones, at 64.5 TPM. (B) Hypothesis on the potential evolutionary fitness landscape                
of regulatory grammar that can be inferred from our results. 
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Comment 2.6 

- I am intrigued by the difference they found between the shallow and deep 
modeling with regard to the contribution of the regulatory regions. While the shallow 
modeling is unable to explain a large part of the variance, the deep modeling is. 
When combined with the codon frequencies, the difference between the two 
approaches is much smaller. The authors also indicate that they can predict the 
codon usage using the regulatory code. How then can such a big difference 
between the two modeling approaches exist? The shallow modeling suggests that 
the codon frequency is much more important compared to the regulatory regions, 
while the deep modeling is assigning a much higher contribution to the regulatory 
regions. 

Response 2.6 
Shallow modeling approaches have the limitation that they cannot decode the information in a              
DNA sequence directly and thus rely on human feature engineering 35,61. Since they cannot              
learn sequence relations such as motif occurrence and co-occurrence, they require the use of              
some quantifiable feature, such as k-mer frequencies, as a representation of the sequence             
properties. K-mers, despite representing the different motifs inside the sequence and thus giving             
a representation of the motif landscape to the model 62–65, are not an optimal representation of                
the complexity of information encoded in the DNA, such as the regulatory grammar uncovered              
in our study. In contrast, deep learning models can themselves interpret the features directly              
from data 35,66, where specifically convolutional neural networks (CNN) can learn to recognize             
sequence motifs as well as their co-occurrence across the DNA sequence 15,41,67,68. Deep neural              
networks can thus be viewed as an expansion of shallow models, being capable of learning               
practically everything that the classical ML models can, but also learning the best underlying              
representations of the features. Therefore, although both procedures gave good and very            
similar results with the codon frequencies, since both can directly use these features to build               
models, with deep modeling also the information encoded in the regulatory regions could be              
deciphered and was thus used for the predictions (manuscript Fig 2A). Since, due to the               
potential coevolution (Fig 2E, F and R2-1), there is a large overlap of the information in the                 
coding and regulatory regions, the increase in deep model performance when using both coding              
and regulatory regions was not as drastic (Fig 2A: R2 increased from 0.690 with coding to 0.816                 
with coding+regulatory) as when comparing shallow and deep models using only regulatory            
region sequence features (Fig 2A: R2 increased from almost 0 to ~0.5). Therefore, the big               
difference between the two modeling approaches occurs in case of comparing regulatory            
regions, where with shallow models, k-mers were used as features to represent the DNA              
sequence, and with deep models, the DNA sequence could be used directly. Indeed, the              
shallow modeling suggests that the codon frequency is much more important compared to the              
regulatory regions, which is in case of the shallow models. In contrast, the deep modeling is                
assigning a high contribution to the regulatory regions, but since the information in these regions               
overlaps with the information in the coding regions, the increase in predictive power of the               
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models with regulatory + coding regions compared to models with only coding regions is not as                
pronounced as would be expected solely on the amount of information encoded in the              
regulatory regions. As the reviewer pointed out, this was not clear in the previous version of the                 
manuscript, and we have thus updated the manuscript text to better communicate this finding              
(page 8, lines 209-230). 
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Comment 2.7 

minor remarks: 
- pg 6, FigS1-2, in contrast to what they authors indicate, I only see metabolic 
processes, transport and stress response in the enrichment analysis. 

Response 2.7 
Thank you for pointing out this mistake, which was likely lingering from a previous version of the 
results. We have fixed this in the text (page 5, lines 134-137) as you have suggested.  
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Comment 2.8 

- Fig1G, Why use a pearson r here, while in all other subpanels an R2 is used. This 
is confusing. 

Response 2.8 
The difference was that plot (F) showed a standard assessment of modeling results using R2               
and true (target variable) vs predicted values of a held out test dataset, whereas the other plot                 
(G) shows a non-modelling assessment of how model predictions correlate to published GFP             
experimental values, using experimental vs. predicted values on the subset of available data,             
where we were not training models based on these data. 
To clarify further, our models describe and map the relations of input variables to mRNA levels -                 
which is a continuous variable. Thus, for the interpretation we present model performance as R2               
on the test data, which is an intuitive metric signifying the percentage of variance that can be                 
predicted from target variable (mRNA levels) using the information from DNA. The coefficient of              
determination is defined as [Eq. 1], where SSResidual is the sum of    S /SSR2 = 1 − S Residual Total         
residual squares of predictions and SSTotal is the total sum of squares (specified in manuscript               
Methods M4). Thus, R2 describes the proportion of the variance in the dependent variable              
(target mRNA levels) that is predictable from the independent variables (DNA sequence            
properties, as defined in Methods M1, Fig S1-1C), which gives the key information on model               
performance that we are interested in, namely, to what extent are the target mRNA levels               
encoded in the DNA sequence.  
 
For Figure 1G, since we are not assessing the performance of models but relaying the               
correlation between the measured GFP fluorescence and predicted expression levels, we show            
Pearson's correlation coefficient r, which is also the standard metric to assess and report              
correlation between variables in the field 8,9,69. In general, since R2 can be derived as an                
approximation of the correlation coefficient r, also r is approximately the square root of R2 (in Fig                 
6B this would correspond to ~0.42). However, one metric (R2) is defined and used for assessing                
the performance of a model based on variance analysis of the true versus predicted variable,               
and the other (r) is used to assess the strength of a (linear) relation between two independent                 
variables. Therefore, we were trying to clearly differentiate between reporting model           
performance with R2 and correlations between variables with r.  
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Comment 2.9 

- pg 9, the authors claim that the combination is additive "Each DNA region thus 
additively contributed ..." This warrant some further explanation. Effects can also be 
non-additive (multiplicative for instance), why/how did the authors conclude this? 

Response 2.9 
Yes, after reassessing these statements, we find that this wording was not appropriate             
according to the findings, since we did not assess the exact nature but observed the overall                
combined result. To avoid the ambiguity of the meaning of the word “additive”, which as the                
reviewer points out in a mathematical sense would require justification of the nature of the               
interaction, we thus rephrased the term to “jointly”, as a combined effect of regions contributing               
to the predictions. The meaning that we think is appropriate is that the regions 'jointly'               
contributed to the increase in predictive performance, which implies some 'combination' and            
'addition', but is generic enough not to be misleading.  
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Comment 2.10 

- pg 22, discussion. There, the authors indicate that the biological variation due to 
different conditions is negligible compared to the gene expression difference 
encoded in the genome. I think the authors have to be a bit more careful here with 
their statement. I would disagree that biological variation is negligible. In essence, 
the parameters they choose to include in their model (motifs, regulatory sequence) 
are effectively ways for the system to encode responses to different environmental 
changes through transcription factor binding, chromatin rearrangements, etc and 
therefore should be considered an indirect way of environmental changes on gene 
expression levels. 

Response 2.10 
Yes, the term biological variation indeed often encompasses more than is (strictly) assessed             
here and also often implies dynamics. We of course did not mean to neglect biological system                
dynamics and, as the reviewer points out, the result of observed expression levels as a               
response to different environmental conditions. However, the term used in the discussion strictly             
relates to the gene expression variation across thousands of experiments and conditions            
analyzed in the present study (Fig 1A), where for each gene the variability across the conditions                
was much smaller than the entire dynamic range of expression levels across all genes. Since               
the median value across the conditions (per gene) is the target variable, this defines what our                
models can 'learn' to predict, where any condition-specific changes per gene were likely not              
captured by the current models, as they were not included in their training data. We therefore                
fixed the wording to avoid strong phrases like 'negligible' to improve the clarity of this text (page                 
22, lines 628-630). 
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REVIEWERS' COMMENTS 

Reviewer #1 (Remarks to the Author): 

The authors have addressed many of the concerns of the past review. I still respectfully disagree 

with the authors around metrics to determine a successful model. The argument of "everyone else 

does it" for r2 etc is not an adequate excuse--you want to lead the field and publish in a top 

journal? Then lead it and not follow! 

On a second point, while I appreciate the use of the leave-some-out approach of the model testing, 

this is not what I was suggesting. I would want to see how this model would perform on a purely 

de novo designed element. 

These objections notwithstanding, I think the re-delivery of the text and the topic is now suitable 

for publication and the authors should think about making a discussion about alternative statistics 

in the text. 

Reviewer #2 (Remarks to the Author): 

Based on my previous comments, the authors have greatly increased the overall readbility of the 

manuscript by splitting long sentences in shorter ones and providing clearer descriptions of the 

methodologies ueed. They have also performed a number of additional analyses and/or have 

corrected some small oversights. These analyses have further strengthened their conclusions 

based on their results. Overall this manuscript provides a very interesting analysis and 

computational model to predict (and explain) gene expression based on the regulatory sequence 

code. 

I have no further comments or remarks and think this is a very nice manuscript.



 
 
 
 

Responses to reviewer's comments 
 
REVIEWERS' COMMENTS 
 

Reviewer #1 (Remarks to the Author): 

Comment 1.1 
The authors have addressed many of the concerns of the past review. I still respectfully 
disagree with the authors around metrics to determine a successful model. The argument of 
"everyone else does it" for r2 etc is not an adequate excuse--you want to lead the field and 
publish in a top journal? Then lead it and not follow! 
 
On a second point, while I appreciate the use of the leave-some-out approach of the model 
testing, this is not what I was suggesting. I would want to see how this model would perform on 
a purely de novo designed element. 
 

Response 1.1 
We thank the Reviewer for the insightful and constructive comments. As we replied previously              
we do not select our models based on R2. We have now tested the model on purely de novo                   
designed elements. To clarify, de novo designed genetic elements are typically random            
sequences of DNA that are inserted into natural genomic construct-scaffolds that are typically             
linked to a fluorescent protein as a readout. Using data provided in the study by deBoer et al.                  
2019 1, comprising measured fluorescence intensities of 9982 randomized promoter constructs,           
the results show significant correlation (Pearson's r = 0.507, p-value < 1e-16) between our              
model predictions and the measured fluorescence levels (Figure R1-1). Despite that we are             
predicting a completely different readout, i.e. fluorescence levels as opposed to mRNA levels,             
our model is in good agreement with the experimental data. We thank the Reviewer for               
encouraging us to perform this analysis and we have included these results as a supplementary               
figure (Figure S1-5c) and added text in the Discussion section to support our statements that               
the models demonstrate strong agreement between predicted values and experimental          
measurements (page 18, lines 608-609). 

https://paperpile.com/c/iInAgX/ege7


 
Figure R1-1. Experimental fluorescence measurements 1 versus predicted expression levels on           
de novo sequence data comprising 9982 randomized promoter constructs within the ANP1 gene             
scaffold 1. Model trained on S. cerevisiae data was used. Red line denotes least squares fit. 
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Comment 1.2 
These objections notwithstanding, I think the re-delivery of the text and the topic is now suitable 
for publication and the authors should think about making a discussion about alternative 
statistics in the text. 

 

Response 1.2 
We thank the Reviewer for the positive comments. We have added a paragraph to the               
Discussion about the measures used and alternative statistics in the text (pages 16-17, lines              
527-546). 
 
 
 
  
  



Reviewer #2 (Remarks to the Author): 

Comment 2.1 
Based on my previous comments, the authors have greatly increased the overall readbility of 
the manuscript by splitting long sentences in shorter ones and providing clearer descriptions of 
the methodologies ueed. They have also performed a number of additional analyses and/or 
have corrected some small oversights. These analyses have further strengthened their 
conclusions based on their results. Overall this manuscript provides a very interesting analysis 
and computational model to predict (and explain) gene expression based on the regulatory 
sequence code. 
 
I have no further comments or remarks and think this is a very nice manuscript. 
 

Response 2.1 
We thank the Reviewer for his positive comments and enthusiasm for our work. 
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